Confidential

Department of Examinations - Sri Lanka

G.C.E. (A/L) Examination - 2019

02 - Chemistry New Syllabus

Marking Scheme

This document has been prepared for the use of Marking Examiners. Some changes would be made according to the views presented at the Chief Examiners' meeting.

Amendments to be included

Department of Examinations - Sri Lanka

Confidential

Response	First Statement		Second Statement
(1) (2) (3) (4) (5)	True True True False False	True, and True, but False True False	correctly explains the first statement does not explain the first statement correctly
	First Statement		Second statement
Among the Br_2 is a lice	halogens, I ₂ is a sol juid.	lid whereas	London forces become stronger with increase in molecular surface area.
At a given reaction betw with increase	pressure, the spontan ween N_2 and H_2 to give sing temperature.	eity of the NH ₃ drops	Entropy change of the reaction between N ₂ and H_2 to give NH_3 is negative.
Essential oil materials by	s are generally extracted steam distillation.	from plant	Essential oils have a high solubility in water
A spontaneo Gibbs ener conditions a	ous reaction always has gy change no matter are.	a negative what the	Gibbs energy change can be used to predic the direction of a reaction only under constant temperature and constant pressure conditions.
Solubility o the solubilit	f 1-butanol in water i y of methanol in wate	s less than r.	The solubility of alcohols in water decreases as the size of the non-polar alkyl group increases relative to the polar OH group.
The reaction CH ₃ -CH= is a nuclea	$CH_2 \xrightarrow{HBr} CH_3 - CH_3 - CH_3 = CH_3 - CH$	I−CH ₃ .	A secondary carbocation is formed as a reaction intermediate in the following reaction. $CH_3-CH=CH_2 \xrightarrow{HBr} CH_3-CH_3-CH_3$ Br
Coke is use	ed in several industrial	processes.	Coke is only used industrially as a fuel.
The carbony other atoms	l carbon atom of a ket bonded to it lie in the	one and the same plane.	The carbonyl carbon atom of a ketone is sp hybridized.
Any two ic kinetic ener	leal gases have the sa gies at the same temp	me average erature.	At a given temperature, the average speed or gas molecules adjust according to their masses
Although depletion, negligible.	CFC contribute to o the contribution from	zone layer m HFC is	HFC undergoes complete decomposition befor reaching the upper atmosphere.
		1	

ශී ලංකා විභාග දෙපාර්තමේන්තුව

இலங்கைப் பரீட்சைத் திணைக்களம்

අ.පො.ස. (උ.පෙළ) විභාගය/ க.பொ.த. (உயர் தர)ப் பரீட்சை - 2019

නව නිර්දේශය/ புதிய பாடத்திட்டம

විෂයය අංකය பாட இலக்கம்

02

Chemistry

ලකුණු දීමේ පටිපාටිය/புள்ளி வழங்கும் திட்டம்

විෂයය

பாடம்

I පතුය/பத்திரம் I

පුශ්න අංකය ඛාණා இல.	පිළිතුරු අංකය ඛාිනාட இல.	පුශ්න අංකය ඛානා இல.	පිළිතුරු අංකය ඛානட இல.	පුශ්න අංකය ඛාිනා ඹුන.	පිළිතුරු අංකය ඛාිණාட இல.	டூன்ன மூவுக வினா இல.	පිළිතුරු අංකය බාි නා ட இல.	ല്ര ශ්න අංකය ഖിങ്ങന இல.	පිළිතුරු අංකය விடை இல.
01.	2 or 4	11.	4	21.	2	31.	<u>1 or 5</u>	41.	1
02.	5	12.	2	22.	2	32.	4	42.	1
03.	3	13.	2	23.	4	33.	2	43.	3
04.	all	14.	2 or 5	24.	3	34.	2	44.	4
05.	5	15.	2	25.	1	35.	2	45.	1
06.	1	16.	5	26.		36.	4	46.	4
07.	1	17. 🚽	4	27.	5	37.	5	47.	3
08.	2	18.	4	28.	5	38.	3	48.	1
09.	2	19.	3	29.	5	39.	2	49.	
10.	4	20.	3	30.	3	40.	4	50.	all

🗘 විශේෂ උපදෙස්/ விசேட அறிவறுத்தல் :

චක් පිළිතුරකට/ ஒரு சரியான விடைக்கு 01 ලකුණු බැගින්/புள்ளி வீதம்

இல் குது விகு பிலாத்தப் புள்ளிகள் 1 × 50 = 50

С

.....N......

Ne

.....

Be

PART A - STRUCTURED ESSAY

Answer all four questions on this paper itself. (Each question carries 100 marks.)

- 1. (a) The following questions are related to the elements of the second row in the Periodic Table. Write the symbol of the element in the space provided in answering parts (i) to (vi).
 - (i) Identify the element that has the highest electronegativity (disregard F the noble gas).
 - (ii) Identify the element that has an allotrope which conducts electricity.
 - (iii) Identify the element that forms the monoatomic ion largest in size (this should be a stable ion).
 - (iv) Identify the element that has no p electrons but has a stable s configuration.
 - (v) Identify the element that has the highest first ionization energy.
 - (vi) Identify the element that forms mostly electron deficient trigonalB........ planar covalent compounds. 1(a): 24 marks Note: If name is given instead of symbols do not award marks (04 X 6 = 24)

(b) (i) Draw the most acceptable Lewis dot-dash structure for the molecule SO_3F_2 . Its skeleton is given below.

(ii) The most stable Lewis dot-dash structure for the molecule H₃N₃O is shown below. Draw two more Lewis dot-dash structures (resonance structures) for this molecule. Write 'unstable' under the more unstable structure drawn by you.

$$H = \overset{\circ}{\overset{\circ}{\underset{H}{\bigcirc}} = \overset{\circ}{\overset{\circ}{\underset{H}{\bigcirc}} = \overset{\circ}{\underset{H}{\bigcirc} = \overset{\circ}{\underset{H}{\bigcirc} = \overset{\circ}{\underset{N}{\frown}} \overset{\circ}{\underset{N}{\longleftarrow} = \overset{\circ}{\underset{N}{\frown}} \overset{\circ}{\underset{N}{\frown} = \overset{\circ}{\underset{N}{\frown}} \overset{\circ}{\underset{H}{\frown} = \overset{\circ}{\underset{N}{\frown}} \overset{\circ}{\underset{H}{\frown} = \overset{\circ}{\underset{H}{\frown} = \overset{\circ}{\underset{H}{\frown}} \overset{\circ}{\underset{H}{\frown} = \overset{\circ}{\underset{H}{\frown} = \overset{\circ}{\underset{H}{\frown}} \overset{\circ}{\underset{H}{\frown} = \overset{\circ}{\underset{H}{\frown}} \overset{\circ}{\underset{H}{\frown} = \overset{\circ}{\underset{H}{\frown} = \overset{\circ}{\underset{H}{\frown}} \overset{\circ}{\underset{H}{\frown} = \overset{\circ}{\underset{H}{\frown}} \overset{\circ}{\underset{H}{\frown} = \overset{\circ}{\underset{H}{\frown}} \overset{\circ}{\underset{H}{\bullet}} \overset{\circ}{\underset{H}{\bullet} = \overset{\circ}{\underset{H}{\bullet}} \overset{\circ}{\underset{H}{\bullet} \overset{\circ}{\underset{H}{\bullet}} \overset{\circ}{\underset{H}{\bullet}} \overset{\circ}{\underset{H}{\bullet}} \overset{\circ}{\underset{H}{\bullet} \overset{\circ}{\underset{H}{\bullet}} \overset{\circ}{\underset{H}{\bullet}} \overset{\circ}{\underset{H}{\bullet}} \overset{\circ}{\underset{H}{\bullet}} \overset{\circ}{\underset{H}{\bullet}} \overset{\circ}{\underset{H}{\bullet}} \overset{\circ}{\underset{H}{\bullet} \overset{\circ}{\underset{H}{\bullet}} \overset{\circ}{\underset{H}{\bullet}} \overset{\circ}{\underset{H}{\bullet}} \overset{\circ}{\underset{H}{\bullet} \overset{\circ}{\underset{H}{\bullet}} \overset{\circ}{\underset{H}{\bullet}} \overset{\circ}{\underset{H}{\bullet} \overset{\circ}{\underset{H}{\bullet}} \overset{\circ}{\underset{H}{\overset{\bullet}{\underset{H}{\bullet}} \overset{\circ}{\underset{H}{\bullet}} \overset{\circ}{\underset{H}{\overset{\bullet}}} \overset{\circ}{\underset{H}{\overset{\bullet}} \overset{\circ}{\underset{H}{\bullet}} \overset{\circ}{\underset{H}{\overset{\bullet}{\underset{H}{\bullet}} \overset{\circ}{\underset{H}{\overset{\bullet}}} \overset{\circ}{\underset{H}{\overset{\bullet}}} \overset{\circ}{\underset{H}{\overset{\bullet}}} \overset{\circ}{\underset{H$$

(iii) Based on the Lewis dot-dash structure given below, state the following regarding the C, N and O atoms given in the table.

II. electron pair geometry around the atom IV. hybridization of the atom

The atoms are numbered as follows.

I. VSEPR pairs around the atom

III. shape around the atom

$$F = 0^{1} = N^{2} = C^{3} = N^{4} = C1$$

		O ¹	N ²	C ³	N ⁴
ł	VSEPR pairs	4	3	2	3
H	electron pair geometry	tetrahedral	trigonal planar	linear	trigonal planar
10	shape	angular / V / bent	angular / V / bent	linear	trigonal planar
IV	hybridization	sp ³	sp ²	sp	sp ²
					(01 X 16 :

(iv) Identify the atomic/hybrid orbitals involved in the formation of the following σ bonds in the Lewis dot-dash structure given in part (iii) above. (Numbering of atoms is as in part (iii).)

I.	F0 ¹	F 2p OR sp ³	$O^1 $ sp^3
П.	$O^1 - N^2$	O ¹ , <i>Sp</i> ³	N ²
III.	$N^{2}-C^{3}$	N ² \$P ²	C ³ <i>Sp</i>
IV.	C^3 —N ⁴	C ³ sp	$N^4 \cdots Sp^2$
V.	N ⁴ O ⁵	N^4 Sp^2	O ⁵ 2p OR sp ³
VI.	N ⁴ —Cl	N ⁴ sp ²	Cl3p.OR.sp3(01 X 12 = 12)

(v) Identify the atomic orbitals involved in the formation of the following π bonds in the Lewis dot-dash structure given in part (iii) above. (Numbering of atoms is as in part (iii).)

Ι.	$N^2 - C^3$	N ² , 2p	C ³ , 2p	
II.	$C^3 - N^4$	C ³ 2 <i>p</i>	N ⁴ 2p	(01 X 4 = 04)

(vi)

....

I. How are the two double bonds oriented in the Lewis dot-dash structure given in part (iii)?

(02)
(01 + 01)

II. Give an example of a molecule/ion that has a similar orientation of double bonds.

$$CO_2$$
, NO_2^+ , CN_2^{2-} , N_3^{--} (02)

Note: Your example should not contain more than 3 atoms. The elements in your example should be restricted to the first and second periods of the Periodic Table. 1(b): 52 marks

(c) (i) An atomic orbital is described by three quantum numbers n, l and m_{l} .

Write the appropriate quantum numbers and the name of the atomic orbital in the boxes given below.

- (ii) Arrange the following in the increasing order of the property indicated in parenthesis. (Reasons are not required.)
 - LiF, LiI, KF (melting point) I.

Lil < LiF < KF

 NO_2^- , NO_4^{3-} , NF_5 (stability) II.

NF5 < NO4³⁻ < NO2⁻

NOCI, NOCI₃, NO₂F (N-O bond distance) IH.

.. NOCL .. < NO2F. < ... NOCL.

 $(06 \times 3 = 18)$

1(c): 24 marks

2.(a) X is an s-block element in the Periodic Table. The first, second and the of X, in kJ mol ⁻¹ are 738, 1451 and 7733 respectively. X reacts shall be rating $H_2(g)$ and forming its hydroxide. The hydroxide is basic. Non reaction with dilute acids. X burns in air with a bright white like	ird ionization energies lowly with hot water, X also liberates $H_2(g)$ ght. The cation of X
(i) Identify X. X: Mg OR Magnesium	(07)
(ii) Write the ground state electronic configuration of X. $1s^22s^22$	p ⁶ 3s ² (04)
(iii) Write the chemical formulae of the two compounds formed whe	en X burns in air.
MgO and Mg ₃ N ₂	(03 + 03)
Note: If X has been identified correctly marks can be awarded for XO a	and X ₃ N ₂
(iv) Consider the given compounds of the elements in the group in t which X belongs. In the given boxes, write whether the indicate or decreases down the group.	the Periodic Table to ad property increases
I. Solubility of sulphates in water Decreases	(03)
II. Solubility of hydroxides in water Increases	(03)
III. Thermal stability of metal carbonates Increases	(03)
Give reasons for your answer in III.	(03)
Cation size increases down the group. Charge same. OR Charge density decreases down the group. Therefore, polarizing power decreases down the group. Hence, decomposition of the carbonates become difficult on going down the group.	(03) (02) (03)
 (v) Identify the element in the s-block of the Periodic Table, which reacted to X with H₂(g), O₂(g) and N₂(g), but does not belong to the sar Lithium OR Li 	ts in a similar manner ne group as X. (04)
(vi) Identify another metal ion that contributes to hardness of water.	
Ca ²⁺ (No marks for Ca OR Calcium)	(04)
(vii) Identify the compound most commonly used to remove hardness	of water.
Na ₂ CO ₃ OR Soda Ash	(04)
(viii) X is a component of a well-known reagent used in organic chem	nistry. Give the name
or this reagent. Grignard reagent	(04)
Note: If X is incorrect, do not award marks for (a)(ii) – (iv).	2(a): 50 marks

4. (a) Compounds A and B both have the same molecular formula $C_5H_{10}O$. Both A and B give orange/red precipitates with 2,4-dinitrophenylhydrazine. When A and B are reacted separately with NaBH₄ in methanol, compound A gives C and compound B gives D. When C is heated with Al_2O_3 , two alkenes E (C_5H_{10}) and F (C_5H_{10}) are formed. When E and F are reacted separately with conc. H_2SO_4 and the products obtained are hydrolysed, compound E gives G, while compound F gives H. G gives a turbidity immediately with the Lucas reagent. H also gives a turbidity with the Lucas reagent but not immediately.

(i) Draw the structures of G and H.

(05 x 2 = 10)

Confidential

(ii) Draw the structures of A, C, E and F.

(05 x 4 = 20)

When heated with Al_2O_3 , **D** gives alkene I (C_5H_{10}). When I is reacted with conc. H_2SO_4 and the product obtained hydrolysed, G is obtained.

(iii) Draw the structures of **B**, **D** and **I**.

Note : 1. Mark A-I Independently

2. If the correct structure is given for either <u>C</u> or <u>H</u>, award full marks for both <u>C</u> and <u>H</u> (05x2 = 10)

(iv) Describe a test/reaction to distinguish between A and B.

B gives		
Tollens reagent	- Silver mirror	
Fehlings solution	 Red colouration 	
Acidic K ₂ Cr ₂ O ₇	 Green colouration 	(6.5)
Dilute KMnO ₄ solution	- Decolourization	(05)
(Any one)		

Note: Marks awarded only if A and B are correct.

4(a): 50 marks

(b) (i) Give the structures of J, K, L and M in the following reaction sequences.

(ii) Selecting from the list given below, write the type of reaction taking place in reactions I, Π and III.

Nucleophilic Addition, Nucleophilic Substitution,				
Electrophilic Ad	dition,	Electrophilic Substitution,	Elimination	
Reaction I	-	Electrophilic substitution		
Reaction II	-	Nucleophilic addition		
Reaction III	-	Electrophilic addition		

(05 x 3 = 15)

19

Note : Marks awarded only if each of the reactions I, II and III correct as given in the marking scheme

(iii) Using your knowledge of the mechanism of the reaction between alkenes and HBr, give the mechanism of reaction III.

(2)

(3)

PART B - ESSAY

Answer two questions only. (Each question carries 150 marks)

5. (a) A titration between the mono acidic weak base **B** (0.15 mol dm⁻³) and HCl (0.10 mol dm⁻³) was carried out using a suitable indicator as described below.

The HCl solution (25.00 cm³) was kept in the titration flask and the weak base **B** was added using a burette. The dissociation constant, K_b of the weak base at 25 °C is 1.00×10^{-5} mol dm⁻³. All the experiments were conducted at 25 °C.

(i) Calculate the pH of the acid solution in the titration flask, before the addition of the base, B.

pH of the HCl solution.

 $= -\log(0.1)$

. .

= 1.0 (2+1)

(ii) Calculate the pH of the solution in the titration flask, after the addition of 10.00 cm^3 of the solution of **B**. Can the solution in the titration flask act as a buffer solution? Explain your answer.

pH after addition of 10.00 cm³ of B solution.

[H⁺]	= <u>0.1 mol dm⁻³ x 25.00 cm³ – 0.15 mol dm⁻³ x 10.00 cm³</u>	(4+1)
	35.00 cm ³	
	= 0.028 mol dm ⁻³	
рН	= 1.5 (OR 1.6)	(4+1)

No **OR** this solution cannot act as a buffer solution.

Only protonated base (conjugate acid) is present (No unreacted or unprotonated base) (3) Note : If correctly explained using the addition of H⁺ and OH⁻, award full marks

(iii) Calculate the volume of the weak base solution required to reach the equivalence point.

Volume of base required to reach equivalence point.

 $V = <u>0.1 \text{ mol } dm^{-3}x \ 25.00 \ cm^{3}}{0.15 \ mol }$ (4+1) = 16.66 cm³</u>

(16.67 cm³ OR the answer reported to one decimal place is also accepted) (4+1)

(iv) Another 10.00 cm³ volume of the weak base was added to the titration flask after reaching the equivalence point. Calculate the pH of the solution in the titration flask.

pH after addition of 10.00 cm³ of base after reaching the equivalence point.

Weak base dissociates according to,

 $B(aq) + H_2O(I) \rightleftharpoons BH^{+}(aq) + OH^{-}(aq)$ (2)

K_b = <u>[BH⁺(aq)][OH⁻(aq)]</u> [B(aq)] **OR**

 $pOH = pK_b + log\left(\frac{[BH^+(aq)]}{[B(aq)]}\right)$

Note : Physical states are required for the award of marks

Assuming that the amount dissociated is negligible,

(2)

20

(4)

Concentration of the weak base
$$[B(aq)] = 0.15 \text{ mol } dm^{-3} \times 10.00 \text{ cm}^{-3}$$
 (4+1)
(25.00 cm³ + 16.66 cm³ + 10.00 cm³)

Concentration of the protonated weak base
$$[BH^+(aq)] = 0.15 \text{ mol } dm^{-3} \times 16.66 \text{ cm}^{-3}$$
 (4+1)
(25.00 cm³ + 16.66 cm³ + 10.00 cm³)

$$pOH = -\log(1 \times 10^{-5}) + \log\left(\frac{0.15 \text{ mol } dm^{-3} \times 16.66 \text{ cm}^3}{0.15 \text{ mol } dm^{-3} \times 10.00 \text{ cm}^3}\right)$$

$$pOH = 5.0 + 0.221 = 5.221$$
(4+1)

(v) Can the solution obtained in (iv) above act as a buffer solution? Explain your answer.

Yes OR it can act as a buffer solution.	(3)
The solution in the titration flask contains the protonated base (conjugate acid) and	
unreacted base.	(3)

Note : If correctly explained using the addition of H⁺ and OH⁻, award full marks

(vi) Sketch the variation in pH of the mixture in the titration flask with the volume of the weak base solution added (titration curve). Label the axes, indicate pH on the y-axis and the volume of weak base solution added on the x-axis. Mark the equivalence point approximately. [Calculation of pH at equivalence point is not expected.]

Curve starts at pH=1 and reaches pH=9 and has the correct shape	
Equivalence volume marked	(2)
Equivalence pH (between pH = 5 and pH=7) marked	(2)
Axes are labeled (with units where applicable)	(1+1)

5 (a): 75 marks

(b) The following two experiments were carried out at a constant temperature using the volatile liquids C and D which form an ideal solution.

Experiment I: The liquids C and D were introduced in to an evacuated rigid container and allowed to reach equilibrium. When the system was at equilibrium, it was observed that the mole fractions of C and D in the liquid phase (L_T) were 0.3 and 0.7 respectively. Total pressure in the container was 2.70×10^4 Pa.

- **Experiment II**: This experiment was conducted using different amounts of C and D. When the equilibrium was established, it was observed that the mole fractions of C and D in the liquid phase (L_{II}) were 0.6 and 0.4 respectively. Total pressure of the container was 2.40 × 10⁴ Pa.
- (i) Give the relationship between the partial pressure of C in the vapour phase (P_C) , its saturated vapour pressure (P_C°) and its mole fraction in the liquid phase (X_C) in the form of an equation. This equation states a commonly used law in physical chemistry. Write the name of the law.

$P_{C} = x_{C} P_{C}^{0}$	(Award marks only for these symbols)	(5)
Raoult's law		(4)

(ii) Calculate the saturated vapour pressures of C and D.

Experiment I	
$2.7 \times 10^4 \text{ Pa} = 0.3 \text{ P}^{0}_{\text{C}} + 0.7 \text{ P}^{0}_{\text{D}}$ (1)	(4+1)
Experiment II	

 $2.4 \times 10^4 \text{ Pa} = 0.6 \text{ P}^0_{\text{C}} + 0.4 \text{ P}^0_{\text{D}} \quad ---(2) \tag{4+1}$

(1)x2	:-(2)			
P ⁰ _D	= 3.0x10 ⁴ Pa			(4+1)

$$P_{C}^{0} = (2.4 \times 10^{4} \text{ Pa} - 0.4 \times 3.0 \times 10^{4} \text{ Pa})/0.6$$

= 2.0 × 10⁴ Pa (4+1)

(iii) Calculate the mole fractions of C and D in the vapour phase (V_i) of experiment 1.

Mole fractions in the gas phase (experiment I, V₁)(1+1) $X^{g}_{C,1} = 0.3x2.0x10^{4} Pa$ (1+1) $2.7x10^{4} Pa$ (1+1)= 0.2 (OR 0.22 OR 2/9)(1+1)

$$X_{D,1}^{g} = 1 - 0.2$$
 (1+1)
= 0.8 (OR 0.78 OR 7/9) (1+1)

(iv) Calculate the mole fractions of C and D in the vapour phase (V_{II}) of experiment II.

Mole fractions in the gas phase (experiment II, V_{\parallel})

$$X^{g}_{C,II} = \frac{0.6 \times 2.0 \times 10^{4} \text{ Pa}}{2.4 \times 10^{4} \text{ Pa}}$$
(1+1)

$$= 0.5 (1+1) X^{g}_{D,II} = 1-0.5 (1+1)$$

= 0.5 (1+1)

(v) Show the compositions of liquid and vapour phases $(L_1, L_{11}, V_1 \text{ and } V_{11})$ and relevant pressures in the above two experiments on a pressure-composition phase diagram drawn at constant temperature.

L=liquid, V= vapour

Note :Graph could also be drawn by reversing the increasing direction of the mole fraction of C. Mark accordingly

Axes labeled (with appropriate units where applicable)	(2+2)
P ^o c and P ^o _D marked	(2+2)
Line & curve (starts and ends at correct pressures)	(2+2)
Phases at equilibrium in each region identified	(2+2+2)
point L_I marked at $X_C = 0.3$	(2)
point L_{II} marked at $X_c = 0.6$	(2)
point V _I marked at $X_c = 0.2$	(2)
point V_{II} marked at $X_c = 0.5$	(2)
points L _I and V _I are at the same level	(2)
points L_{II} and V_{II} are at the same level	(2)

Note : No marks for temperature composition phase diagram

5 (b): 75 marks

6 (a): 20 marks

6. (a) An organic solvent (org-1) and water(aq) are immiscible and form a biphasic system. Partition coefficient for the distribution of **X** between org-1 and water at temperature T is, $K_D = \frac{[X]_{org-1}}{[X]_{aq}} = 4.0$

An amount of 0.50 mol of X was added to a system containing 100.00 cm³ of org-1 and 100.00 cm³ of water. The system was allowed to reach equilibrium at temperature T.

(i) Calculate the concentration of X in org-1.

Calculation of [X]_{org-1}

$$[x]_{org-1} = \frac{0.4 \, mol}{100 \times 10^{-3} dm^3} = 4.0 \, \text{mol dm}^{-3}$$
(4+1)

(ii) Calculate the concentration of X in water.

$$[x]_{aq} = \frac{0.1 \, mol}{100 \times 10^{-3} dm^3} = 1.0 \, \text{mol dm}^{-3} \tag{4+1}$$

(b) The compound Y is soluble only in the aqueous phase. In the aqueous phase, X and Y react to form Z. The presence of Y and Z does not affect the distribution of X between org-1 and water.

A series of biphasic systems containing org-1 and water were prepared. Then different amounts of X were distributed in the biphasic systems and the systems were allowed to reach equilibrium. The initial rate of the reaction between X and Y in the aqueous phase was measured after adding Y into the aqueous phase of these biphasic systems. Results of these experiments conducted at temperature T are given in the table.

Experiment Number /	Volume of water (cm ³)	Volume of org-1 (cm ³)	Total amount of X added (mol)	Total amount of Y added (mol)	Initial rate of the reaction (mol dm ⁻³ s ⁻¹)
1	100.00	100.00	0.05	0.02	2.00 × 10 ⁻⁶
2	100.00	100.00	0.10	0.04	1.60 × 10 ⁻⁵
3	50.00	50.00	0.25	0.02	4.00 × 10 ⁻⁴

Orders of the reaction with respect to X and Y are m and n respectively. The rate constant of the reaction at temperature T is k.

(i) Given that the concentrations of X and Y in the aqueous phase are $[X]_{aq}$ and $[Y]_{aq}$ respectively, write the rate expression for the reaction in terms of $[X]_{aq}$, $[Y]_{aq}$, m, n and k.

$$Rate = k [X]_{aq}^{m} [Y]_{aq}^{n} \quad \text{OR} \quad \frac{-\Delta[X]_{aq}}{\Delta t} = k [X]_{aq}^{m} [Y]_{aq}^{n} \quad \text{OR} \quad \frac{-\Delta[Y]_{aq}}{\Delta t} = k [X]_{aq}^{m} [Y]_{aq}^{n}$$
(10)

(ii) Calculate the initial concentration of X in the aqueous phase in each experiment.

Let x be the amount (moles) of X in the aqueous phase and n_x be the total amount (moles) of X added.

Equal volumes of org-1 and water are used in all the experiments.

$$[X]_{aq} = \frac{n_X}{5 \times V_{aq}}$$

Experiment	[X] _{aq} /mol dm⁻³	
1	0.1	(4
2	0.2	(4)
3	1.0	(4)

(iii) Calculate the initial concentration of Y in the aqueous phase in each experiment.

Let n_Y be the total amount of Y (moles) added.

Y is only soluble in the aqueous phase.

$$[Y]_{aq} = \frac{n_Y}{V_{aq}}$$

Experiment	[Y] _{aq} /mol dm ⁻³	
1	0.2	(4)
2	0.4	(4)
3	0.4	(4)

(iv) Calculate the orders m and n of the reaction with respect to X and Y respectively.

$2.00 \times 10^{-6} \text{ mol dm}^{-3} \text{ s}^{-1} = \text{k} (0.1 \text{ mol dm}^{-3})^{\text{m}} (0.2 \text{ mol dm}^{-3})^{\text{n}}$	(1)	(10 +2)
1.60 x 10 ⁻⁵ mol dm ⁻³ s ⁻¹ = k (0.2 mol dm ⁻³) ^m (0.4 mol dm ⁻³) ⁿ	(2)	(10 +2)
$4.00 \times 10^{-4} \text{ mol dm}^{-3} \text{ s}^{-1} = \text{k} (1.0 \text{ mol dm}^{-3})^{\text{m}} (0.4 \text{ mol dm}^{-3})^{\text{n}}$	(3)	(10 +2)

Finding of the order m

From (2)/(3) $\frac{1.60 \times 10^{-5} \text{ mol dm}^{-3} \text{ s}^{-1}}{4.00 \times 10^{-4} \text{ mol dm}^{-3} \text{ s}^{-1}} = \frac{k (0.2 \text{ mol dm}^{-3})^m (0.4 \text{ mol dm}^{-3})^n}{k (1.0 \text{ mol dm}^{-3})^m (0.4 \text{ mol dm}^{-3})^n}$ (5)

0.04 = (0.2)^m m = 2 (4+1)

Finding of the order n

From (3)/(1) <u>4. 00 x 10⁻⁴ mol dm⁻³ s⁻¹</u> = $\frac{k (1.0 \text{ mol dm}^{-3})^m (0.4 \text{ mol dm}^{-3})^n}{k (0.1 \text{ mol dm}^{-3})^m (0.2 \text{ mol dm}^{-3})^n}$ (5)

 $200 = 10^2 (2)^n$ n = 1

(4+1)

Confidential

6 (b): 105 marks

(v) Calculate the rate constant of the reaction.

Rate constant
 From (1)

$$(4+1)$$
 (4+1)

 $(0.1 \text{ mol dm}^{-3})^2$ (0.2 mol dm $^{-3})^1$
 (4+1)

 $= 1.0 \times 10^{-3} \text{ mol}^{-2} \text{ dm}^6 \text{ s}^{-1}$
 (4+1)

(vi) An experiment is designed to study the effect of temperature on the reaction rate using the partition coefficient given above.

Is this a suitable experiment to study the effect of temperature on the rate of the reaction? Explain your answer.

Not suitable(2)Partition coefficient depends on temperature.(3)

(c) The organic solvent org-2 and water are also immiscible and form a biphasic system. X (0.20 mol) was added to a system containing 100.00 cm³ of org-2 and 100.00 cm³ of water and allowed to reach equilibrium at the temperature T. Then Y (0.01 mol) was added to the aqueous phase and the initial rate of the reaction was measured. Y does not dissolve in org-2. The initial rate of the reaction between X and Y in the aqueous phase was found to be $6.40 \times 10^{-7} \text{ mol dm}^{-3} \text{ s}^{-1}$.

Calculate the partition coefficient $\frac{[X]_{org-2}}{[X]_{aq}}$ for the distribution of X between org-2 and water. [X]_{org-2} is the concentration of X in the org-2 phase.

Reaction takes place in the aqueous medium. Therefore, the rate constant is the same. (5) $Rate = k [X]_{aq}^2 [Y]_{aq}$

$$6.40 \times 10^{-7} \text{ mol dm}^{-3} \text{ s}^{-1} = 1.00 \times 10^{-3} \text{ mol}^{-2} \text{ dm}^{6} \text{ s}^{-1} [X]^{2}_{aq} 0.1 \text{ mol dm}^{-3}$$

$$[X]^{2}_{aq} = 6.4 \times 10^{-3} \text{ mol}^{2} \text{ dm}^{-6} = 64 \times 10^{-4} \text{ mol}^{2} \text{ dm}^{-6}$$
(4+1)

 $[X]_{aq} = 8.0 \times 10^{-2} \text{ mol dm}^{-3}$ (4+1)

$$K_D = \frac{[X]_{org-2}}{[X]_{aq}} = \frac{\left(\frac{0.2 \ mol}{0.1 \ dm^3} - 0.08 \ mol \ dm^{-3}\right)}{0.08 \ mol \ dm^{-3}}$$
(4+1)

$$K_D = 24 \tag{4+1}$$

Department of Examinations - Sri Lanka

Alternate answer for 6(c)

$$K_D = \frac{\frac{(0.2 \ mol - x)}{0.1 \ dm^3}}{\frac{x}{(0.1 \ dm^3)}}$$
(4+1)

 $x = \frac{0.2 \, mol}{K_D + 1}$

$$[X]_{aq} = \frac{\frac{0.2 \, mol}{(K_D+1)}}{0.1 \, dm^3} = \frac{2}{(K_D+1)} \, mol \, dm^{-3}$$

 $Rate = k [X]_{aq}^{m} [Y]_{aq}^{n}$

$$6.4 \times 10^{-7} mol \, dm^{-3} \, s^{-1} = 1 \, \times \, 10^{-3} \, mol \, dm^{-3} \, s^{-1} \, \left(\frac{2 \, mol \, dm^{-3}}{(K_D + 1)}\right)^2 \, (0.1 \, mol \, dm^{-3}) \tag{4+1}$$

$$64 \times 10^{-4} = \left(\frac{2}{K_D + 1}\right)^2$$

$$K_D = 24$$
(4+1)

6 (c): 25 marks

Confidential

(4+1)

27

7. (a) The setup shown in the figure was used to find the relative atomic mass of the metal, M.

The electrolysis was carried out for 10 minutes using a constant current. The mass of the cathode in cell **A** was increased by 31.75 mg whereas the mass of the cathode in cell **B** increased by 147.60 mg during this time period. (Assume that the electrolysis of water does not take place in cells **A** and **B**.)

(i) Identify the anode and cathode in each of the cells A and B (in terms of the numbers ①, ②, ③, and ④).

<u>Cell A</u>	
Anode = 1	(5
Cathode = 2	(5
<u>Cell B</u>	
Anode = 3	(5)
Cathode = 4	(5)

(ii) Write the half reaction taking place at each electrode in each cell. Electrode reactions

Note : physical states	must be given	
Cell B electrode 4	M³+(aq) +3e → M(s)	(6)
Cell B electrode 3	M(s) → M ³⁺ (aq) + 3e	(6)
Cell A electrode 2	Cu ²⁺ (aq) + 2e → Cu(s)	(6)
Cell A electrode 1	$Cu(s) \rightarrow Cu^{2+}(aq) + 2e$	(6)

(iii) Calculate the constant current used in electrolysis.

Amount of Cu(s) dissolved = 31.75×10^{-3} gCharge required for this = $2 \times 96500 \text{ c mol}^{-1} \times 31.75 \times 10^{-3}$ g= i x 10 x 60 s63.5 g mol^{-1}(1+1)+(1+1)+(1+1)+(1+1))

Correct stoichiometry The current used in the electrolysis = i = 0.16 A

Alternative Answer for 7(a) (iii)

Amount of Cu deposited	$= \frac{\frac{31.75 \times 10^{3} g}{63.5 g mol^{-1}}}{0.5 \times 10^{-3} mol}$ = 0.5 × 10 ⁻³ mol	
Amount of charge required	= $0.5 \times 10^{-3} \times 2$ mol For using correct stoichiometry	(5)
	= 10 ⁻³ mol × 96500 C mol ⁻¹	(1+1)
	= 96.5 C	
Current	$=\frac{96.5 C}{10 \times 60 S}$	(1+1)
	= 0.16 A	(4+1)

(iv) Calculate the relative atomic mass of metal, M.

Increase in mass of the electrode 4 in cell B is due to deposition of M(s) Increase in mass = 147.6x 10^{-3} g Amount of M deposited = 147.6 x 10^{-3} g /W W=molecular weight of M Charge needed for this = 3×96500 c mol⁻¹ x 147.6×10^{-3} g = 0.16 A x 600 s W (1+1)+(1+1)+(1+1)

Correct stoichiometry

W = 445.1 g mol⁻¹

Alternative Answer (I) for 7(a) (iv)

M mol x 3 = Cu mol x 2			
$\frac{\frac{(1+1)}{147.6 \times 10^{-3} g \times 3 mol}}{W} =$	$=\frac{\frac{(1+1)}{31.75\times10^{-3}}g\times 2mol}{635amol^{-1}}$	For using correct stoichiometry	(5)
¥¥.	(1+1)		
$W = \frac{147.6 \times 3 \times 63.5}{31.75 \times 2} g$	mol ⁻¹		

= 442.8 g mol⁻¹

Alternative Answer (II) for 7(a) (iv)

Amount of M deposited = Amount of charge flown / 3 $= \frac{10^{-3}}{3} mol$ For using correct stoichiometry (5) Molar mass of M $= \frac{147.6 \times 10^{-3} g}{\frac{10^{-3}}{3} mol} (1+1)$ $= 147.6 \times 3 g mol^{-1}$ $= 442.8 g mol^{-1}$ (1+1)

Note : If symbols (or any other values) are used for the atomic mass of Cu and Faraday constant and the answers are provided with those symbols or using those values, award full marks.

7 (a): 75 marks

28

(5)

(5)

(1+1)

(1+1)

E.

(4+1)

(b) (i) A, B and C are coordination compounds. They have an octahedral geometry. In each compound, two types of ligands are coordinated to the metal ion. The molecular formulae of the compounds are (not in order): NiCl₂H₁₂N₄, NiI₂H₁₆N₄O₂ and NiCl₂H₁₅N₃O₃.

Given below are the observations when aqueous solutions of the compounds are treated with $Pb(CH_3COO)_2(aq)$.

Compound	Pb(CH ₃ COO) ₂ (aq)	
A	A white precipitate that is soluble in hot water	
В	No precipitate	
С	A yellow precipitate that is soluble in hot water	

I. Give the structures of A, B and C.

A :	[Ni(NH ₃) ₃ (H ₂ O) ₃]Cl ₂	OR	[NI(H ₂ O) ₃ (NH ₃) ₃]Cl ₂	(00)
B:	[Ni(NH ₃) ₄ Cl ₂]	OR	[NiCl ₂ (NH ₃) ₄]	(06)
C:	$[Ni(NH_3)_4(H_2O)_2]l_2$	OR	[Ni(H ₂ O) ₂ (NH ₃) ₄]l ₂	(06)

Note: OH₂ may be used instead of H₂O.

II. Write the chemical formulae of the precipitates formed on treatment of the compounds with Pb(CH₃COO)₂(aq).

(Note: Indicate compound and reagent)

Shake the tube.

CHCl₃ layer turns violet.

Α	with Pb(CH ₃ COO) ₂	PbCl₂↓	(03)

C with $Pb(CH_3COO)_2$ $Pbl_2 \downarrow$ (03)

III. State a chemical test, together with the observation, to identify each of the anion/s if present, that is/are not coordinated to the metal ion in the compounds given above. (Note: The tests given by you should not be a test stated here.)

CI.	Add a solution of AgNO₃.	(03)
	A white precipitate is formed. The white precipitate dissolves in dilute NH₄OH.	(03)
ŀ	Add a solution of AgNO ₃ .	(03)
	A yellow precipitate is formed. The yellow precipitate does not dissolve in conc. NH ₄ OH. OR Add a few drops of CHCl ₃ and then a little Cl ₂ water.	(03) (03)

29

(03)

Confidential

A)

(ii) A transition metal **M** forms a coloured complex ion **P** in aqueous medium. It has the general formula $[M(H_2O)_n]^{m+}$. It undergoes the reactions given below.

I. Identify the metal M. Give the oxidation state of M in complex ion P.

Ni, +2 OR Ni²⁺ (06 + 03)

II. Give the electronic configuration of M in the complex ion P.

III. Give the values of n and m.

IV. Give the geometry of P.

octahedral (03)

V. Give the structures of Q, R and S.

- Q: Ni(OH)₂ (03)
- **R:** $[NiCl_4]^{2-}$ (03)
- S: [Ni(NH₃)₆]²⁺ (03)

VI. Give the IUPAC names of the complex ions, P, R and S.

P:	hexaaquanickel(II) ion	(03)
R:	tetrachloridonickelate(II) ion	(03)
S:	hexaamminenickel(II) ion	(03)

30

7(b): 75 marks

(60 marks)

Confidential

(b) (i) Consider the industries given below.

Coal power plants Refrigeration and air conditioning Transport Agriculture Animal farming

I. All five industries given above contribute to global warming. Identify the gaseous chemical species associated with each of these industries that contribute to global warming.

Coal power plants – CO₂

Refrigeration and air conditioning industry – CFC OR HFC OR HCFC

Transportation - CO2

Agriculture – N₂O, CH₄

Animal farming – CH₄

 $(03 \times 5 = 15 \text{ marks})$

II. State three adverse climate changes that could occur due to global warming.

- Rise in sea level
- Frequent strong cyclones and tornadoes

(Any three)

- Severe floods in certain areas
- Reduction in rainfall in certain areas (severe droughts) / Desertification
- Sea water infusion to rivers
- Heavy rainfall in certain areas

 $(03 \times 3 = 9 \text{ marks})$

- (ii) Identify the main industry/industries given in (i) above that contribute to
 - I. photochemical smog,

Transportation

II. acid rain,

Coal power plants and transportation

III. eutrophication.

Agriculture and animal farming

(02 x 5 = 10 marks)

(iii) Due to the reduction in rainfall in Sri Lanka, inducing artificial rain has been tested near catchment areas of reservoirs that are used for hydro-power generation. In this process, fine particles of hygroscopic salts (NaCl, CaCl₂, NaBr) are sprayed to induce cloud formation by condensation of water vapour.

From the list given below, select the water quality parameters that are directly

I. affected

Conductivity

(02)

• Concentration of ions increases. Therefore, conductivity (02) increases.

II. unaffected

due to salts entering water around catchment areas. Give reasons for your choice briefly. List of water quality parameters:

pH, conductivity, turbidity, dissolved oxygen

pH, turbidity and dissolved oxygen

(02 + 02 + 02)

- These salts do not undergo hydrolysis. Therefore, pH is unaffected.
- These salts are very soluble in water. Hence, ions do not contribute to turbidity.
- These salts do not react with O₂.

 $(02 \times 3 = 6 \text{ marks})$

10(b): 50 marks

(c) The following questions are based on biodiesel production.

(i) State the raw materials used in the manufacture of biodiesel.

Vegetable oil / plant oil (palm oil etc.) and

 $CH_{3}OH / methanol / C_{2}H_{5}OH / ethanol / alcohol / ROH$ (05 + 05)

- (ii) Name the main chemical compound present in each raw material where applicable.
 Vegetable oil triglycerides (05)
- (iii) State the name of the chemical compound used as the catalyst in the manufacture of biodiesel in the school laboratory.
 Sodium hydroxide (NaOH) / potassium hydroxide (KOH) (05)

Confidential

(iv) Give a balanced chemical equation to show the synthesis of biodiesel using the chemical compounds stated in part (ii) above.

Note: 1. R could be written as R₁, R₂ and R₃. Equation should be balanced accordingly.

- 2. For correct balanced equation (20 marks). If equation is not balanced award (04) for each correct reactant and product.
- 3. C₂H₅OH and ROH may be accepted for this year ONLY.
- (v) Identify a side reaction that would take place, along with its products, if the catalyst is used in excess.

Saponification reaction **OR** its description (05)

Product – soap (R-COO⁻Na⁺)

10(c): 50 marks

(05)

42

02 - Chemistry (Marking Scheme) New Syllabus | G.C.E. (A/L) Examination 2019 | Amendments to be included.