

NEW

Department of Examinations - Sri Lanka

 G.C.E. (A/L) Examination - 2019
7 - Mathematics I

New Syllabis

Marking Scheme

This document has been prepared for the use of Marking Examiners. Some changes would be made according to the views presented at the Chief Examiners' meeting.

Amendments to be included.

1. Let $A=\{x \in \mathbb{R}:|x-2| \geq 2\}$ and $B=\{x \in \mathbb{R}:|x-1|<3\}$ be subsets of \mathbb{R}. Find $A \cap B$ and $A \cup B$.
$A=\{x:|x-2| \geq 2\}$
Since, $|x-2| \geq 2 \Rightarrow(x-2) \leq-2$ or $(x-2) \geq 2 \Rightarrow x \leq 0$ or $x \geq 4$, we have
$A=(-\infty, 0] \cup[4, \infty)$.
$B=\{x:|x-1|<3\}$
Since $|x-1|<3 \Rightarrow-3<x-1<3 \Rightarrow-2<x<4$, we have $B=(-2,4)$.
Thus, $A \cap B=(-2,0]$.
$B^{\prime}=(-\infty,-2] \cup[4, \infty) .5$
Thus, $A \cup B^{\prime}=(-\infty, 0] \cup[4, \infty)$.
2. Let A and B be subsets of aniversal set S. The $A x B$ in defined, in usual notation, by $A \backslash B=A \cap B^{\prime}$. Show that $A \backslash B=B^{\prime} \times A^{*}$ and $(A \backslash B) \backslash C=A \backslash(B \cup C)$.

3. Show that the compound propositions $(p \Rightarrow q) \vee(p \Rightarrow r)$ and $p \Rightarrow(q \vee r)$ are logically equivalent.

p	q	r	$p \Rightarrow q$	$p \Rightarrow r$	$(p \Rightarrow q) \vee(p \Rightarrow r)$	$q \vee r$	$p \Rightarrow(q \vee r)$
T							
T	T	F	T	F	T	T	T
T	F	T	F	T	T	T	T
F	T						
T	F						
F	T	F	T	T	T	T	T
F	F	T	T	T	T	T	T
F	F	F	T	T	T	F	T

The two compound propositions $(p \Rightarrow q) \bigvee(p \Rightarrow r)$ and $p \Rightarrow(q \vee r)$ have the same truthvalue for each combination of p, q and r. 5
Therefore, the two compound propositions $(p \Rightarrow q) \vee(p \Rightarrow r)$ and $p \Rightarrow(q \vee r)$ are logically equivalent.

4. Using the method of contrapositive, prove that $1 \frac{n^{3}}{3}+5$ is odd, them n is even.

Let $p: n^{3}+5$ is odd, and $q: n$ is even.
Since, $p \Rightarrow q$ and $\sim q \Rightarrow \sim p$ are logically equivalent, we need to prove:
n is odd $\Rightarrow n^{3}+5$ is even.
Let n be odd.
n is odd $\Rightarrow n=2 m+1$ for some $m \in \mathbb{Z}$. \square5

Thus, $n^{3}+5=(2 m+1)^{3}+5=\left(8 m^{3}+12 m^{2}+6 m+1\right)+5$

$$
\begin{aligned}
& =2\left(4 m^{3}+6 m^{2}+3 m+3\right)(5 \\
& =2 p, \text { where } p=4 m^{3}+6 m^{2}+3 m+3 \in \mathbb{Z}
\end{aligned}
$$

Therefore, $n^{3}+5$ is even.
Hence the result.

5. Solve the simultaneous equations $2 \log _{9} x+\log _{3} y=3$ and $2^{x+3}-8^{y+1}=0$ for x and y.

$2 \log _{9} x+\log _{3} y=3 \Rightarrow \log _{9} x^{2}+\log _{3} y=3--$ (1)
Since $\log _{3} x^{2}=\log _{3} 9 \times \log _{9} x^{2} \Rightarrow \log _{3} x^{2}=\log _{3} 3^{2} \times \log _{9} x^{2} \Rightarrow \log _{3} x^{2}=2 \log _{9} x^{2}$,
from (1) we have $\frac{1}{2} \log _{3} x^{2}+\log _{3} y=3 \Rightarrow \log _{3} x^{2}+2 \log _{3} y=6$

$$
\Rightarrow \log _{3} x^{2}+\log _{3} y^{2}=6
$$

$$
\Rightarrow \log _{3}\left(x^{2} y^{2}\right)=6
$$

$$
\Rightarrow x^{2} y^{2}=3^{6} .-(2)
$$

$2^{x+3}-8^{y+1}=0 \Rightarrow 2^{x+3}-2^{3(y+1)}=0 \Rightarrow x+3=3(y+1) \Rightarrow x=3 y$. $-(3)$
From (2) and (3), (By) ${ }^{2} y^{2}=3^{6} \Rightarrow 3^{2} y^{4}=3^{6} \Rightarrow y=3$, since $y>0$.
Thus, $x=9$.
6. Find all real values of x satisfying the inequality $x \leq \frac{2}{x-1}$.
$x \leq \frac{2}{x-1} \Rightarrow \frac{2}{x-1}-x \geq 0 \Rightarrow-\frac{(x+1)(x-2)}{(x-1)} \geq 0$.
Number line for the problem is as follows:

	$x<-1$	$x=-1$	$-1<x<1$	$x=1$	$1<x \leq 2$	$x=2$	$2<x$
Sign of $\frac{-(x+1)(x-2)}{(x-1)}$	$\frac{(-)(-)(-)}{(-)}$	$=0$	$\frac{(-)(+)(-)}{(-)}$	Undefined	$\frac{(-)(+)(-)}{(+)}$	$=0$	$\frac{(-)(+)(+)}{(+)}$
	$=(+)$			$(-)$		$=(+)$	
$=(-)$							

The solution is the values of x satisfying the inequalities $\mathrm{x} \leq-1$ or $1<\mathrm{x} \leq 2$.

7. Let $f(x)=x^{3}+1$ and $g(x)=a x+b$ for $x \in \mathbb{R}$, where a and are real constants. It is given that
$f(g(0)=2$ and $g(f(0))=3$. Find the values of a and b.

With these values for a and b, find $g^{-1}(x)$.
$f(x)=x^{3}+1$ and $g(x)=a x+b$ for $x \in \mathbb{R}$, where a and b are real constants.
Thus, $g(0)=b$ and $f(0)=1$.
$f(g(0))=2 \Rightarrow f(b)=2 \Rightarrow b^{3}+1=2 \Rightarrow b^{3}=1 \Rightarrow b=1$. -- (1)
$g(f(0))=3 \Rightarrow g(1)=3 \Rightarrow a+b=3 .-$ (2)
From (1) and (2), we have $a=2$.
Thus, $g(x)=2 x+1$.
Thus, $g(x)=2 x+1$.
Since $g(x)$ is a linear function of x on $\mathbb{R}, g(x)$ is a bijection on \mathbb{R}. Thus $g^{-1}(x)$ exists on \mathbb{R}.
Let $y=g(x)=2 x+1$.
$y=2 x+1 \Rightarrow x=\frac{1}{2}(y-1)$. 5
Thus $g^{-1}(x)=\frac{1}{2}(x-1)$. 5
8. Lef $A \equiv(1,2)$ and $B \equiv(9,8)$. Find the equation of the perpendicular bisector 1 of $A B$.

Two points C and D are taken on I such that $A C B D$ is a square. Show that the axea of the square $A C B D$ is 50 square units.
$A \equiv(1,2)$ and $B \equiv(9,8)$.
Let P be the mid-point of line joining the points A and B.
Then $P \equiv\left(\frac{1+9}{2}, \frac{2+8}{2}\right)=(5,5)$.
Gradient of the line joining the points A and $B=\frac{8-2}{9-1}=\frac{3}{4}$.
Therefore, the gradient of the perpendicular to $A B=-\frac{4}{3}$.
Thus the equation of the perpendicular bisector l of $A B$ is given by $y-5=-\frac{4}{3}(x-5)$
$\Rightarrow 4 x+3 y=35$.
$A B=\left[(9-1)^{2}+(8-2)^{2}\right]^{\frac{1}{2}}=\left[8^{2}+6^{2}\right]^{\frac{1}{2}}=10$ units.
The area of the square $A C B D=4 \times\left[\frac{1}{2}\left(\frac{1}{2} A B\right) \times\left(\frac{1}{2} A B\right)\right]$

$$
=4 \times\left[\frac{1}{2}\left(\frac{1}{2} \times 10\right)\left(\frac{1}{2} \times 10\right)\right]
$$

$$
=50 \text { Square units. }
$$

9. The surface area of a closed rectangular box with a square base of side length $x \mathrm{~m}$ and height h mis $100 \mathrm{~m}^{2}$. If x is increasing at a rate of $6 \mathrm{~m}^{-1}$ while keeping the surface area unchanged, find the rate at which h t changing when $=3$.

Given that, x is the length of a side of the square base and h is the height of the closed rectangular box.
Surface area of the closed rectangular box $=2 x^{2}+4 x h$.
Given that $2 x^{2}+4 x h=100 \mathrm{~m}^{2}$ and $\frac{d x}{d t}=6 \mathrm{~m} \mathrm{~s}^{-1}$.
Differentiating with respect to t,

$$
\begin{equation*}
2 x^{2}+4 x h=100 m^{2} \Rightarrow 4 x \frac{d x}{d t}+4 x \frac{d h}{d t}+4 h \frac{d x}{d t}=0 .-- \tag{5}
\end{equation*}
$$

When $x=5 \mathrm{~m}, 2 x^{2}+4 x h=100 \mathrm{~m}^{2} \Rightarrow h=\frac{5}{2} \mathrm{~m}$.
Thus, from (1): $4 \times 5 \times 6+4 \times 5 \times \frac{d h}{d t}+4 \times \frac{5}{2} \times 6=0 \Rightarrow \frac{d h}{d t}=-9 \mathrm{~ms}^{-1}$. 5
Therefore, the required rate of change $=-9 \mathrm{~ms}^{-1}$.
10. Find the area of the region enclosed by the curve $y=(x-2)^{2}$ and the straight line $2 x+y=7$.

Solving the curve $y=(x-2)^{2}$ and the line $2 x+y=7$ we get:
$7-2 x=(x-2)^{2} \Rightarrow 7-2 x=x^{2}-4 x+4 \Rightarrow x^{2}-2 x-3=0 \Rightarrow(x+1)(x-3)=0$.
$\Rightarrow x=-1,3$.
Thus, the curve $y=(x-2)^{2}$ and the line $2 x+y=7$ meet at the points $A \equiv(-1,5)$ and

Required area $S=$ Area $A B N M-\int_{-1}^{3}(x-2)^{2} d x 5$
$=\frac{1}{2}(A M+B N) \times M N-\int_{-1}^{3}(x-2)^{2}$

Page 5 of 20
7 - Mathematics I (Marking Scheme) New Syllabus | G.C.E.(A/L) Examination - 2019 | Amendments to be included.
11. (a) Eighty five students of certain school have to face two pre-qualifying examinations to qualify for the final examination.
Number of students passed in the first pre-qualifying examination is equal twice the number of students passed in the second examination. The number of students who passed exactly one examination is 70 and 5 students failed both examinations.
Determine the number students who passed
(i) each pre-qualifying examination,
(ii) both examinations.
(b) Luing truth tables, determine whether each of following compound propositions is a tatology, a contradiction or neither.
(i) $[p A(\sim(a \Rightarrow p)] \Rightarrow q$
(ii) $[p \wedge(p \Rightarrow q)] \wedge(\sim q)$
(aii) $\quad \pi(p A q)=(p \vee q)$
(a) Let E_{1} be the set of students who passed the first pre-qualifying examination and E_{2} be the set of students who passed the second pre-qualifying examination.

Let $n\left(E_{2}\right)=x$ and $n\left(E_{1} \cap E_{2}\right)=y$.
Given that, the number of students passed in the first examination is equal to twice the number of students passed in the second examination, i.e.,

$$
\begin{equation*}
n\left(E_{1}\right)=2 n\left(E_{2}\right) \Rightarrow n\left(E_{1}\right)=2 x \tag{5}
\end{equation*}
$$

The number of students who passed exactly one examination is 70 gives

$$
\begin{aligned}
n\left(E_{1}\right)+n\left(E_{2}\right)-2 n\left(E_{1} \cap E_{2}\right)=70 & \Rightarrow 2 x+x-2 y=70 \\
& \Rightarrow 3 x-2 y=70 .-(1)
\end{aligned}
$$

Since 5 students failed both examinations we have $n\left(E_{1} \cup E_{2}\right)=85-5=80$.
Therefore, from $n\left(E_{1} \cup E_{2}\right)=n\left(E_{1}\right)+n\left(E_{2}\right)-n\left(E_{1} \cap E_{2}\right)$ we get

$$
80=2 x+x-y \Rightarrow 3 x-y=80
$$

Solving (1) and (2) we get: $x=30$ and $y=10$.

Therefore,

the number of students passed in the first examination $n\left(E_{1}\right)=2 x=60$, the number of students passed in the second examination $n\left(E_{2}\right)=x=30$, and the number of students passed both examinations $n\left(E_{1} \cap E_{2}\right)=y=10$.
(b) (i)

p	q	$\sim p$	$\sim q$	$\sim q \Rightarrow \sim p$	$p \wedge(\sim q \Rightarrow \sim p)$	$[p \wedge(\sim q \Rightarrow \sim p)] \Rightarrow q$
T	T	F	F	T	T	T
T	F	F	T	F	F	T
F	T	T	F	T	F	T
F	F	T	T	T	F	T

Since, the truth value of the compound proposition $[p \wedge(\sim q \Rightarrow \sim p)] \Rightarrow q$ is true for all possible combinations of truth values of p and q, $[p \wedge(\sim q \Rightarrow \sim p)] \Rightarrow q$ is a tautology.
(ii)

p	q	$\sim q$	$p \Rightarrow q$	$p \wedge(p \Rightarrow q)$	$[p \wedge(p \Rightarrow q)] \wedge(\sim q)$
T	T	F	T	T	F
T	F	T	F	F	F
F	T	F	T	F	F
F	F	T	T	F	F

Since, the truth value of the compound proposition $[p \wedge(p \Rightarrow q)] \wedge(\sim q)$ is false for all possible combinations of truth values of p and q,
$[p \wedge(p \Rightarrow q)] \wedge(\sim q)$ is a contradiction.
(iii)

p	q	$p \wedge q$	$\sim(p \wedge q)$	$p \vee q$	$\sim(p \wedge q) \Rightarrow(p \vee q)$
T	T	T	F	T	T
T	F	F	T	T	T
F	T	F	T	T	T
F	F	F	T	F	F

The compound proposition $\sim(p \wedge q) \Rightarrow(p \vee q)$ is neither a tautology nor a contradiction.
12. (a) Using the Principle of Mathematical Induction, prove that

$$
\sum_{z=1}^{n}\left(6 r^{2}-2 r-1\right)=n\left(2 n^{2}+2 n-1\right) \text { for all } n \in \mathbf{Z}^{*}
$$

(b) Let $V_{r}=\frac{1}{(r+1)(r+2)}$ for $r \in \mathbf{Z}^{*}$,

Verify that $V_{r}=\frac{r+1}{r+2}-\frac{r}{r+1}$ for $r \in \mathbb{Z}^{+}$.
Show that $\sum_{r=1}^{n} V_{r}=\frac{n}{2(n+2)}$ for $n \in \mathbb{Z}^{+}$.
Also, find $\sum_{r=0}^{16}\left(2 V_{r}+3\right)$.
(a) Let $n=1$.

Then $L H S=\sum_{r=1}^{1}\left(6 r^{2}-2 r-1\right)=6-2-1=3$ and

$$
R H S=1 \cdot(2+2-1)=3
$$

5 Thus, the result is true for $n=1$.
Assume that the result is true for $n=p$, i.e.,

$$
\begin{equation*}
\sum_{r=1}^{p}\left(6 r^{2}-2 r-1\right)=p\left(2 p^{2}+2 p-1\right) \tag{5}
\end{equation*}
$$

Now consider the case $n=p+1$.

$$
\begin{align*}
& \sum_{r=1}^{p+1}\left(6 r^{2}-\right.2 r-1)=\sum_{r=1}^{p}\left(6 r^{2}-2 r-1\right)+\left\{6(p+1)^{2}-2(p+1)-\right. \\
&= p\left(2 p^{2}+2 p-1\right)+\left\{6(p+1)^{2}-2(p+1)-1\right\} \tag{5}\\
&= p\left\{2(p+1)^{2}-2 p-3\right\}+\left\{6(p+1)^{2}-2(p+1)-1\right\} \\
&= 2(p+1)^{2}(p+1)-p\{2 p+3\} \\
& \quad \quad+\left\{4(p+1)^{2}-2(p+1)-1\right\} \\
&= 2(p+1)^{2}(p+1)+2(p+1)^{2} \\
& \quad \quad \quad\left\{-p(2 p+3)+2(p+1)^{2}-2(p+1)-1\right\}
\end{align*}
$$

$\begin{aligned} & =2(p+1)^{2}(p+1)+2(p+1)^{2}-(p+1) . \\ & =(p+1)\left\{2(p+1)^{2}+2(p+1)-1\right\} .\end{aligned}$
Thus, the resuit is true for $n=p+1$, when the result is true for $n=p$. 5
Therefore, from the principle of Mathematical Induction, result is true for all $n \in \mathbb{Z}^{+}$.
(b) Given that $V_{r}=\frac{1}{(r+\mathbf{1})(r+2)}$ for $r \in \mathbb{Z}^{+}$.

Now consider $\frac{r+1}{r+2}-\frac{r}{r+1}$.

$$
\frac{r+1}{r+2}-\frac{r}{r+1}=\frac{(r+1)^{2}-r(r+2)}{(r+1)(r+2)}=\frac{\left(r^{2}+2 r+1\right)-\left(r^{2}+2 r\right)}{(r+1)(r+2)}=\frac{1}{(r+1)(r+2)}=V_{r} .
$$

Thus, $V_{r}=\frac{r+1}{r+2}-\frac{r}{r+1}$ for $r \in \mathbb{Z}^{+}$.

When $r=1, \quad V_{1}=\frac{2}{3}-\frac{1}{2}$
$\begin{array}{ll}r=2, & V_{2}=\frac{3}{4}-\frac{2}{3} \\ r=3, & V_{2}=\frac{4}{5}-\frac{3}{4}\end{array}$
!
!
$r=n-2 \quad V_{n-2}=\frac{n-1}{n}-\frac{n-2}{n-1}$
$r=n-1 \quad V_{n-1}=\frac{n}{n+1}-\frac{n-1}{n}$ 15
$r=n \quad V_{n}=\frac{n+1}{n+2}-\frac{n}{n+1}$.
Adding n equations, we get $\sum_{r=1}^{n} V_{r}=\frac{n+1}{n+2}-\frac{1}{2}=\frac{2(n+1)-(n+2)}{2(n+2)}=\frac{n}{2(n+2)}$ for $n \in \mathbb{Z}^{+}$.

10

$$
\begin{aligned}
\sum_{r=6}^{16}\left(2 V_{r}+3\right) & =2 \sum_{r=6}^{16} V_{r}+\sum_{r=6}^{16}(3) \\
& =2\left\{\sum_{r=1}^{16} V_{r}-\sum_{r=1}^{5} V_{r}\right\}+3 \cdot 11 \\
& =2\left[\frac{16}{16+2}-\frac{5}{5+2}\right]+33 \\
& =2\left[\frac{16}{18}-\frac{5}{7}\right]+33 \\
& =33+\frac{22}{63} .
\end{aligned}
$$

13. (a) Let $a \in$. Show that the roots of the equation $x^{2}+a x-1=0$ are real and distinct.

Lat α and β be these roots. Find the quadratic equation that has $2 \alpha+1$ and $2 \beta+1$ as its roots.
(b) Let $f(x)=x^{3}+3 x^{2}+p x+q$, where $\not \approx$ and are real numbers.

The remainder when $f(x)$ is divided by $(x-1)$ is -12 and $(x-2)$ is a factor of $f(x)$. Fond the values of p and q.
Also, find the other linear factors of $f(x)$.

(a) Since $a^{2}-4 \times 1 \times(-1)=a^{2}+4>0$ for all $a \in \mathbb{R}$, the roots of the equation $x^{2}+a x-1=0$ are real and distinct. 5

Since α and β are the roots of the equation $x^{2}+a x-1=0$, we get $\alpha+\beta=-a$ and $\alpha \beta=-1$.

Let $A=2 \alpha+1$ and $B=2 \beta+1$.
Then, $A+B=(2 \alpha+1)+(2 \beta+1)=2(\alpha+\beta)+2=2 \times(-a)+2=2(1-a)$.

$$
\Rightarrow A+B=2(1-a)
$$

$A B=(2 \alpha+1)(2 \beta+1)=4 \alpha \beta+2(\alpha+\beta)+2=4 \cdot(-1)+2 \cdot(-a)+2$.
5) $A B=-2(a+1)$.
Therefore, the required quadratic equation is $x^{2}-(A+B) x+A B=0$.
That is, $x^{2}-2(1-a) x-2(a+1)=0$.

(b) Let $f(x)=x^{3}+3 x^{2}+p x+q---$ (1)

Also, let $f(x)=(x-1) q_{1}(x)-12 \ldots-(2)$ and $f(x)=(x-2) q_{2}(x)$
Now, (2) $\Rightarrow f(1)=(1-1) q_{1}(1)-12 \Rightarrow f(1)=-12$

$$
(3) \Rightarrow f(2)=(2-2) q_{2}(2) \Rightarrow f(2)=0 .
$$

Thus, from (1):
(10) $\left.\begin{array}{l}f(1)=-12 \Rightarrow p+q=-16 \\ f(2)=0 \Rightarrow 2 p+q=-20\end{array}\right\} \Rightarrow p=-4, q=-12$.

Now $f(x)=x^{3}+3 x^{2}-4 x-12$.--- (4)
Since, $f(x)$ is a cubic polynomial with the coefficient of x^{3} equals 1 , we can write

$$
f(x)=(x-2)(x-a)(x-b),
$$

where a and b are the remaining roots of $f(x)=0$.
Comparing coefficient of x^{0} in equations (4) and (5) we get

$$
-2 a b=-12 \Rightarrow a b=6---(6)
$$

Comparing coefficient of x^{2} in equations (4) and (5) we get

$$
-2-(a+b)=3 \Rightarrow a+b=-5--(7)
$$

Solving (6) and (7) we get $a=-2, b=-3$ or $a=-3, b=-2$ Therefore, $f(x)=(x-2)(x+2)(x+3)$.
14. (a) Lat $k \in \mathbb{R}$. The coefficients of x^{23} and x^{21} in the binomial expansion of $(1+k x)^{23}$ are equal Show that $k=7$.
(b) By discarding the terms involving powers of x greater than 3, find an approximate value for $(1.7)^{23}+(0.3)^{23}$.
(c) A person opened a bank account by depositing Rs. 50000 at the beginning of a month. He then deposited Rs. 20000 at the beginning of every month for two years. The account pays 0.5% interest compounded monthly. Find the balance in the account after two years.
At the end of every month after this two year period, he withdrew Rs. 20000 from the account. Fon how loug will there be money len in the account for him to continuously withdraw Rs .20000 per month?
(a) Let $k \in R$.

$$
(1+k x)^{23}=\sum_{r=0}^{23}{ }^{23} C_{r}(k x)^{23-r} 10
$$

Coefficient of x^{20} is obtained when $23-r=20$ or when $r=3$.
Coefficient of $x^{20}={ }^{23} C_{3} k^{20}$. 5
Coefficient of $x^{21}={ }^{23} C_{2} k^{21}$. 5
Equating the coefficients of x^{20} and x^{21}, we get ${ }^{23} C_{3} k^{20}={ }^{23} C_{2} k^{21}$ 5
$\Rightarrow \frac{23!}{3!\times 20!}=\frac{23!}{2!\times 21!} k .5$
Thus, $k=\frac{21}{3}=7$. 5
(b)
$(1.7)^{23}=(1+7 \times 0.1)^{23}$
$=\sum_{r=0}^{23}{ }^{23} C_{r} 7^{23-r}(0.1)^{23-r}$ $\cong{ }^{23} C_{23} 7^{0}(0.1)^{0}+{ }^{23} C_{22} 7^{1}(0.1)^{1}+{ }^{23} C_{21} 7^{2}(0.1)^{2}+{ }^{23} C_{20} 7^{3}(0.1)^{3}$, (ignoring powers of 3 and higher, in 0.1)
$\begin{aligned}(0.3)^{23} & =(1+7 \times(-0.1))^{23} \\ = & \sum_{r=0}^{23}{ }^{23} C_{r} 7^{23-r}(-0.1)^{23-r}\end{aligned}$
$\cong{ }^{23} C_{23} 7^{0}(0.1)^{0}-{ }^{23} C_{22} 7^{1}(0.1)^{1}+{ }^{23} C_{21} 7^{2}(0.1)^{2}-{ }^{23} C_{20} 7^{3}(0.1)^{3}$,
(ignoring powers of 3 and higher, in 0.1)

Adding the two, we find

$$
\begin{aligned}
(1.7)^{23}+(0.3)^{23} & =2+2 \times{ }^{23} C_{21} 7^{2}(0.1)^{2} \\
& =2+2 \times \frac{23!}{21!\times 2!} \times 49 \times 0.01 \\
& =2+23 \times 22 \times 0.49 \\
& =2+247.94 \\
& =249.94
\end{aligned}
$$

(c) Let $A=50,000, B=20,000$ and $r=\frac{0.5}{100}=0.005$.

Month	Amount in the account at the end of the month
1	$A(1+r)$
2	$A(1+r)^{2}+B(1+r)$
3	$A(1+r)^{3}+B(1+r)^{2}+B(1+r)$
4	$A(1+r)^{4}+B(1+r)^{3}+B(1+r)^{2}+B(1+r)$
5	$A(1+r)^{5} B(1+r)^{4}+B(1+r)^{3}+B(1+r)^{2}+B(1+r)$
\vdots	\vdots

Malue in the account at the end of 24 months

$$
\begin{aligned}
& =A(1+r)^{24}+B(1+r)\left(1+(1+r)+(1+r)^{2}+\cdots+(1+r)^{22}\right) \\
& =A(1+r)^{24}+B(1+r) \frac{\left((1+r)^{23}-1\right)}{(1+r-1)} \\
& =A(1+r)^{24}+\frac{B(1+r)}{r} \times\left((1+r)^{23}-1\right) . \\
& =\left(A+\frac{B}{r}\right)(1+r)^{24}-\frac{B(1+r)}{r} \\
& =\left(50000+\frac{20000}{0.005}\right)(1.005)^{24}-\frac{2000(1.005)}{0.005} \\
& =405 \times 10^{4} \times(1.005)^{24}-402 \times 10^{4} \\
& \cong 544998 .
\end{aligned}
$$

Now suppose the person starts withdrawing Rs.20000/- each month.
Let $C=544998$.

Month (after 24 months)	Amount in the account after withdrawal
1	$C(1+r)-B$
2	$C(1+r)^{2}-B(1+r)-B$
3	$C(1+r)^{3}-B(1+r)^{2}-B(1+r)-B$
4	$C(1+r)^{4}-B(1+r)^{3}-B(1+r)^{2}-B(1+r)-B$
\vdots	\vdots

Need largest $k \in N$ such that:

$$
C(1+r)^{k}-B(1+r)^{k-1}-B(1+r)^{k-2}-\cdots-B(1+r)-B \geq 0
$$

That is $C(1+r)^{k}-\frac{B}{r}\left((1+r)^{k}-1\right) \geq B$.

$$
\begin{align*}
& \Rightarrow(B-C r)(1+r)^{k} \leq B . \tag{5}\\
& \Rightarrow(1+r)^{k} \leq \frac{B}{B-C r} \\
& \Rightarrow(1.005)^{k} \leq \frac{20000}{20000-544998 \times 0.005}=1.158 \\
& \Rightarrow k \leq \frac{\log _{10} 1.158}{\log _{10} 1.005}=29.4 .
\end{align*}
$$

Therefore, $k=29$ months. 5
He can withdraw Rs. 20,000 per month for 29 months.
15. Show that there are two straight lines l_{4} and l_{2} passing through the point $(-2,8)$ and sum of the intercepts on the axes is 6 .
A straight line meets the above two straight lines l_{1} and l_{2} at points P and Q respectively. If the midpoint of the line segment $P Q$ is $(1,5)$, find the equation of the line $P Q$.
Show that equation of the straight line passing through point of intersection of straight lines l_{1} and l_{2}, and perpendicular to $P Q$ is $4 y=x+34$.

Let the equation of straight line be $\frac{x}{a}+\frac{y}{b}=1$.
Since the sum of the intercepts is 6 ,

$$
\begin{equation*}
a+b=6, \Rightarrow a=6-b--(1) \tag{5}
\end{equation*}
$$

Since the point $(-2,8)$ is on the straight line,

$$
\frac{-2}{a}+\frac{8}{b}=1 \Rightarrow 8 a-2 b=a b
$$

By (1), $\quad 8(6-b)-2 b=(6-b) b$

$$
\Rightarrow 48-8 b-2 b=6 b-b^{2}
$$

$$
\Rightarrow b^{2}-16 b+48=0
$$

$$
\Rightarrow(b-4)(b-12)=0
$$

$$
\begin{equation*}
\Rightarrow b=4,12 \tag{10}
\end{equation*}
$$

When $b=4, a=2$ and when $=12, a=-6$.
So there are two straight lines and corresponding equations are

$$
\begin{align*}
& l_{1}: \frac{x}{2}+\frac{y}{4}=1 \Rightarrow 2 \mathrm{x}+\mathrm{y}=4 \Rightarrow \mathrm{y}+2 \mathrm{x}-4=0-- \tag{2}\\
& l_{2}: \frac{x}{-6}+\frac{y}{12}=1 \Rightarrow-2 \mathrm{x}+\mathrm{y}=12 \Rightarrow \mathrm{y}-2 \mathrm{x}-12=0
\end{align*}
$$

Aliter

Let the equation of straight line be $y-8=m(x+2)$.
The x-interpret is given by $x=\frac{-(2 m+8)}{m}$.
The y-intercept is given by $y=2 m+8$.
It is given that, $\frac{-(2 m+8)}{m}+(2 m+8)=6$. 10
Thus, $\frac{-(2 m+8)}{m}+(2 m+8)=6 \Rightarrow-2 m-8+2 m^{2}+8 m=6 m \Rightarrow m^{2}-4=0$ $\Rightarrow m= \pm 2$.
So there are two straight lines and corresponding equations are

$$
\begin{aligned}
& y-8=2(x+2) \Rightarrow y-2 x-12=0 \text { and } \\
& y-8=-2(x+2) \Rightarrow y+2 x-4=0
\end{aligned}
$$

Let the gradient of the straight line $P Q$ be m and (x, y) be any point on $P Q$.
Since $(1,5)$ on $P Q$,

$$
\frac{y-5}{x-1}=m \Rightarrow y=m x+(5-m)
$$

Since l_{1} and $P Q$ intersect at P, by (2),

$$
m x+(5-m)+2 x-4=0 \Rightarrow(2+m) x=m-1 \Rightarrow x=\frac{m-1}{m+2}
$$

So, $y=m \frac{m-1}{m+2}+(5-m)=\frac{m^{2}-m+3 m+10-m^{2}}{m+2}=\frac{2 m+10}{m+2}$

$$
\therefore P \equiv\left(\frac{m-1}{m+2}, \frac{2 m+10}{m+2}\right) .
$$

Since l_{2} and $P Q$ intersect at Q, by (3),

$$
m x+(5-m)-2 x-12=0 \Rightarrow(m-2) x=(m+7) \Rightarrow x=\frac{m+7}{m-2} 10
$$

So, $y=m \frac{m+7}{m-2}+(5-m)=\frac{m^{2}+7 m+7 m-10-m^{2}}{m-2}=\frac{14 m-10}{m-2}$.
$\therefore Q \equiv\left(\frac{m+7}{m-2}, \frac{14 m-10}{m-2}\right)$.
Since $(1,5)$ is the midpoint of $P Q, \frac{1}{2}\left(\frac{m-1}{m+2}+\frac{m+7}{m-2}\right)=110$

$$
\begin{aligned}
& \Rightarrow(m-1)(m-2)+(7+m)(m+2)=2\left(m^{2}-4\right) \\
& \Rightarrow m^{2}-3 x+2+m^{2}+9 m+14=2 m^{2}-8 \\
& \Rightarrow 6 m=-24 \\
& \Rightarrow m=-4 .
\end{aligned}
$$

\therefore The equation of PQ is $y=-4 x+(5-(-4))$. i.e. $y+4 x=9$. 10
The gradient of a straight line perpendicular to $P Q$ is $\frac{1}{4}$.
The equation of the straight line passing through $(-2,8)$ and perpendicular to $P Q$ is

$$
\frac{y-8}{x-(-2)}=\frac{1}{4} \Rightarrow 4 y-32=x+2 \Rightarrow 4 y=x+34
$$

16.(a) Fixd $\lim _{x \rightarrow a} \frac{x^{2}-a^{2}}{x^{3}-a^{3}}$
(b) Differentiate of the following with respect to x
(1) $\ln \left(x+e^{\sqrt{x}}\right)$
(ii) $\left(x+\sqrt{x^{2}+a^{2}}\right)^{3}$
(ii) $\sqrt{\frac{1+e^{x}}{1-e^{x}}}$
(c) A window is in the shape of a rectangle surmounted by semicircle as: shown in the faure. The entire perimeter of the window if $(x+4) \mathrm{m}$. By taking in me radius of the semicircle, show that the area of the window $A n^{\prime}$ sgiven by $A=\left(2 x-x^{2}\right)$ where $=\frac{1}{2}(\pi+4)$.
Find the value of such that the ste of the window if maximum.

(a) $\lim _{x \rightarrow a} \frac{x^{2}-a^{2}}{x^{3}-x^{3}}=\lim _{x \rightarrow a} \frac{(x-a)}{(x-a)\left(x^{2}+a x+a^{2}\right)}=\lim _{x \rightarrow a} \frac{1}{\left(x^{2}+a x+a^{2}\right)}=\frac{1}{3 a^{2}}$.
(b) (i) Let $y=\ln \left(x+e^{\sqrt{x}}\right)$.

$$
\frac{d y}{d x}=\frac{1}{x+e^{\sqrt{x}}} \cdot\left\{1+e^{\sqrt{x}} \cdot \frac{1}{2} x^{-\frac{1}{2}}\right\}=\frac{\left(2 \sqrt{x}+e^{\sqrt{x}}\right)}{2 \sqrt{x}\left(x+e^{\sqrt{x}}\right)} .
$$

(ii) Let $y=\left(x+\sqrt{x^{2}+a^{2}}\right)^{3}$.

$$
\begin{align*}
& \frac{d y}{d x}=3\left(x+\sqrt{x^{2}+a^{2}}\right)^{2}\left\{1+\frac{1}{2}\left(x^{2}+a^{2}\right)^{-\frac{1}{2}} \cdot 2 x\right\} \\
& \Rightarrow \frac{d y}{d x}=3\left(x+\sqrt{x^{2}+a^{2}}\right)^{2}\left\{1+\frac{x}{\sqrt{x^{2}+a^{2}}}\right\} \\
& \Rightarrow \frac{d y}{d x}=\frac{3\left(x+\sqrt{x^{2}+a^{2}}\right)^{3}}{\sqrt{x^{2}+a^{2}}}, 10
\end{align*}
$$

(iii) Let $y=\sqrt{\frac{1+e^{x}}{1-e^{x}}}$.

$$
\frac{d y}{d x}=\frac{1}{2}\left(\frac{1+e^{x}}{1-e^{x}}\right)^{-\frac{1}{2}} \cdot\left[\frac{\left(1-e^{x}\right) \cdot\left(0+e^{x}\right)-\left(1+e^{x}\right) \cdot\left(0-e^{x}\right)}{\left(1-e^{x}\right)^{2}}\right] 5
$$

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+e^{x}}{1-e^{x}}\right)^{-\frac{1}{2}} \cdot\left[\frac{2 e^{x}}{\left(1-e^{x}\right)^{2}}\right] \\
& \Rightarrow \frac{d y}{d x}=\left(\frac{1-e^{x}}{1+e^{x}}\right)^{\frac{1}{2}} \cdot\left[\frac{e^{x}}{\left(1-e^{x}\right)^{2}}\right] \\
& \Rightarrow \frac{d y}{d x}=\frac{e^{x}}{\sqrt{1+e^{x} \cdot\left(1-e^{x}\right)^{\frac{3}{2}}}} .10
\end{aligned}
$$

(c) Let y be the height of the window.

The entire perimeter of the window $=\pi x+2 x+2 y$.
5
Given that $\pi x+2 x+2 y=\pi+4$.
5
Thus $\pi x+2 x+2 y=\pi+4 \Rightarrow y=\frac{1}{2}[\pi+4-(\pi+2) x]$.
The area of the window $A=\frac{1}{2} \pi x^{2}+2 x y$. (5) 5
Thus, $A=\frac{1}{2} \pi x^{2}+2 x \frac{1}{2}[\pi+4-(\pi+2) x] 5$

$$
\begin{aligned}
& =\frac{1}{2} \pi x^{2}+(\pi+4) x-(\pi+2) x^{2} \\
& =\frac{1}{2}(\pi+4)\left(2 x-x^{2}\right) \\
& =k\left(2 x-x^{2}\right), \text { where } k=\frac{1}{2}(\pi+4)
\end{aligned}
$$

Thus, the area of the window A is maximum when $x=1$.
Therefore, the maximum area of the window $=\frac{1}{2}(\pi+4)(2 \cdot 1-1 \cdot 1)$

$$
=\frac{1}{2}(\pi+4) m^{2}, 5
$$

17. (a) Using the method of integration by parts, evaluate $\int(x+1)^{2} d d x$
(b) The following able gives ver values of the function $f(x)=\frac{1}{(2-x)^{2}}$ correct to sour cecimal places, 定ar values of between 0 and 1 antervals of length 0.2.

x	0.00	0.20	0.40	0.60	0.80	1.00
$f(x)$	0.2500	0.3086	0.3906	0.5102	0.6944	1.0000

Using Trapezoidal rule, hux $\begin{aligned} & \text { n approximate value for } \\ & \text { places. }\end{aligned}=\int_{0}^{\frac{1}{3}} \frac{1}{(2-x)^{2}} \mathrm{dx}$, correct to twee decimal
Find I using be substitution $i=2-3$ otherwise and compare with the approximation obtwined above:
(a) $\int(x+1)^{2} e^{x} d x=\int(x+1)^{2} \frac{d e^{x}}{d x} d x$

$$
\begin{aligned}
& =(x+1)^{2} e^{x}-\int e^{x} \frac{d}{d x}(x+1)^{2} d x \\
& =(x+1)^{2} e^{x}-2 \int e^{x}(x+1) d x
\end{aligned}
$$

$$
10=(x+1)^{2} e^{x}-2 \int \frac{d e^{x}}{d x}(x+1) d x
$$

$$
\begin{equation*}
=(x+1)^{2} e^{x}-2\left[e^{x}(x+1)-\int e^{x} \frac{d}{d x}(x+1) d x\right] \tag{10}
\end{equation*}
$$

$=(x+1)^{2} e^{x}-2\left[e^{x}(x+1)-\int e^{x} d x\right] 10$
$=(x+1)^{2} e^{x}-2\left[e^{x}(x+1)-e^{x}\right]+C$.
(b) Let $h=\frac{1-0}{5}=0.20$.

Using Trapizoidal rule,

$$
I \approx \frac{h}{2}\left[y_{0}+2 y_{1}+2 y_{2}+2 y_{3}+2 y_{4}+y_{5}\right] 10
$$

$10=\frac{0.20}{2}[0.2500+2 \times 0.3086+2 \times 0.3906+2 \times 0.5102+2 \times 0.6944+1.000]$
$=\frac{0.20}{2}[0.2500+0.6172+0.7812+1.0204+1.3888+1.0000]$

$$
=0.1 \times 5.0576
$$

$$
=0.5058
$$

$$
\int_{0}^{1} \frac{1}{(2-x)^{2}} d x=-\int_{2}^{1} \frac{1}{u^{2}} d u=-\left[-\frac{1}{u}\right]_{2}^{1}=-\left[-1-\left(-\frac{1}{2}\right)\right]=\frac{1}{2}
$$

Therefore, the error $=\mid$ Actual value - Estimated value $|=|0.5000-0.5058|$
5) 0.0058 .

NEW

Department of Examinations - Sri Lanka G.C.E. (A/L) Examination - 2019

 7 - Mathematics II

 7 - Mathematics II New Syllabus

Marking Scheme

This document has been prepared for the use of Marking Examiners. Some changes would be made according to the views presented at the Chief Examiners' meeting.

Amendments to be included.

1. Let $\Delta=\left|\begin{array}{lll}a & a^{2} & 1+a^{3} \\ b & b^{2} & 1+b^{3} \\ c & c^{2} & 1+c^{3}\end{array}\right|$, where a, b and c are distinct non-zero real constants. If $\Delta=0$, show that $a b c=-1$.

$$
\begin{gather*}
\Delta=\left|\begin{array}{lll}
a & a^{2} & 1+a^{3} \\
b & b^{2} & 1+b^{3} \\
c & c^{2} & 1+c^{3}
\end{array}\right|=\left|\begin{array}{lll}
a & a^{2} & 1 \\
b & b^{2} & 1 \\
c & c^{2} & 1
\end{array}\right|+\left|\begin{array}{lll}
a & a^{2} & a^{3} \\
b & b^{2} & b^{3} \\
c & c^{2} & c^{3}
\end{array}\right|=\left|\begin{array}{lll}
a & a^{2} & 1 \\
b & b^{2} & 1 \\
c & c^{2} & 1
\end{array}\right|+a b c\left|\begin{array}{lll}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right| \tag{5}\\
\Rightarrow \Delta=\left|\begin{array}{lll}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right|+a b c\left|\begin{array}{lll}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right| \Rightarrow \Delta=(1+a b c)\left|\begin{array}{lll}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right| \cdots \tag{1}
\end{gather*}
$$

Now, $\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right| \xrightarrow{R_{2} \rightarrow R_{2}+(-1) R_{1}, R_{3} \rightarrow R_{3}+(-1) R_{1}}\left|\begin{array}{ccc}1 & a & a^{2} \\ 0 & b-a & b^{2}-a^{2} \\ 0 & c-a & c^{2}-a^{2}\end{array}\right| \longrightarrow 5$

$$
=(b-a)\left(c^{2}-a^{2}\right)-\left(b^{2}-a^{2}\right)(c-a)
$$

$$
\begin{equation*}
=(a-b)(b-c)(c-a) \tag{5}
\end{equation*}
$$

Thus from (1): $\Delta=(1+a b c)(a-b)(b-c)(c-a)$.
Since a, b and c are distinct real numbers, $(a-b)(b-c)(c-a) \neq 0$ and hence

$$
\Delta=0 \Rightarrow 1+a b c=0 \Rightarrow a b c=-1 .
$$

2. Let $A=\left(\begin{array}{ccc}1 & 2 & 3 \\ 2 & -1 & 4\end{array}\right), A=\left(\begin{array}{ccc}2 & 1 & 2 \\ -1 & 4 & 1\end{array}\right)$ and $C=\left(\begin{array}{cc}2 & 0 \\ 3 & -1 \\ 2 & 1\end{array}\right)$. Find $A+B, A C$ and $B C$.
Verify that $A+B=A C+B C$.
$A=\left(\begin{array}{ccc}1 & 2 & 3 \\ 2 & -1 & 4\end{array}\right), B=\left(\begin{array}{ccc}2 & 1 & 2 \\ -1 & 4 & 1\end{array}\right)$ and $C=\left(\begin{array}{cc}2 & 0 \\ 3 & -1 \\ 2 & 1\end{array}\right)$.
$A+B=\left(\begin{array}{ccc}1 & 2 & 3 \\ 2 & -1 & 4\end{array}\right)+\left(\begin{array}{ccc}2 & 1 & 2 \\ -1 & 4 & 1\end{array}\right)=\left(\begin{array}{lll}3 & 3 & 5 \\ 1 & 3 & 5\end{array}\right) \cdot 5$
$A C=\left(\begin{array}{ccc}1 & 2 & 3 \\ 2 & -1 & 4\end{array}\right)\left(\begin{array}{cc}2 & 0 \\ 3 & -1 \\ 2 & 1\end{array}\right)=\left(\begin{array}{cc}14 & 1 \\ 9 & 5\end{array}\right) \cdot 5$
$B C=\left(\begin{array}{ccc}2 & 1 & 2 \\ -1 & 4 & 1\end{array}\right)\left(\begin{array}{cc}2 & 0 \\ 3 & -1 \\ 2 & 1\end{array}\right)=\left(\begin{array}{cc}11 & 1 \\ 12 & -3\end{array}\right) .5$
$(A+B) C=\left(\begin{array}{lll}3 & 3 & 5 \\ 1 & 3 & 5\end{array}\right)\left(\begin{array}{cc}2 & 0 \\ 3 & -1 \\ 2 & 1\end{array}\right)=\left(\begin{array}{ll}25 & 2 \\ 21 & 2\end{array}\right) \cdot-(1) \square 5$
$A C+B C=\left(\begin{array}{cc}14 & 1 \\ 9 & 5\end{array}\right)+\left(\begin{array}{cc}11 & 1 \\ 12 & -3\end{array}\right)=\left(\begin{array}{ll}25 & 2 \\ 21 & 2\end{array}\right) .-(2) \quad 5$
From (1) and (2): $(A+B) C=A C+A B$.
3. The time X taken (an hours) for assembling a motorcycle follows a normal distribution with mean f and standard deviation 5 . If 10% of the motorcycles are assembled in less than 14 hours, find the mean μ.

Since 10% of the motor cycles are assembled in less than 14 hours,

$$
P(Z<z)=0.1000
$$

By normal distribution table, we have,
5

$$
z=-1.2816 .
$$

Since $X=14$ and $\sigma=5$ are given and

$$
\begin{aligned}
z=\frac{X-\mu}{\sigma} & \Rightarrow-1.2816=\frac{14-\mu}{5} \\
& \Rightarrow \mu=14+5 \times 1.2816 \\
& \Rightarrow \mu=20.408 .
\end{aligned}
$$

The mean of the distribution is 20.408 hours.

4. A company has two sections 1 and $\begin{aligned} & \text { a with } 50 \text { and } 60 \text { employees in each, respectively. In a }\end{aligned}$ particular year the average and the standard deviation of the monthly wages in the two sertions are given in the following table:

Section	Number of employees	Average mouthly wages (Rs)	Standard deviation of monthly wages (Rs.)
A	50	40000	6750
B	60	35000	7000

Determine which section has the larger varuability ol wages.
Coefficient of Variance of wages for Section $\mathrm{A}\left(C V_{A}\right)=\frac{\sigma}{\mu} \times 100$ 5

$$
\begin{align*}
& =\frac{6750}{40000} \times 100 \\
& =16.875 \% \tag{5}
\end{align*}
$$

Coefficient of Variance of wages for Section $\mathrm{B}\left(C V_{B}\right)=\frac{\sigma}{\mu} \times 100$

$$
\begin{aligned}
& =\frac{7000}{35000} \times 100 \\
& =20.000 \% .5
\end{aligned}
$$

Since $C V_{B}>C V_{A}$, there is a greater variability in wages of Section B than that of section A.
5. The sum of the numbers and the sum of the squares of the numbers of a set of 20 observations are 140 and 2260 respectively.
a) Find the mean and tho stendard deviation oit the 20 observations.
(ii) If the median is 10 , hue the coefficient of skewness and comment on the shape of the distribution of the set of 20 observations.
(i) $\sum x_{i}=140, \sum x_{i}^{2}=2260, n=20$

Mean $\mu=\frac{\sum x_{i}}{n}=\frac{140}{20}=7$.
Standard Deviation $\sigma=\sqrt{\frac{\sum x_{i}^{2}-n \mu^{2}}{n}}=\sqrt{\frac{2260-20 \times 7^{2}}{20}}=\sqrt{64}=8$. 5
(ii) Coefficient of Skewness $=\frac{3(\text { Mean }- \text { median })}{\sigma}=\frac{3 \times(7-10)}{8}=-1.125$. 5

Since Coefficient of Skewness <0, the data set is negatively skewed. 5
6. The probability that a randomly selected seed from a packet germinates is 0.7 . If five seeds are randomly selected from the packet for planting, find the probability that
(1) at least one of seeds will germinate,
(ii) exactly three seeds will germinate.

Let X denote the number of seeds that will germinate.
Then $X \sim \operatorname{binomial}(n=5, p=0.7)$
(i) P (at least one of the seeds will germinate) $=1-P$ (none of the seeds will germinate)

$$
\begin{aligned}
& =1-P(X=0) \\
& =1-{ }^{5} C_{0} \times 0.7^{0} \times 0.3^{5} \\
& =1-0.00243 \\
& =0.998
\end{aligned}
$$

(ii) P (exactly three of the seeds will germinate)

$$
\begin{aligned}
& =P(X=3) \\
& ={ }^{5} C_{3} \times 0.7^{3} \times 0.3^{2} \\
& =10 \times 0.343 \times 0.09=0.343 \times 0.9 \\
& =0.031
\end{aligned}
$$

7. A box has two red pens, two blue pens and a black pen. Two pens are randomly selected without replacement. Five the probability that both pens selected art of
(1) the same colour,
(ii) different colours.

Let X be the color of $1^{\text {st }}$ pen and Y be the color of $2^{\text {nd }}$ pen.
(i) P (Both selected pen are of the same color)

5) $P(X=$ blue, $Y=$ blue $)+P(X=$ red,,$Y=$ red $)+P(X=$ black, $Y=$ black $)$

5 P $P(Y=$ black $\mid X=$ black $) P(X=$ black $)$
$=\frac{1}{4} \times \frac{2}{5}+\frac{1}{4} \times \frac{2}{5}+\frac{0}{4} \times \frac{1}{5}=\frac{4}{20}=\frac{1}{5}$. 5
(ii) P (Both pens selected are of different colours) +P (Both pens selected are of the same colour) $=1$.
P (Both pens selected are of different colors) $=1-\frac{1}{5}=\frac{4}{5}$. 5
8. The probability mass function of a discrete random variable X is given below:

x	0	1	2	3
$P(x=x)$	0.2	0.2	0.3	0.3

Find $E(X)$.
Let be the random variable given by $Y=2 X-3$. Find $\Sigma(X)$ and the probability that Y is positive.

$$
\begin{align*}
E(X) & =\sum_{x} x P(X=x) \\
E(X) & =0 \times P(X=0)+1 \times P(X=1)+2 \times P(X=2)+3 \times P(X=3) \tag{5}\\
& =0 \times 0.2+1 \times 0.2+2 \times 0.3+3 \times 0.3 \\
& =0+0.2+0.6+0.9 \\
& =1.7
\end{align*}
$$

Given $Y=2 X-3$.
$E(Y)=E(2 X-3)=E(2 X)-E(3)=2 E(X)-3=2 \times 1.7-3=0.4$.
e probability that Y is positive $=P(Y>0)$

$$
\begin{aligned}
& =P(2 X-3>0) \\
& =P(X>1.5) \\
& =P(X=2)+P(X=3) \\
& =0.3+0.3=0.6 .
\end{aligned}
$$

9. Suppose that A and B are exhanstive events of a sample space S If $P(A)=\frac{2}{3}$ and $P(A \cap B)=\frac{1}{5}$ find (i) $P(B)$; (ii) $P(A \mid B)$, (iii) $P\left(A^{\prime} \mid B^{\prime}\right)$.
(i) $\quad P(A \cup B)=P(A)+P(B)-P(A \cap B)$

$$
\begin{aligned}
& \Rightarrow 1=\frac{2}{3}+P(B)-\frac{1}{5} \text { (Since } A \text { and } B \text { are exhaustive events) } \\
& \Rightarrow P(B)=1-\frac{7}{15}=\frac{8}{15} .
\end{aligned}
$$

(ii) $P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{\frac{1}{5}}{\frac{8}{15}}=\frac{3}{8}$. 5
(iii) $P\left(A^{\prime} \mid B^{\prime}\right)=\frac{P\left(A \cap \cap B^{\prime}\right)}{P\left(B^{\prime}\right)}=\frac{P\left(\left(A \cup B^{\prime}\right)\right.}{1-P(B)}=\frac{1-P(A \cup B)}{1-P(B)}=\frac{1-1}{1-\frac{8}{15}}=0$.
10. Let X be a continnous random variable with probability density function $f(x)$ given by $f(x)= \begin{cases}4(3 x-1), & 1 \leq x \leq 4, \\ 0, & \text { otherwise, }\end{cases}$
where k is a positive constant.
Find
(9) the value of 1 ,
(ii) the mean of X.
(i) Since f is probability density function of X,

$$
\begin{aligned}
& \quad \int_{-\infty}^{\infty} f(x) d x=1 \\
& \Rightarrow \int_{-\infty}^{1} f(x) d x+\int_{1}^{4} f(x) d x+\int_{4}^{\infty} f(x) d x=1 \\
& \Rightarrow 0+\int_{1}^{4} k(3 x-1) d x+0=1 \\
& \Rightarrow k\left[\left(\frac{3 x^{2}}{2}-x\right)\right]_{1}^{4}=1 \\
& \Rightarrow k \times \frac{39}{2}=1 \\
& \Rightarrow k=\frac{2}{39}
\end{aligned}
$$

(ii) Mean of $X=E(X)=\int_{-\infty}^{\infty} x f(x) d x$ 5

$$
\begin{align*}
& \Rightarrow E(X)=\int_{-\infty}^{1} x f(x) d x+\int_{1}^{4} x f(x) d x+\int_{4}^{\infty} x f(x) d x=\int_{1}^{4} k x(3 x-1) d x \tag{5}\\
& \Rightarrow E(X)=\int_{1}^{4} k\left(3 x^{2}-x\right) d x=k \times\left[\frac{3 x^{3}}{3}-\frac{x^{2}}{2}\right]_{1}^{4}=\frac{2}{39} \times \frac{111}{2}=\frac{37}{13}=2.8462 .
\end{align*}
$$

11. A company owns wo machines A and \& which have different production capacities for high, mediun and low grade nails. This company should produce al least 7.6 and 13 tons per week of high, mediam and low grade nafls respectively to meet the demand of the market. It cost the company Rs. 10000 and Rs, 8000 per day to operate machines A and B respectively.
The following table gives the capacity of production th twas per thy of edick machine on each grade of nuils.

Grade ofmalls	Cometty (lumsidy)	
	A	3
High	2	1
Medium	1	1
Low	2	3

The company wishes to find out the number of days that each machine be operated per week to minimize the iotal production cost, while meeting the demand.
(i) Formulate this 路 a linear programming problem.
(ii) Sketch the feasible region.
(iii) Using the graphical method, find the golution of the problem formulated in pur (0) above
 days as the machine A is operated.
Fend the increase of total production cost per week, if the company still wishes to minimize the production cost.
(i) Let x be the number of days per week machine A is operated and y be the number of days per week machine B is operated.

Linear programming problem is
minimize $\quad z=1000 x+8000 y$

(ii)

(iii)

Point	Value of z
$P_{1} \equiv(0,7)$	56,000
$P_{2} \equiv(1,5)$	50,000
$P_{3} \equiv(5,1)$	58,000
$P_{4} \equiv(6.5,0)$	65,000

Minimum $z=50,000$ at $P_{2} \equiv(1,5)$. 5
Machine A should be operated 1 days per week and machine B should be operated 5 days per week.
(iv) With the new constraint $y \leq 2 x$, the feasible region is given below:

5

Points	Z
$P_{5} \equiv(2,4)$	52,000
$P_{3} \equiv(5,1)$	58,000
$P_{4} \equiv(6.5,0)$	65,000

Minimum $z=52,000$ at $P_{5} \equiv(2,4)$.
The increase of total cost $=52,000-50,000=$ Rs. 2000 .
12. (a) Let $A=\frac{1}{3}\left(\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ x & 2 & y\end{array}\right)$.

Find x und y such that $\mathbf{A A}^{T}=\mathbf{1}$, where \mathbf{I}_{3} is the identity matrix of order 3 and \mathbf{A}^{T} represents the transpose of \mathbf{A}.
(b) Let $\mathrm{A}=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$.

Deduce fhat there is isquare matrix of order 3 such that Mant
Consider the following system of linear equations:

By taking $\mathbf{H}=\left(\begin{array}{l}1 \\ 2 \\ 5\end{array}\right)$ and $\mathbf{X}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$, show that the matrix equation $\mathrm{AX}=\mathrm{H}$ represents the above system of linear equations.
Hence solve the above systen of linear equations.
(a) $\quad A=\frac{1}{3}\left(\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ x & 2 & y\end{array}\right) \Rightarrow A^{T}=\frac{1}{3}\left(\begin{array}{ccc}1 & 2 & x \\ 2 & 1 & 2 \\ 2 & -2 & y\end{array}\right)$.

$$
\begin{align*}
A A^{T} & =\frac{1}{3}\left(\begin{array}{ccc}
1 & 2 & 2 \\
2 & 1 & -2 \\
x & 2 & y
\end{array}\right) \frac{1}{3}\left(\begin{array}{ccc}
1 & 2 & x \\
2 & 1 & 2 \\
2 & -2 & y
\end{array}\right) \tag{5}\\
& =\frac{1}{9}\left(\begin{array}{ccc}
9 & 0 & x+4+2 y \\
0 & 9 & 2 x+2-2 y \\
x+4+2 y & 2 x+2-2 y & x^{2}+4+y^{2}
\end{array}\right)
\end{align*}
$$

Thus, $A A^{T}=I \Rightarrow \frac{1}{9}\left(\begin{array}{ccc}9 & 0 & x+4+2 y \\ 0 & 9 & 2 x+2-2 y \\ x+4+2 y & 2 x+2-2 y & x^{2}+4+y^{2}\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) 55$

$$
\Rightarrow\left\{\begin{array} { l }
{ x + 4 + 2 y = 0 } \\
{ 2 x + 2 - 2 y = 0 } \\
{ x ^ { 2 } + 4 + y ^ { 2 } = 9 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x+2 y=-4 \\
x-y=-1 \\
x^{2}+y^{2}=5
\end{array}\right.\right.
$$

Solving equations in (1), we get $x=-2$ and $y=-1$.
(b) $A=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$
$A^{2}=A A=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)=\left(\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right)$ and
$A^{3}=A^{2} A=\left(\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right)\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)=\left(\begin{array}{lll}2 & 3 & 3 \\ 3 & 2 & 3 \\ 3 & 3 & 2\end{array}\right) \cdot \square 5$
Thus, $A^{3}+p A=q I_{3} \Rightarrow\left(\begin{array}{lll}2 & 3 & 3 \\ 3 & 2 & 3 \\ 3 & 3 & 2\end{array}\right)+p\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)=q\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \square 5$

$$
\Rightarrow\left(\begin{array}{ccc}
2 & 3+p & 3+p \tag{5}\\
3+p & 2 & 3+p \\
3+p & 3+p & 2
\end{array}\right)=\left(\begin{array}{ccc}
q & 0 & 0 \\
0 & q & 0 \\
0 & 0 & q
\end{array}\right)--(
$$

Comparing corresponding elements of matrix equation (2), we get $q=2$ and 5 $p=-3$.

Now we have $A^{3}-3 A=2 I_{3} \Rightarrow\left[\frac{1}{2}\left(A^{2}-3 I_{3}\right)\right] A=I_{3}$. -- (3)
Let $B=\frac{1}{2}\left(A^{2}-3 I_{3}\right)$.
Then by (3) we have $B A=I_{3} .5$
So there is a square matrix B of order 3 such that $B A=I_{3}$, where

$$
B=\frac{1}{2}\left(A^{2}-3 I_{3}\right)=\frac{1}{2}\left\{\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right)-3\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right\}=\frac{1}{2}\left(\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right) .
$$

$$
A X=H \Rightarrow\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
5
\end{array}\right) \Rightarrow\left(\begin{array}{l}
y+z \\
x+z \\
x+y
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
5
\end{array}\right) .
$$

Equating corresponding elements of the matrix equation, we get

$$
\left\{\begin{align*}
y+z & =1 \tag{5}\\
x+z & =2 \\
x+y & =5
\end{align*}\right.
$$

Thus, the matrix equation $A X=H$ represents the above system of linear equations.

Page 10 of $\mathbf{2 3}$
13.(a) Two unbiased standard six-sided dice I and 11 with faces marked $1,2,3,4,5,6$ are tossed. Let x and y be the numbers landed in dio I amd dik If respectively.
Let A and B be the events defined. by
A: $x \leq y$ and
$B: x+y$ is an odd integer.
Find $P(A), P(B), P(A \cap A)$ and $P(A \mid B)$.
(6) 6) Find the number of different permutations tat cau be forned from the ten letter of the word "STATISTICS".
(i) Find the number of different combinations that can be formed from four letters taken from the rem letters of the word "STATISTICS".
(a)

	1	2	3	4	5	6
1	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$
2	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$
3	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$
4	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$
5	$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$	$(5,6)$
6	$(6,1)$	$(6,2)$	$(6,3)$	$(6,4)$	$(6,5)$	$(6,6)$

$$
A=\left\{\begin{array}{c}
(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,2),(2,3),(2,4),(2,5),(2,6), \\
(3,3),(3,4),(3,5),(3,6),(4,4),(4,5),(4,6),(5,5),(5,6),(6,6)\}
\end{array}\right\} 10
$$

$$
B=\left\{\begin{array}{l}
(1,2),(1,4),(1,6),(2,1),(2,3),(2,5),(3,2),(3,4),(3,6), \\
(4,1),(4,3),(4,5),(5,2),(5,4),(5,6),(6,1),(6,3),(6,5)
\end{array}\right\}
$$

$A \cap B=\{(1,2),(1,4),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(5,6), 10$

Notice that each pair of numbers is equally likely, Therefore, we find

$$
P(A)=\frac{\text { Number of pairs in } A}{\text { Total number of all possible pairs in the sample space }}=\frac{21}{36}=\frac{7}{12} .10
$$

$$
P(B)=\frac{\text { Number of pairs in } B}{\text { Total number of all possible pairs in the sample space }}=\frac{18}{36}=\frac{1}{2} \text {. } 10
$$

$$
P(A \cap B)=\frac{\text { Number of pairs in } A \cap B}{\text { total number of all possible pairs in the sample space }}=\frac{9}{36}=\frac{1}{4} .
$$

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{1 / 4}{1 / 2}=\frac{1}{2} .10
$$

Aliter

Using total probability law, we find,

$$
\begin{aligned}
P(A) & =\sum_{y=1}^{y=6} P(A \mid\{y\}) P(\{y\}) \\
& =\frac{1}{6}\left(\frac{1}{6}+\frac{2}{6}+\frac{3}{6}+\frac{4}{6}+\frac{5}{6}+\frac{6}{6}\right) \\
& =\frac{1}{6} \times \frac{1}{6} \times(1+2+3+4+5+6) \\
& =\frac{1}{6} \times \frac{1}{6} \times \frac{6}{2} \times 7 \\
& =\frac{7}{12} .10
\end{aligned}
$$

Using total probability law, we find,

$$
\begin{aligned}
& \text { Using total probability law, we find, } \\
& \begin{aligned}
P(A \cap B) & =\sum_{y=1}^{y=6} P(A \cap B \mid\{y\}) \times P(\{y\}) \\
& =P(x \leq y \text { and } x+y \text { is odd } \mid\{y\}) \times P(\{y\}) \\
& =\frac{1}{6} \times\left(0+\frac{1}{6}+\frac{1}{6}+\frac{2}{6}+\frac{2}{6}+\frac{3}{6}\right) \\
& =\frac{1}{6} \times \frac{9}{6} \\
& =\frac{1}{4} .10 \\
P(A \mid B) & =\frac{P(A \cap B)}{P(B)}=\frac{1 / 4}{1 / 2}=\frac{1}{2} .10
\end{aligned}
\end{aligned}
$$

(b) (i) In the term STATISTICS, the numbers of occurrences of each of the letters are:

$$
\begin{aligned}
& \qquad \begin{aligned}
& S-3 ; T-3 ; A-1 ; I-2 ; C-1 \\
& \text { Number of different permutations of the ten letters }=\frac{10!}{3!3!2!} 10 \\
&=\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4}{3 \times 2 \times 2} \\
&=10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 2 \\
&=50400 .
\end{aligned} 10
\end{aligned}
$$

(ii) Number of combinations with all four letters different from each other $=5_{C_{4}}=$ 5

Number of combinations with two pairs with two equal letters in each pair 5

$$
=3_{C_{2}}=3 \longrightarrow 5
$$

5 Number of combinations with two equal letters and two different letters

$$
=3_{C_{1}} \times 4_{C_{2}}=18
$$

(5) Number of combinations with three equal letters and a different another letter

$$
=2_{c_{1}} \times 4_{c_{3}}=8
$$

\therefore The number of different combinations from four letters in the term STATISTICS $=5+3+18+8=34$.
14. Fruits packed in three boxes, A, $A_{\text {a }}$ and C_{x} so that bor A contains only 7 mangoes, box B confains 4 mangoes and 3 pears and box C contains 5 applee and 2 perss. Suppose that a box is selected at random and 2 frits are randomly picked one after the other without replacement from the selected box.
Assuming that selection of each boy is equally likely, find the probability that
(1) both fruits selected ane mangoes,
(ii) at least one of the selected fruits it a mango,
(iii) boft frwits selected are mangoes given that owe is a mango,
(iv) Truts ne of different kinds.

Box A: 7 mangoes
Box B: 4 mangoes and 3 pears
Box C: 5 apples and 2 pears
A box is at random and 2 fruits are randomly picked without replacement from the selected box. Each box is selected with equal probability.
Thus, $\mathrm{P}(\mathrm{A})=\mathrm{P}($ Box B$)=\mathrm{P}($ Box C$)=\frac{1}{3}$ 5
(i) $\mathrm{P}($ Both are mangoes $)=\mathrm{P}($ Both are mangoes \mid Box A$) \times \mathrm{P}($ Box A $)+$

$5 \mathrm{P}($ Both are mangoes \mid Box C$) \times \mathrm{P}($ Box C$)$
$=\frac{3}{7}$. $\quad 5$
$\mathrm{P}($ At least one of the selected fruits is a mango $)=1-\mathrm{P}$ (None of the fruits is a mango)

$$
=1-\{\mathrm{P}(\text { None is a mango } \mid \mathrm{A}) \times \mathrm{P}(\text { Box } \mathrm{A})+
$$

$$
\begin{array}{r}
\mathrm{P}(\text { None is a mango } \mid \mathrm{B}) \times \mathrm{P}(\text { Box } \mathrm{B})+ \\
=1-\left(0+\frac{{ }^{3} C_{2}}{7 C_{2}} \times \frac{1}{3}+1 \times \frac{1}{3}\right) \\
=1-\left(\frac{3 \times 2}{7 \times 6} \times \frac{1}{3}+1 \times \frac{1}{3}\right.
\end{array}
$$

$$
\begin{aligned}
& =1-\left(\frac{8}{7}\right) \times \frac{1}{3} \\
& =\frac{13}{21} .5
\end{aligned}
$$

(iii) $\mathrm{P}($ Both are mangoes \mid One is a mango $)=\frac{\mathrm{P}(\text { Both are mangoes }}{\mathrm{P}(\text { One is a mango })} 15$

$$
\begin{aligned}
& =\frac{3 / 7}{13 / 21} 5 \\
& =\frac{9}{13} .5
\end{aligned}
$$

(iv) $\mathrm{P}($ Fruits are of different kinds $)=\mathrm{P}($ Fruits are of different kinds \mid Box A$) \times \mathrm{P}($ Box A$)$

$$
\begin{aligned}
& \begin{aligned}
\mathrm{P}(\text { Fruits are of different kinds } \mid \mathrm{Box} \mathrm{~B}) \times \mathrm{P}(\text { Box } \mathrm{B}) \\
\mathrm{P}(\text { Fruits are of different kinds } \mid \text { Box } \mathrm{C}) \times \mathrm{P}(\mathrm{Box} \mathrm{C})
\end{aligned} \\
= & 0 \times \frac{1}{3}+\frac{{ }^{4} C_{1} \times{ }^{3} C_{1}}{{ }^{7} C_{2}} \times \frac{1}{3}+\frac{{ }^{5} C_{1} \times{ }^{2} C_{1}}{{ }^{7} C_{2}} \times \frac{1}{3} \\
= & \left(\frac{4 \times 3 \times 2}{7 \times 6}\right) \times \frac{1}{3}+\left(\frac{5 \times 2 \times 2}{7 \times 6}\right) \times \frac{1}{3} \\
= & \left(\frac{22}{21}\right) \times \frac{1}{3} \\
= & \frac{22}{63} .
\end{aligned}
$$

15. A contunous randma variable X has an exponential distribution with probability density function $f(x)$ diten by

$$
f(x)= \begin{cases}\lambda e^{-\lambda x} & , x>0 \\ 0, & \text { otherwise }\end{cases}
$$

where $\lambda>0$ is parameter.
Find the mean and the variance of X .
The lifetime X of an electric equipment is exponentiafly distributed with a mean of 2 years. Find the cumblative distribution function of X and hence find the median of X.
(Yoin may take $e^{-0.7} \simeq 0.5$.)
Aus equipment is randomly selected. Fud the probability that
(i) the life the equipmont will exceed $I \frac{1}{2}$ wears,
(ii) the equipment: witt before 2 years, given that the equipment had lasted more than $1 \frac{1}{2}$ years.
(You noed not simplify the answers.)
The random variable X has an exponential distribution with probability density function

$$
f(x)=\left\{\begin{aligned}
\lambda e^{-\lambda x}, & x>0 \\
0, & \text { otherwise }
\end{aligned}\right.
$$

where, $\lambda(>0)$ is a parameter.

$$
\begin{aligned}
\text { Mean of } X & =E(X)=\int_{0}^{\infty} x \lambda e^{-\lambda x} d x \\
& =\int_{0}^{\infty} x \frac{d\left(-e^{-\lambda x}\right)}{d x} d x \\
& =-\left.x e^{-\lambda x}\right|_{0} ^{\infty}+\int_{0}^{\infty} e^{-\lambda x} d x \\
& =\left.\frac{e^{-\lambda x}}{-\lambda}\right|_{0} ^{\infty} \\
& =\frac{1}{\lambda}
\end{aligned}
$$

Variance of $X=V(X)=E\left(X^{2}\right)-(E(X))^{2}$.

$$
\begin{aligned}
E\left(X^{2}\right) & =\int_{0}^{\infty} x^{2} \lambda e^{-\lambda x} d x \\
& =\int_{0}^{\infty} x^{2} \frac{d\left(-e^{-\lambda x}\right)}{d x} d x
\end{aligned}
$$

\rightarrow

$$
\begin{aligned}
& =\left.x^{2} e^{-\lambda x}\right|_{\infty} ^{0}+\frac{2}{\lambda} \int_{0}^{\infty} x e^{-\lambda x} d x \\
& =\frac{2}{\lambda^{2}} \cdot 5 \\
V(X) & =\frac{2}{\lambda^{2}}-\frac{1}{\lambda^{2}}=\frac{1}{\lambda^{2}} \cdot 5
\end{aligned}
$$

Let X denote the lifetime of an electric equipment.
Given that X has an exponential distribution with a mean life time of 2 years.
Thus, density function of X is given by

$$
f(x)=\left\{\begin{align*}
\lambda e^{-\lambda x}, & x>0 \tag{5}\\
0, & \text { otherwise }
\end{align*}\right.
$$

where, $\frac{1}{\lambda}=2$ and $\lambda=0.5$.
Cumulative distribution function of $X, F(X)$ is given by:

$$
\begin{align*}
F(X) & =\int_{0}^{x} f(x) d x=\int_{0}^{x} \lambda e^{-\lambda x} d x, \text { where } \lambda=0.5 . \\
& =\left.e^{-\lambda x}\right|_{x} ^{0}, \text { where } \lambda=0.5 .5 \tag{5}\\
& =1-e^{-\lambda x}, \text { where } \lambda=0.5 . \tag{5}\\
& =1-e^{-0.5 x} .
\end{align*}
$$

Median of X can be found as the value of x that corresponds to $F(x)=0.5$.
This means $1-e^{-0.5 x}=0.5$ or equivalently $e^{-0.5 x}=0.5$.

Given that $e^{-0.7}=0.5$. Thus, we find $0.5 x=0.7$.
Thus, median of X is 1.4.
5
(i) $\quad P(X>1.5)=1-P(X \leq 1.5)=1-\left(1-e^{-0.75}\right)$

5

The probability that the lifetime exceeds 1.5 years $=e^{-0.75}$.
5

(ii) Need $P(X<2 \mid X>1.5)$.
$P(X<2 \mid X>1.5)=\frac{P(1.5<X<2)}{P(X>1.5)} 5$
Notice that $P(1.5<X<2)=P(X<2)-P(X<1.5)$

$$
\begin{align*}
& =F(2)-F(1.5) \tag{5}\\
& =\left(1-e^{-1}\right)-\left(1-e^{-0.75}\right. \\
& =e^{-0.75}-e^{-1}
\end{align*}
$$

16. The nuan and the standard deviation of the set of valves $\left\{x_{i}: i=1,2, \ldots, n\right\}$ are μ and a respectively.基积 the mean and the standard deviation of the set of values $\left\{a x_{i}+b: i=1,2, \ldots, n\right\}$, where and bare constants.
The following table summarises the ages (recorded to the nexacst year) at the with diaguosis of high blood sugar of a group of To diabetic patients.

Age	Number of patients
$10-20$	9
$20-30$	12
$30-40$	32
$40-50$	14
$50-60$	3

() Using a stitable linear transformation or othervise, calcab ate mean mat the standard deviation of the given frequency distribution.
(a) Find twe inter-quartle range of the above distribution.
(ifi) Two more patients whe were both initially diagnosed. whilh high blood rugar whe are of 55 joined the group, Find the inter-quartile range of the frequency distribution of whatiod age of diagnosis of high blond sugar of all 72 prtients.

Let μ and σ be the mean and standard deviation of the set of values $\left\{x_{i}: i=1,2, \cdots, n\right\}$ respectively.

$$
\text { Mean of the } y_{i} \text { values }=\mu_{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i} \text { 5 }
$$

Standard deviation of the y_{i} values $\sigma_{y}=\sqrt{ } \sigma^{2}$, where, $\sigma_{y}{ }^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\mu_{y}\right)^{2}$.
Thus, $\sigma_{y}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(a x_{i}+b-a \mu-b\right)^{2}$.

$$
\begin{equation*}
=a^{2} \frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} \tag{5}
\end{equation*}
$$

$$
=a^{2} \sigma^{2} 5
$$

Therefore, $\sigma_{y}=a \sigma$.
5

Let $y_{i}=\left(x_{i}-35\right) / 10$, where x_{i} denote the age.

Class interval for y_{i}	No. of patients f_{i}	Class mid point $\left(m_{i}\right)$	$f_{i} m_{i}$	$f_{i} m_{i}^{2}$
$-2.5 \rightarrow-1.5$	9	-2	-18	36
$-1.5 \rightarrow-0.5$	12	-1	-12	12
$-0.5 \rightarrow 0.5$	32	0	0	0
$0.5 \rightarrow 1.5$	14	1	14	14
$1.5 \rightarrow 2.5$	3	2	6	12
Total	70		-10	74

Mean of the y_{i} values $=\mu_{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}=\frac{\sum_{i=1}^{n} f_{i} m_{i}}{\sum_{i=1}^{n} f_{i}}$

$$
\begin{equation*}
=-\frac{10}{70}=-\frac{1}{7} . \quad 5 \tag{5}
\end{equation*}
$$

According to previous results, mean of the x_{i} values $=35+10 \times \mu_{y}=35-1.43=33.57$.

Standard deviation of the y_{i} values $=\sigma_{y}=\sqrt{\sigma_{y}^{2}}$,

$$
\begin{array}{r}
\text { where } \sigma_{y}^{2} \frac{1}{\sum_{i=1}^{n} f_{i}}\left(\sum_{i=1}^{n} f_{i} m_{i}^{2}-\left(\sum_{i=1}^{n} f_{i} m_{i}\right)^{2} / \sum_{i=1}^{n} f_{i}\right) . \\
\Rightarrow \sigma_{y}^{2}=\frac{1}{70}(74-100 / 70)=\frac{1}{70^{2}} \times 5080=\frac{50.8 \times 10^{2}}{70^{2}} . \tag{10}
\end{array}
$$

Thus, $\sigma_{y}=\frac{7.1 \times 10}{70}=1.02$.
Standard deviation of the
5 lues
(5). $02=10.2$.

5
Standard deviation of the 5

First quartile belongs to the $2^{\text {nd }}$ class interval.
First quartile $=Q_{1}=20+\frac{10}{12} \times(17.5-9)=20+\frac{5}{6} \times 8.5=20+\frac{42.5}{6}=20+7.1$

$$
\frac{3 n}{4}=\frac{210}{4}=52.5
$$

Third quartile belongs to the $3^{\text {rd }}$ class interval.
Third quartile $=Q_{3}=30+\frac{10}{32} \times(52.5-21)=30+\frac{5}{16} \times 31.5$

$$
\begin{aligned}
& =30+\frac{157.5}{16} \\
& =30+9.8 \\
& =39.8 .
\end{aligned}
$$

Inter-quartile range $=Q_{3}-Q_{1}=39.8-27.1=12.7$
5
(iii) The ages of the persons newly added to the group belong to the last class interval.

After these two observations are added, $\frac{n}{4}=\frac{72}{4}=18$. (5)
New first quartile belongs to the $2^{\text {nd }}$ class interval.
New first quartile $=Q_{1}=20+\frac{10}{12} \times(18-9)=20+\frac{15}{2}=20+7.5=27.5$.
After addition of the two observations, $\frac{3 n}{4}=\frac{216}{4}=54$. 5
New third quartile belongs to the $4^{\text {th }}$ class interval.
Third quartile $=Q_{3}=40+\frac{10}{14} \times(54-53)=40+\frac{5}{7}=\frac{285}{7}=40.7$ 5
New inter-quartile range $=40.7-27.5=13.2$.
17. Duration of activities in a project and the flow of activities are described tim following table.

Activity	Imunedlate predecessor(s)	Daration (in montis)
A	-	2
B	A	2
C	A	3
D	H.	4
E	\%, D	5
F	*	8
0	E, F	1
H	E6	2
1	4	4

(1) Constract project neswork.
(i) Prepare an activity schedule that includes earliest start time, tathest fint that, trest shat time, latest finish fime and float for each activity.
(ii) What are the activities that cannot be delayed without extending the wtat duration of project?
(iv) Fiva the cal duration of the project.
(v) Due to external reasons, activity F is expected to take one more month than the regular duration. Determine whether the project can still be completeil within the fotal duration calculated in part (iv) above:
(i)

(ii)

Activity	Earliest Start time	Earliest Finish time	Latest Start time	Latest Finish time	Float
(A)	0	2	0	2	0
B	2	4	3	5	1
(C)	2	5	2	5	0
(D)	5	9	5	9	0
(E)	9	14	9	14	0
F	0	8	6	14	6
(G)	14	15	14	15	0
(H)	15	17	15	17	0
(I)	17	21	17	21	0

10 for each column
(iii) Critical path is the line joining A, C, D, E, G, H, I in that order.

Therefore, activities that cannot be delayed without delaying the project completion time are:
A, C, D, E, G, H, I.
(iv) Total duration of the project $=(2+3+4+5+1+2+4)=21$ months.
(v) Activity F has a floating time of 6 months. 10

Hence, even if the activity F takes one more month than anticipated, the project can still be completed within the total duration calculated in part (iv).

