	/E-I(NEW)				
	ALCO ALCO ALCO ALCO ALCO ALCO ALCO ALCO	ப்புரிமையடையகு / /	ll Rights Reserved		
		-	புதிய பாடத்திட்ட		us
NIE NIE	கல்விப் டெ	லை சூற்றுகான இலங்கைப் பிடன்சத் சுஜை கலவிகை பாதுத் தராதரப்	a) பேரை கலை கிட்டுப்பில் கான் கிட்டுப்பில் கான் கிட்டுப்பில் கிட்டு பித்திர (உயர் cation (Adv. Lev	தர)ப் பரீட்சை தர)ப் பரீட்சை	, 2019 ஓகஸ்ற்
இணைந்	രള്ഞය ട്രക്തികൾ ed Mathematic	I		آ	2019 / 0830-1140
ஜன ஜச மூன்று Three h	மணித்தியாலம்				ම කාලය - මිනිත්තු 10 යි ਸිப்பு நேரம் - 10 நிமிடங்கள் eading Time - 10 minutes
	tional reading tim		he question paper,	select the question	ons and decide on the questions
nstructi		ndex Number			
isu ucu	This question p				
				a question in i	he space provided. You may
*	use additional s Part B: Answer five que At the end of a Part A is on to	heets if more s _p estions only. Wri the time allotted op of Part B a	vace is needed. ite your answers o d, tie the answer nd hand them ove	on the sheets pr scripts of the r to the superv	rovided. two parts together so that
*	use additional s Part B: Answer five que At the end of a Part A is on to	theets if more spectrum estions only. Write the time allotted op of Part B and the to remove on	pace is needed. ite your answers o d, tie the answer nd hand them ove bly Part B of the	on the sheets pr scripts of the r to the superv question paper	rovided. two parts together so that isor.
*	use additional s Part B: Answer five que At the end of a Part A is on to	theets if more spectrum estions only. Write the time allotted op of Part B and ed to remove on For	vace is needed. ite your answers o d, tie the answer nd hand them ove	on the sheets pr scripts of the r to the superv question paper	rovided. two parts together so that isor.
*	use additional s Part B: Answer five que At the end of a Part A is on ta You are permitte	theets if more spectrum estions only. Write the time allotted op of Part B and ed to remove on For	pace is needed. ite your answers o d, tie the answer nd hand them ove bly Part B of the	on the sheets pr scripts of the r to the superv question paper	rovided. two parts together so that isor.
* (10)	use additional s Part B: Answer five que At the end of a Part A is on to You are permitte Combined Mathe	theets if more spectrons only. Write the time allotted op of Part B and the to remove on For ematics I	pace is needed. ite your answers o d, tie the answer nd hand them ove bly Part B of the	on the sheets pr scripts of the r to the superv question paper	rovided. two parts together so that isor.
* (10)	use additional s Part B: Answer five que At the end of the Part A is on the You are permitted Combined Mathe Question No.	theets if more spectrons only. Write the time allotted op of Part B and the to remove on For ematics I	pace is needed. ite your answers o d, tie the answer nd hand them ove bly Part B of the	on the sheets pr scripts of the r to the superv question paper	rovided. two parts together so that isor. from the Examination Hall.
* (10)	use additional s Part B: Answer five que At the end of the Part A is on the You are permitted Combined Mathe Question No. 1	theets if more spectrons only. Write the time allotted op of Part B and the to remove on For ematics I	pace is needed. ite your answers of d, tie the answer and hand them ove aly Part B of the Examiners' Us	on the sheets pr scripts of the r to the superv question paper be only	rovided. two parts together so that isor.
* (10) Part	use additional s Part B: Answer five que At the end of the Part A is on the You are permitted Combined Mathe Question No. 1 2	theets if more spectrons only. Write the time allotted op of Part B and the to remove on For ematics I	bace is needed. te your answers of d, tie the answer and hand them ove aly Part B of the Examiners' Us	on the sheets pr scripts of the r to the superv question paper se only	rovided. two parts together so that isor. from the Examination Hall.
* (10)	use additional s Part B: Answer five que At the end of the Part A is on the You are permitted Combined Mathe Question No. 1 2 3	theets if more spectrons only. Write the time allotted op of Part B and the to remove on For ematics I	pace is needed. ite your answers of d, tie the answer and hand them ove aly Part B of the Examiners' Us	on the sheets pr scripts of the r to the superv question paper se only	rovided. two parts together so that isor. from the Examination Hall.
* (10) Part	use additional s Part B: Answer five que At the end of the Part A is on the You are permitted Combined Mathe Question No. 1 2 3 4	theets if more spectrons only. Write the time allotted op of Part B and the to remove on For ematics I	bace is needed. te your answers of d, tie the answer and hand them ove aly Part B of the Examiners' Us	on the sheets pr scripts of the r to the superv question paper se only	rovided. two parts together so that isor. from the Examination Hall. Total
* (10) Part	use additional s Part B: Answer five que At the end of the Part A is on the You are permitted Combined Mathe Question No. 1 2 3 4 5	theets if more spectrons only. Write the time allotted op of Part B and the to remove on For ematics I	bace is needed. ite your answers of d, tie the answer nd hand them ove uly Part B of the Examiners' Us In Nu In Wo	on the sheets pr scripts of the r to the superv question paper be only umbers ords	rovided. two parts together so that isor. from the Examination Hall.
* (10) Part	use additional s Part B: Answer five que At the end of the Part A is on the You are permitted Combined Mathe Question No. 1 2 3 4 5 6 7 8	theets if more spectrons only. Write the time allotted op of Part B and the to remove on For ematics I	bace is needed. ite your answers of d, tie the answer nd hand them ove uly Part B of the Examiners' Us In Nu In Wo	on the sheets pro- scripts of the r to the superv question paper the only ambers ords ing Examiner	rovided. two parts together so that isor. from the Examination Hall. Total
* (10) Part	use additional s Part B: Answer five que At the end of a Part A is on ta You are permitte Combined Mathe Question No. 1 2 3 4 5 6 7 8 9	theets if more spectrons only. Write the time allotted op of Part B and the to remove on For ematics I	bace is needed. ite your answers of d, tie the answer nd hand them ove by Part B of the Examiners' Us In Nu In Wark	on the sheets pr scripts of the r to the superv question paper be only umbers ords	rovided. two parts together so that isor. from the Examination Hall. Total
* (10) Part	use additional s Part B: Answer five que At the end of the Part A is on the You are permitted Combined Mathe Question No. 1 2 3 4 5 6 7 8 9 10	theets if more spectrons only. Write the time allotted op of Part B and the to remove on For ematics I	bace is needed. ite your answers of d, tie the answer nd hand them ove by Part B of the Examiners' Us In Nu In Wark	on the sheets pro- scripts of the r to the superv question paper be only umbers ords ing Examiner	rovided. two parts together so that isor. from the Examination Hall. Total
* (10) Part	use additional s Part B: Answer five que At the end of a Part A is on ta You are permitte Combined Mathe Question No. 1 2 3 4 5 6 7 8 9 10 11	theets if more spectrons only. Write the time allotted op of Part B and the to remove on For ematics I	bace is needed. ite your answers of d, tie the answer nd hand them ove by Part B of the Examiners' Us In Nu In Wark Chec	on the sheets pro- scripts of the r to the superv question paper se only umbers ords ing Examiner ked by: 2	rovided. two parts together so that isor. from the Examination Hall. Total
* (10) Part	use additional s Part B: Answer five que At the end of the Part A is on the You are permitted Combined Mathe Question No. 1 2 3 4 5 6 7 8 9 10 11 12	theets if more spectrons only. Write the time allotted op of Part B and the to remove on For ematics I	bace is needed. ite your answers of d, tie the answer nd hand them ove by Part B of the Examiners' Us In Nu In Wark Chec	on the sheets pro- scripts of the r to the superv question paper se only umbers ords ing Examiner ked by: 1	rovided. two parts together so that isor. from the Examination Hall. Total
* (10) Part	use additional s Part B: Answer five que At the end of a Part A is on ta You are permitte Combined Mathe Question No. 1 2 3 4 5 6 7 8 9 10 11 12 13	theets if more spectrons only. Write the time allotted op of Part B and the to remove on For ematics I	bace is needed. ite your answers of d, tie the answer nd hand them ove by Part B of the Examiners' Us In Nu In Wark Chec	on the sheets pro- scripts of the r to the superv question paper se only umbers ords ing Examiner ked by: 2	rovided. two parts together so that isor. from the Examination Hall. Total
* (10) Part	use additional s Part B: Answer five que At the end of the Part A is on the You are permitted Combined Mathe Question No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	theets if more spectrons only. Write the time allotted op of Part B and the to remove on For ematics I	bace is needed. ite your answers of d, tie the answer nd hand them ove by Part B of the Examiners' Us In Nu In Wark Chec	on the sheets pro- scripts of the r to the superv question paper se only umbers ords ing Examiner ked by: 2	rovided. two parts together so that isor. from the Examination Hall. Total
* (10) Part	use additional s Part B: Answer five que At the end of a Part A is on ta You are permitte Combined Mathe Question No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	theets if more spectrons only. Write the time allotted op of Part B and the to remove on For ematics I	bace is needed. ite your answers of d, tie the answer nd hand them ove by Part B of the Examiners' Us In Nu In Wark Chec	on the sheets pro- scripts of the r to the superv question paper se only umbers ords ing Examiner ked by: 2	rovided. two parts together so that isor. from the Examination Hall. Total
* (10) Part	use additional s Part B: Answer five que At the end of a Part A is on to You are permitte Combined Mathe Question No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	theets if more spectrons only. Write the time allotted op of Part B and the to remove on For ematics I	bace is needed. ite your answers of d, tie the answer nd hand them ove by Part B of the Examiners' Us In Nu In Wark Chec	on the sheets pro- scripts of the r to the superv question paper se only umbers ords ing Examiner ked by: 2	rovided. two parts together so that isor. from the Examination Hall. Total
* (10) Part	use additional s Part B: Answer five que At the end of a Part A is on ta You are permitte Combined Mathe Question No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	theets if more spectrons only. Write the time allotted op of Part B and the to remove on For ematics I	bace is needed. ite your answers of d, tie the answer nd hand them ove by Part B of the Examiners' Us In Nu In Wark Chec	on the sheets pro- scripts of the r to the superv question paper se only umbers ords ing Examiner ked by: 2	rovided. two parts together so that isor. from the Examination Hall. Total

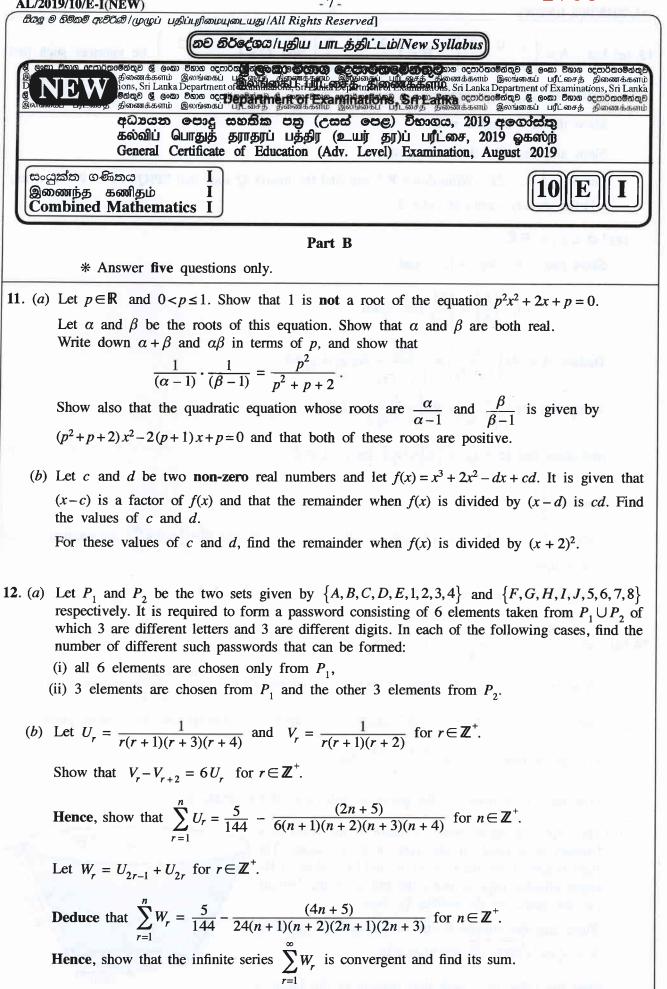
[see page two

A150 1

	Part A
	Using the Principle of Mathematical Induction , prove that $\sum_{r=1}^{n} (2r-1) = n^2$ for all $n \in \mathbb{Z}^+$.
	Description of the Area Area Area and a second s
	AutoA (Cashiya e 10 and State B (Cashiya 2 1 f)
	Shotsh the sample of a 14a 21 and a 2 Olal is the same diagram.
•	Sketch the graphs of $y = 4x-3 $ and $y=3-2 x $ in the same diagram.
	Sketch the graphs of $y = 4x-3 $ and $y=3-2 x $ in the same diagram. Hence or otherwise, find all real values of x satisfying the inequality $ 2x-3 + x <3$.
	Hence or otherwise, find all real values of x satisfying the inequality $ 2x-3 + x <3$.
	Hence or otherwise, find all real values of x satisfying the inequality $ 2x-3 + x <3$.
	Hence or otherwise, find all real values of x satisfying the inequality $ 2x-3 + x <3$.
	Hence or otherwise, find all real values of x satisfying the inequality $ 2x-3 + x <3$.
	Hence or otherwise, find all real values of x satisfying the inequality $ 2x-3 + x <3$.
	Hence or otherwise, find all real values of x satisfying the inequality $ 2x-3 + x <3$.
	Hence or otherwise, find all real values of x satisfying the inequality $ 2x-3 + x <3$.
	Hence or otherwise, find all real values of x satisfying the inequality $ 2x-3 + x <3$.
	Hence or otherwise, find all real values of x satisfying the inequality $ 2x-3 + x <3$.
	Hence or otherwise, find all real values of x satisfying the inequality $ 2x-3 + x <3$.
	Hence or otherwise, find all real values of x satisfying the inequality $ 2x-3 + x <3$.
	Hence or otherwise, find all real values of x satisfying the inequality $ 2x-3 + x <3$.
	Hence or otherwise, find all real values of x satisfying the inequality $ 2x-3 + x <3$.
	Hence or otherwise, find all real values of x satisfying the inequality $ 2x-3 + x <3$.
	Hence or otherwise, find all real values of x satisfying the inequality $ 2x-3 + x <3$.

AL/2019/10/E-I(NEW)	2733_3	_ [Index Number]	.(20170)	t TUTI ETUT
3. Sketch, in an Argand di Arg $(z - 2 - 2i) = -\frac{3\pi}{4}$	iagram, the locus of the I		nt complex numb	ærs z satisfying
-	nd the minimum value o	If $ i\overline{z} + 1 $ such that	at $\operatorname{Arg}(z-2-2)$	$(i) = -\frac{3\pi}{4}.$
			-	
	- Helle H le He ₂ on			
1999 Barry				
PT	un n nafasa			
			4140 - 14 - 14 - 14	=
4. Show that the coefficien Show also that there doe	es not exist a term independent of x^0 in the binomial exist at the second exist at		• /	expansion.
		••••••		
•••••				
······································				
- 191				
•••••••	*************************************			

[see page four


A	L/2019/10/E-I(NEW)	-4- ⁸⁸⁷⁵	CHARLE THE MODILE
5.	Show that $\lim_{x \to 3} \frac{\sqrt{x-2}-1}{\sin(\pi(x-3))} = \frac{1}{2\pi}$.		
	-		
			• •
	• 2		
		-	
			-
		- 1	
6.	The region enclosed by the curves $y = \sqrt{\frac{x+x}{x^2+x^2}}$	$\frac{1}{x}$, x=0, x=1 a	nd $y=0$ is rotated about the
	x-axis through 2π radians. Show that the volu		
L			[see page five

7.	Let C be the parabola parametrically given by $x = at^2$ and $y = 2at$ for $t \in \mathbb{R}$, where $a \neq 0$. Show that the equation of the normal line to the parabola C at the point $(at^2, 2at)$ is given by $y+tx=2at+at^3$.
	The normal line at the point $P \equiv (4a, 4a)$ on the parabola <i>C</i> meets this parabola again at a point $Q \equiv (aT^2, 2aT)$. Show that $T = -3$.
8.	Let l_1 and l_2 be the straight lines given by $x + y = 4$ and $4x + 3y = 10$, respectively. Two distinct points P and Q are on the line l_1 such that the perpendicular distance from each of these points to the line l_2 is 1 unit. Find the coordinates of P and Q.
	5
-	see page six

9.	Show that the point $A \equiv (-7, 9)$ lies outside the circle $S \equiv x^2 + y^2 - 4x + 6y - 12 = 0$.
	Find the coordinates of the point on the circle $S=0$ nearest to the point A.
	0 = (c.f.) 1cf.) eliow dei 5 v -a.
	est in entre province entre entre province entre province entre entre entre entre entre entre entre entre entre
	en de la completa de
	2 1+ <i>l</i>
	Let $t = \tan \frac{\theta}{2}$ for $\theta \neq (2n+1)\pi$, where $n \in \mathbb{Z}$. Show that $\cos \theta = \frac{1-t^2}{1+t^2}$. Deduce that $\tan \frac{\pi}{12} = 2 - \sqrt{3}$.
	Deduce that $\tan \frac{\pi}{12} = 2 - \sqrt{3}$.
	Deduce that $\tan \frac{\pi}{12} = 2 - \sqrt{3}$.
	Deduce that $\tan \frac{\pi}{12} = 2 - \sqrt{3}$.
	Deduce that $\tan \frac{\pi}{12} = 2 - \sqrt{3}$.
	Deduce that $\tan \frac{\pi}{12} = 2 - \sqrt{3}$.
	Deduce that $\tan \frac{\pi}{12} = 2 - \sqrt{3}$.
	Deduce that $\tan \frac{\pi}{12} = 2 - \sqrt{3}$.
	Deduce that $\tan \frac{\pi}{12} = 2 - \sqrt{3}$.
	Deduce that $\tan \frac{\pi}{12} = 2 - \sqrt{3}$.
	Deduce that $\tan \frac{\pi}{12} = 2 - \sqrt{3}$.
	Deduce that $\tan \frac{\pi}{12} = 2 - \sqrt{3}$.
	Deduce that $\tan \frac{\pi}{12} = 2 - \sqrt{3}$.
	Deduce that $\tan \frac{\pi}{12} = 2 - \sqrt{3}$.
	Deduce that $\tan \frac{\pi}{12} = 2 - \sqrt{3}$.
	Deduce that $\tan \frac{\pi}{12} = 2 - \sqrt{3}$.

**

2733

13. (a) Let
$$\mathbf{A} = \begin{pmatrix} a & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 2 & 1 & 3 \\ 1 & -a & 4 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} b & -2 \\ -1 & b+1 \end{pmatrix}$ be matrices such that
 $\mathbf{AB}^{\mathsf{T}} = \mathsf{C}$, where $a, b \in \mathbb{R}$.
Show that $a = 2$ and $b = 1$.
Show also that, \mathbf{C}^{-1} does not exist.
Let $\mathbf{P} = \frac{1}{2}(\mathbf{C} - 2\mathbf{I})$. Write down \mathbf{P}^{-1} and find the matrix \mathbf{Q} such that $2\mathbf{P}(\mathbf{Q}+3\mathbf{I}) = \mathbf{P} - \mathbf{I}$, where
 \mathbf{I} is the identity matrix of order 2.
(b) Let $z, z_1, z_2 \in \mathbb{C}$.
Show that (i) $\operatorname{Re} z \neq |z|$, and
(ii) $\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$ for $z_2 \neq 0$.
Deduce that $\operatorname{Re}\left(\frac{z_1}{z_1 + z_2}\right) \leq \frac{|z_1|}{|z_1 + z_2|}$ for $z_1 + z_2 \neq 0$.
Verify that $\operatorname{Re}\left(\frac{z_1}{z_1 + z_2}\right) \leq |z_1| + |z_2|$ for $z_1, z_2 \in \mathbb{C}$.
(c) Let $\omega = \frac{1}{2}(1 - \sqrt{3}i)$.
Express $1 + \omega$ in the form $r(\cos\theta + i\sin\theta)$; where $r(>0)$ and $\theta\left(-\frac{\pi}{2} \leq \theta < \frac{\pi}{2}\right)$ are constants to be
determined.
Using De Moivre's theorem, show that $(1+\omega)^{10} + (1+\overline{\omega})^{10} = 243$.
14. (a) Let $f(x) = \frac{9(x^2 - 4x - 1)}{(x - 3)^2}$ for $x \neq 3$.
Show that $f'(x)$, the derivative of $f(x)$, is given by $f'(x) = -\frac{9(x+3)(x-5)}{(x-3)^4}$ for $x \neq 3$.
Sketch the graph of $y = f(x)$ indicating the asymptotes, y-intercept and the turning points.
It is given that $f''(x) = \frac{18(x^2 - 33)}{(x - 3)^3}$ for $x \neq 3$.
Find the *x*-coordinates of the points of inflection of the graph of $y = f(x)$.
(b) The adjoining figure shows a basin in the form of a
function of a right circular cone with a bottom.
Let the radius of the bottom be rem..
Show that the volume V cm³ of the basin is given by
 $V = \frac{7}{3}\pi r^2\sqrt{900 - r^2}$ for $0 < r < 30$.
Find the value of r such that volume of the basin is given by
 $V = \frac{7}{3}\pi r^2\sqrt{900 - r^2}$ for $0 < r < 30$.
Find the value of r such that volume of the basin is given by
 $V = \frac{7}{3}\pi r^2\sqrt{900 - r^2}$ for $0 < r < 30$.
Find the value of r such that volume of the basin is given by
 $V = \frac{7}{3}\pi r^2\sqrt{900 - r^2}$ for $0 < r < 30$.

- 8 -

[see page nine

AL/2019/10/			ALCOHORS PERCEN					
සියලු ම හිමිකම් ම	<i>ඇවිරිණි முழுப் பதிப்</i> ப	-	/All Rights Reserved]					
	in a start	නව නිර්දේශය	¤/புதிய பாடத்திட்டம்/New Syllabus)					
இவறை கோத எதுதுகைக்கும் இவறை 2010 குறைக்குக்குக்கு இதுக்கும் இதுக்கும் இதுக்கும் 2010 கேரேம்கள்கும் இலங்கைப் பர் காத் திணைக்களம் திணைக்களம் இலங்கைப் பர் காத் திணைக்களும் பிருகாத திணைக்களம் இலங்கைப் பர் காத் திணைக்களும் பருகாத திணைக்களம் இலங்கைப் பர்காத திணைக்களிம் இலங்கைப் பர்டன்த திணைக்களம் இலங்கைப் பர்டனத் திணைக்களம் இலங்கைப் பருகாத திணைக்களம் இலங்கைப் பர்காத திணைக்களில் இலங்கைப் பர்டனத் திணைக்களம் இலங்கைப் பர்டனத் திணைக்களம்								
අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2019								
සංයුක්ත இணைந்த Combine	ගණිතය , සഞ്ഞിதம் ed Mathematic	II II s II	10 E II 07.08.2019 / 0830 - 1140					
පැය තුන ආன்று u Three he	ணித்தியாலம்		අමතර කියවීම් කාලය - මිනිත්තු 10 යි மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes					
	onal reading time we priority in answ		h the question paper, select the questions and decide on the questions					
	(Index)	Name Is an						
Instructi	ions:	Number						
	-		sists of two parts;					
		uestions $1-10$	0) and Part B (Questions $11-17$)					
	* Part A:	questions W	rite your answers to each question in the space provided. You may					
		-	more space is needed.					
	* Part B:	, ,	*					
			nly. Write your answers on the sheets provided.					
			allotted, tie the answer scripts of the two parts together so that					
			rt B and hand them over to the supervisor.					
			nove only Part B of the question paper from the Examination Hall.					
	* In this que	stion paper, g	g denotes the acceleration due to gravity.					
			For Examiners' Use only					
	Combined Mathe							
Part	Question No.	Marks	_					
	1 2		-					
	3		Total					
	4		In Numbers					
Α	5		In Words					
	6							
	7		Code Numbers					
	8		Marking Examiner					
	9		Checked by: 1					
	10		2					
	11							
	12		Supervised by:					
n	13							
B	14							
	15							
	16							
	17							
	Total							

2733

- 2 -

-

	Part A				
1. Three particles A , B and C , each of mass m , are placed in that order, in a straight line of smooth horizontal table. The particle A is given a velocity u such that it collides directly w the particle B . After colliding with the particle A , the particle B moves and collides directly w the particle C . The coefficient of restitution between A and B is e . Find the velocity of B at the first collision.					
	The coefficient of restitution between B and C is also e . Write down the velocity of C after its collision with B .				
í.					
R.					
2.	A particle is projected from a point O on a horizontal floor with a velocity whose horizontal and vertical components are \sqrt{ga} and				
	$\sqrt{6ga}$, respectively. The particle just clears two vertical walls				
	of heights a and b which are at a horizontal distance a apart, $\sqrt{6ga}$ b				
	as shown in the figure. Show that the vertical component of the velocity of the particle when it passes the wall of height <i>a</i> is $2\sqrt{ga}$.				
	Show further that $b = \frac{5a}{2}$.				

	2733
. 1	2 Index Number
A	L/2019/10/Е-II(NEW) - 3 - С М
3.	In the figure, A, B and C are particles of masses m, m and M , respectively. The particles A and B are connected by a light inextensible string. The particle C, lying on a smooth horizontal table, is connected to B by another light inextensible string passing over a smooth small pulley fixed at the edge of the table. The particles and the strings all lie in the same vertical plane. The
	system is released from rest with the strings taut. Write down equations sufficient to determine the tension of the string joining $m \bigcirc A$ A and B.
4.	α to the horizontal. There is a constant resistance of $R(>Mg\sin\alpha)N$ to its motion. At a certain
1	instant, the acceleration of the car is $a \text{ m s}^{-2}$. Find the velocity of the car at this instant.
	Deduce that the constant speed with which the car can move downwards along the road i $\frac{1000P}{R - Mg \sin \alpha} \text{ m s}^{-1}.$
	$K - Mg \sin \alpha$
	•••••
	[see nage]

AL	/201	19/1	0/E-	II(I	NEW)
----	------	------	------	------	------

and the second se		- 1	4	-				
	_	_		_	_	_	_	

5.	Two particles, A and B , each of mass m , attached to the two ends of a light inextensible string which passes over a smooth fixed pulley, hang in equilibrium. A small bead C, also of mass m , released from rest from a point at a distance a vertically above
	A, moves freely under gravity and collides and coalesces with A. (See the figure.) Write down equations sufficient to determine the impulse of the string at the instant m_{e}
	of the collision between A and C, and the velocity acquired by B just after the above collision.
	↓ JA JB
	<i>m m</i>
	In the neural meterium lat 21 is in the day of the second se
	In the usual notation, let $2i + j$ and $3i - j$ be the position vectors of two points A and B, respectively with respect to a fixed origin O. Find the position vectors of the two distinct points C and much that $4\hat{G}_{C} = 4\hat{G}_{C} = 0$
	with respect to a fixed origin O . Find the position vectors of the two distinct points C and
	with respect to a fixed origin O . Find the position vectors of the two distinct points C and
	with respect to a fixed origin O . Find the position vectors of the two distinct points C and
	with respect to a fixed origin O . Find the position vectors of the two distinct points C and
	with respect to a fixed origin O . Find the position vectors of the two distinct points C and
	with respect to a fixed origin O . Find the position vectors of the two distinct points C and
	with respect to a fixed origin O . Find the position vectors of the two distinct points C and
	with respect to a fixed origin O . Find the position vectors of the two distinct points C and
	with respect to a fixed origin O . Find the position vectors of the two distinct points C and
	with respect to a fixed origin O . Find the position vectors of the two distinct points C and
	with respect to a fixed origin O . Find the position vectors of the two distinct points C and
	with respect to a fixed origin O . Find the position vectors of the two distinct points C and
	with respect to a fixed origin O . Find the position vectors of the two distinct points C and
	with respect to a fixed origin O . Find the position vectors of the two distinct points C and
	with respect to a fixed origin O . Find the position vectors of the two distinct points C and
	with respect to a fixed origin O . Find the position vectors of the two distinct points C and
	with respect to a fixed origin O . Find the position vectors of the two distinct points C and

-	
7.	A particle P of weight W, suspended from a horizontal ceiling by two light inextensible strings AP and BP making angles α and $\frac{\pi}{3}$ with the horizontal, respectively, is in equilibrium as shown in the figure. Find the tension in
	the string AP in terms of W and α .
	Hence, find the minimum value of this tension and the corresponding value of α .
	2
8.	A uniform rod AB of length $2a$ and weight W has its end A placed on a rough horizontal floor and the end B against a smooth vertical wall. The rod is kept in equilibrium in a vertical plane perpendicular to the wall by a horizontal force of magnitude P applied at the end A towards the wall. In the figure, F and R denote the frictional force and the normal reaction at A ,
	respectively. If the reaction at B from the wall is $\frac{W}{2}$ as shown
	in the figure and the coefficient of friction between the rod and
	the floor is $\frac{1}{4}$, show that $\frac{W}{4} \le P \le \frac{3W}{4}$.

ALC: NO

denote com	plementary even	ents of A	and B, res	spectively.				
••••••								
							•••••	•••••
			••••••					•••••
						,		
						I		

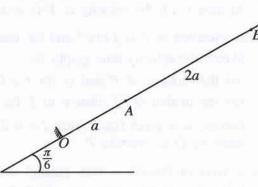
			• • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • •	******	••••••
Five positiv mean, and	ve integers eac median are bo	h of whic th equal t	h is less t o 3. Find	han 5, ha these five	ve two m integers.	odes, on	e of whic	ch is 3.
Five positiv mean, and	ve integers eac median are bo	h of whic th equal t	h is less t o 3. Find	han 5, ha these five	ve two m integers.	odes, on	e of whic	ch is 3.
Five positiv mean, and	ve integers eac median are bo	h of whic th equal t	h is less t o 3. Find	han 5, ha these five	ve two m integers.	odes, on	e of whic	ch is 3.
Five positiv mean, and	/e integers eac. median are bo	h of whic th equal t	h is less t o 3. Find	han 5, ha these five	ve two m integers.	odes, on	e of whic	ch is 3.
Five positive mean, and	ve integers eac median are bo	th equal t	h is less t o 3. Find	han 5, ha these five	integers.	odes, on		ch is 3.
Five positiv mean, and	median are bo	th equal t	h is less t o 3. Find	han 5, ha these five	integers.			:h is 3.
Five positiv mean, and	median are bo	th equal t	h is less t o 3. Find	han 5, ha these five	integers.			:h is 3.
Five positive mean, and	median are bo	th equal t	h is less t o 3. Find	han 5, ha these five	integers.			:h is 3.
Five positive mean, and	median are bo	th equal t	h is less t o 3. Find	han 5, ha these five	integers.			:h is 3.
Five positive mean, and	median are bo	th equal t	h is less t o 3. Find	han 5, ha these five	integers.			:h is 3.
Five positive mean, and	median are bo	th equal t	h is less t o 3. Find	han 5, ha these five	integers.			:h is 3.
Five positive mean, and	median are bo	th equal t	h is less t o 3. Find	han 5, ha these five	integers.			:h is 3.
Five positive mean, and	median are bo	th equal t	h is less t o 3. Find	han 5, ha these five	integers.			:h is 3.
Five positive mean, and	median are bo	th equal t	h is less t o 3. Find	han 5, ha these five	integers.			:h is 3.
Five positive mean, and	median are bo	th equal t	h is less t o 3. Find	han 5, ha these five	integers.			:h is 3.
Five positive mean, and	median are bo	th equal t	h is less t o 3. Find	han 5, ha these five	integers.			:h is 3.
Five positive mean, and	median are bo	th equal t	h is less t o 3. Find	han 5, ha these five	integers.			:h is 3.
Five positive mean, and	median are bo	th equal t	h is less t o 3. Find	han 5, ha these five	integers.			:h is 3.

**

AL/2019/10/E-II(NEW) ದಿಂತ್ವ © හිමිකම් ඇව්රිණි / முழுப் பதிப்புரிமையுடையது /All Rights Reserved றை திச்சுகே/புதிய பாடத்திட்டம்/New Syllabus பித்தை இருவை வேல் குறைகளை குடுக்கு குறைக்கு காற்றுக்கு காற்றுக்கு இருவரை இருவருக்கும் இருவருக்கு இருவருக்கு குற திணைக்களம் இலங்கைப் படன்கத் தின்னக்கும் இருவரைப்படன்கத் திணைக்களம் இலங்கைப் பரடன்கத் திணைக்களம் tions, Sri Lanka Department of **இலங்கைக் Sr பரப்புக்கு மற்றைன் குடுவரும்**, Sri Lanka Department of Examinations, Sri Lanka பேது இருவரு இருவருக்கு இருவருக்கு விருக்கு காறு குறைக்கு குறைக்கு குறைக்கு இருவருக்கு இருவரு இருவருக்கு இருவருக தினைக்களம் இலங்கைப் பரடன்கு இலைக்கு காறு குறைக்கு குறைக்கு குறைக்கு குறைக்கு இருவருக்கு இருவருக்கு இருவருக்கு கிறைக்கு இருவருக்கு இருவருக்கு இருவருக்கு இருவருக்கு குறைக்கு குறைக்கு குறைக்கு இருவருக்கு இருவருக்கு இருவருக்கு கிறைக்களம் இலங்கைப் பரடன்கு இணைக்களம் இலங்கைப் பரடன் தாதிக்கு காறு இருவருக்கு இருவருக்கு இருவருக்கு இருவருக்கு අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2019 සංයුක්ත ගණිතය Π இணைந்த கணிதம் п **Combined Mathematics II** Part B * Answer five questions only. (In this question paper, g denotes the acceleration due to gravity.) 11. (a) Two cars P and Q move with constant accelerations in the same direction along a straight road. At time t = 0 the velocity of P is $u \text{ m s}^{-1}$ and the velocity of Q is $(u + 9) \text{ m s}^{-1}$. The constant acceleration of P is f m s⁻² and the constant acceleration of Q is $\left(f + \frac{1}{10}\right)$ m s⁻². Sketch the velocity-time graphs for (i) the motions of P and Q for $t \ge 0$, in the same diagram, and (ii) the motion of Q relative to P for $t \ge 0$, in a separate diagram. Further, it is given that at time t = 0 the car P is 200 metres ahead of the car Q. Find the time taken by Q to overtake P. (b) A river of breadth a with parallel straight banks flows with uniform velocity u. In the figure, the points A, B, C and D lying on the banks are the vertices of a square. Two boats B_1 and B_2 moving with constant speed v (> u) relative to water begin their journeys at the same instant from A. The boat B_1 first travels to C along \overrightarrow{AC} and then to D in the direction \overline{CD} upward along the river. The boat B_2 first travels to B in the direction AB downwards along the river and then to D along BD. Sketch the velocity triangles for the motions of B_1 from A to C and of B_2 from B to D in the same diagram. Hence, show that the speed of the boat B_1 in its motion from A to C is $\frac{1}{\sqrt{2}}\left(\sqrt{2v^2-u^2}+u\right)$ and find the speed of the boat B_2 in its motion from B to D. Further, show that both boats B_1 and B_2 reach D at the same instant. 12. (a) The triangles ABC and LMN in the figure, are vertical cross-sections through the centres of gravity of two identical smooth uniform wedges X and Y respectively, with $\hat{ACB} = L\hat{N}M = \frac{\pi}{3}$ and $\hat{ABC} = L\hat{M}N = \frac{\pi}{2}$ such that the faces containing BC and MN are placed on a L smooth horizontal floor. The wedge X of mass 3m is free to move on the floor and the wedge Y is kept fixed. The lines ACand LN are the lines of greatest slope of the relevant faces. Two 2mends of a light inextensible string passing over two smooth X small pulleys fixed at A and L, are attached to particles P and 3m Q of masses m and 2m, respectively. At the initial position, the B M particles P and Q are held on AC and LN respectively such that AP = AL = LQ = a and the string taut, as in the figure. The system is released from rest. Obtain equations sufficient to determine the time taken by X to reach Y in terms of a and g.

2733

(b) A smooth narrow tube ABCDE is fixed in a vertical plane as shown in the figure. The portion AB of length $2\sqrt{3}a$ is straight and tangential at B to the circular portion BCDE of radius 2a. The ends A and E lie vertically above the centre O. A particle P of mass m is placed inside the tube at A and gently released from rest. Show that the speed v of the particle P when \overrightarrow{OP} makes an angle $\theta\left(\frac{\pi}{3} < \theta < 2\pi\right)$ with \overrightarrow{OA}


is given by $v^2 = 4ga(2 - \cos \theta)$ and find the reaction on the particle

P from the tube at this instant.

Also, find the reaction on the particle P from the tube in its motion from A to B.

Show that the reaction on the particle P from the tube changes abruptly when the particle P passes through B.

13. The points O, A and B lie in that order, with O lowermost, on a line of greatest slope of a smooth fixed plane inclined at an angle $\frac{\pi}{6}$ to the horizontal such that OA = a and AB = 2a. One end of a light elastic string of natural length a and modulus of elasticity mg is attached to the point O and the other end to a particle P of mass m. The string is pulled along the line OAB until the particle P reaches the point B. Then the particle P is released from rest.

Show that the equation of motion of P from B to A is given by $\ddot{x} + \frac{g}{a}\left(x + \frac{a}{2}\right) = 0$ for $0 \le x \le 2a$, where AP = x.

Let $y = x + \frac{a}{2}$ and rewrite the above equation of motion in the form $\ddot{y} + \omega^2 y = 0$ for $\frac{a}{2} \le y \le \frac{5a}{2}$, where $\omega = \sqrt{\frac{g}{a}}$.

Find the centre of the above simple harmonic motion and using the formula $\dot{y}^2 = \omega^2 (c^2 - y^2)$, find the amplitude c and the velocity of P when it reaches A.

Show that the velocity of P when it reaches O is $\sqrt{7ga}$.

Show also that the time taken by P to move from B to O is $\sqrt{\frac{a}{g}} \left\{ \cos^{-1}\left(\frac{1}{5}\right) + 2k \right\}$, where $k = \sqrt{7} - \sqrt{6}$. When the particle P reaches O, it strikes a smooth barrier fixed at O perpendicular to the plane. The coefficient of restitution between P and the barrier is e. Show that if $0 < e \le \frac{1}{\sqrt{7}}$, then the subsequent motion of P will **not** be simple harmonic.

14. (a) Let OACB be a parallelogram and let D be the point on AC such that AD:DC=2:1. The position vectors of points A and B with respect to O are λa and b, respectively, where $\lambda > 0$. Express the vectors \overrightarrow{OC} and \overrightarrow{BD} in terms of a, b and λ .

Now, let \overrightarrow{OC} be perpendicular to \overrightarrow{BD} . Show that $3|\mathbf{a}|^2 \lambda^2 + 2(\mathbf{a} \cdot \mathbf{b})\lambda - |\mathbf{b}|^2 = 0$ and

find the value of λ , if $|\mathbf{a}| = |\mathbf{b}|$ and $A\hat{O}B = \frac{\pi}{3}$.

see page nine

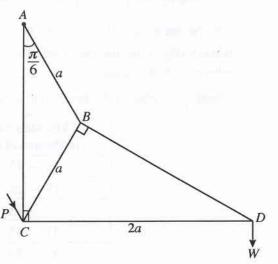
(b) A system consists of three forces in the plane of a regular hexagon ABCDEF of centre O and side of length 2a. Forces and their points of action, in the usual notation, are shown in the table below, with the origin at O, the Ox-axis along \overrightarrow{OB} and the Oy-axis along \overrightarrow{OH} , where H is the mid-point of CD. (P is measured in newtons and a is measured in metres.)

- 9

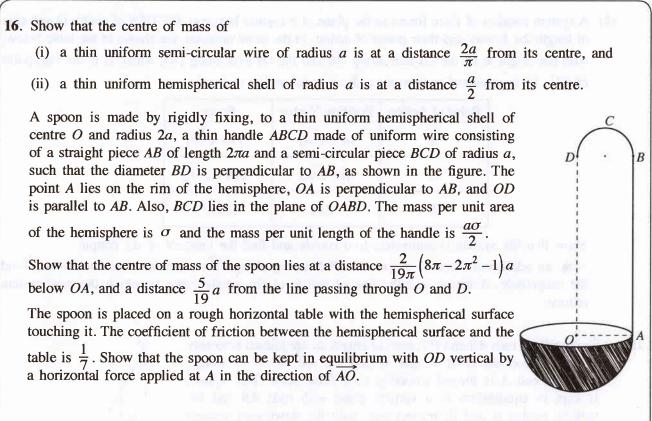
Point of Action	Position Vector	Force
A	ai – √3aj	$3P\mathbf{i} + \sqrt{3}P\mathbf{j}$
С	ai+√3aj	$-3Pi + \sqrt{3}Pj$
E	-2 <i>a</i> i	–2√3Pj

Show that the system is equivalent to a couple and find the moment of the couple.

Now, an additional force of magnitude 6P N acting along \overline{FE} is introduced to this system. Find the magnitude, direction and the line of action of the single force to which the new system reduces.


15.(a) Two uniform rods AB and BC, each of length 2a are jointed smoothly at B. The rod AB is of weight W and the rod BC is of weight 2W. The end A is hinged smoothly to a fixed point. This system is kept in equilibrium in a vertical plane with rods AB and BC making angles α and β , respectively, with the downward vertical by a force $\frac{W}{2}$ applied at C in the direction perpendicular to BC shown in the figure. Show that $\beta = \frac{\pi}{6}$ and find the horizontal and the vertical components of the reaction at the joint B on the rod BC exerted from the rod AB.

Also, show that $\tan \alpha = \frac{\sqrt{3}}{9}$.


(b) Framework shown in the figure consists of five light rods AB, BC, BD, DC and AC smoothly jointed at their ends. Here, it is given that AB = CB = a, CD = 2a and $B\hat{A}C = \frac{\pi}{6}$. Framework is smoothly hinged at A to a fixed point. A load W is suspended at the joint D, and the framework is kept in equilibrium in a vertical plane with AC vertical and CD horizontal by a force P parallel to the rod AB, applied at the joint C in the direction shown in the figure. Draw a stress diagram, using Bow's notation, for the joints D, B, and C.

Hence, find

- (i) the stresses in the five rods, stating whether they are tensions or thrusts, and
- (ii) the value of P.

BB2WCW

- 17.(a) Initially a box contains 3 balls identical in all aspects except for their colour, each of which is either white or black. Now, one white ball identical to balls in the box in all aspects except for its colour, is added into the box and then one ball is drawn at random from the box. Assuming that the four possible initial compositions of the balls in the box are equally likely, find the probability that
 - (i) the ball drawn is white, and
 - (ii) initially there were exactly 2 black balls in the box, given that the ball drawn is white.
 - (b) Let the mean and the standard deviation of the set of values $\{x_i : i = 1, 2, ..., n\}$ be μ and σ respectively. Find the mean and the standard deviation of the set of values $\{\alpha x_i : i = 1, 2, ..., n\}$, where α is a constant.

Monthly salaries of 50 employees at a certain company are summarised in the following table:

Monthly Salary (in thousand rupees)	Number of Employees
5 - 15	9
15 - 25	11
25 - 35	14
35 - 45	10
45 - 55	6

Estimate the mean and the standard deviation of the monthly salaries of the 50 employees.

At the beginning of a year, the monthly salary of each employee is increased by p%. It is given that the mean of the new monthly salaries of the above 50 employees is 29172 rupees. Estimate the value of p and the standard deviation of the new monthly salaries of the 50 employees.

15. (a) Using the substitution
$$x = 2\sin^2 \theta + 3$$
 for $0 \le \theta \le \frac{\pi}{4}$, evaluate $\int_{3}^{4} \sqrt{\frac{x-3}{5-x}} dx$.
(b) Using partial fractions, find $\int \frac{1}{(x-1)(x-2)} dx$.
Let $f(t) = \int_{3}^{t} \frac{1}{(x-1)(x-2)} dx$ for $t > 2$.
Deduce that $f(t) = \ln (t-2) - \ln (t-1) + \ln 2$ for $t > 2$.
Using integration by parts, find $\int \ln (x-k) dx$, where k is a real constant.
Hence, find $\int f(t) dt$.
(c) Using the formula $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$, where a and b are constants,
show that $\int_{-\pi}^{\pi} \frac{\cos^2 x}{1+e^x} dx = \int_{-\pi}^{\pi} \frac{e^x \cos^2 x}{1+e^x} dx$.
Hence, find the value of $\int_{a}^{\pi} \frac{\cos^2 x}{1+e^x} dx$.

16. Write down the coordinates of the point of intersection A of the straight lines 12x-5y-7=0and y=1.

Let l be the bisector of the acute angle formed by these lines. Find the equation of the straight line l.

Let P be a point on l. Show that the coordinates of P can be written as $(3\lambda + 1, 2\lambda + 1)$, where $\lambda \in \mathbb{R}$.

Let $B \equiv (6,0)$. Show that the equation of the circle with the points B and P as ends of a diameter can be written as $S + \lambda U = 0$, where $S \equiv x^2 + y^2 - 7x - y + 6$ and $U \equiv -3x - 2y + 18$.

Deduce that S=0 is the equation of the circle with AB as a diameter.

Show that U=0 is the equation of the straight line through B, perpendicular to l.

Find the coordinates of the fixed point which is distinct from B, and lying on the circles with the equation $S + \lambda U = 0$ for all $\lambda \in \mathbb{R}$.

Find the value of λ such that the circle given by S=0 is orthogonal to the circle given by $S+\lambda U=0$.

17. (a) Write down $\sin(A+B)$ in terms of $\sin A$, $\cos A$, $\sin B$ and $\cos B$, and obtain a similar expression Deduce that

- 10 -

 $2\sin A \cos B = \sin (A+B) + \sin (A-B)$ and

 $2\cos A \sin B = \sin (A+B) - \sin (A-B).$

Hence, solve $2\sin 3\theta \cos 2\theta = \sin 7\theta$ for $0 < \theta < \frac{\pi}{2}$.

(b) In a triangle ABC, the point D lies on AC such that BD = DC and AD = BC. Let $B\hat{A}C = \alpha$ and $A\hat{C}B = \beta$. Using the Sine Rule for suitable triangles, show that $2\sin\alpha\cos\beta = \sin(\alpha + 2\beta)$.

If $\alpha : \beta = 3 : 2$, using the last result in (a) above, show that $\alpha = \frac{\pi}{6}$.

(c) Solve $2\tan^{-1}x + \tan^{-1}(x+1) = \frac{\pi}{2}$. Hence, show that $\cos\left(\frac{\pi}{4} - \frac{1}{2}\tan^{-1}\left(\frac{4}{3}\right)\right) = \frac{3}{\sqrt{10}}$.