கிக்கு டி கிறிவர் எதிக்கு / முழுப் பதிப்புரிமையுடையது /All Rights Reserved]	
(அற கிப்கீழ்கும் /புதிய பாடத்திட்டம்/New Syllabus)	
கையிலை வால் விருக்கும் இருமை இது கையிலை குடைக்கும் குடியாகு குடியாகு குடியாகுக்கும் குடியாக்களும் இலங்கைப் பரிடனாக் கிணைக்களும் இலங்கைப் பரிடனாக்களும் இலங்கைப் பரிடனாக்களும் இலங்கைப் பரிடனாக்களில் கிணைக்களும் இலங்கைக்களும் கிலைக்களும் இலங்கைக்களும் கலைக்களும் கலைக்களும் கலைக்களும் கலைக்களும் இலங்கைக்களும் இலங்கைக்களும் கலைக்களைக்களும் கலைக்களும் கலைக்களும் இலைக்களைக்களும் கலைக்களைக்களுக்களும் கலைக்களும் கலைக்களைக்களும் கலைக்களைக்களுக்களும் கலைக்களும் கலைக்களும் இலங்கைக்களும் கலைக்களைக்களும் கலைக்களைக்களைக்களும் கலைக்களைக்களைக்களும் கலைக்களைக்களைக்களைக்களைக்களும் கல் கலைக்களைக்களும் கலைக்களைக்களும் கலைக்களைக்களைக்களைக்களைக்களும் கல	තුව කාඩ තුව කාඩ
අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2019	
வணிகப் புள்ளிவிவரவியல் I Business Statistics I 31 E I 15.08.2019 / 1300 - 1500 பி பி பி பி பி 1000 - 1500 பி பி 1000 - 1500 பி பி 1000 - 1500 பி 1000 - 1500 1000 - 1500 1000 - 1500 1000 - 1500 1000 - 1500 1000 - 1500 1100 - 1500 1000 - 1500 1100 - 1500 1000 - 1500 1100 - 1500 1000 - 1500 1100 - 1500 1000 - 1500 1100 - 1500 1000 - 1500 1100 - 1500 1000 - 1500 1100 - 1500 1000 - 1500 1100 - 1500 1000 - 1500 1100 - 1500 1000 - 1500 1100 - 1500 1000 - 1500 1100 - 1500 1000 - 1500 1100 - 1500 1000 - 1500 1100 - 1500 1000 - 1500 1100 - 1500 1000 - 1500 1100 - 1500 1000 - 1500 1100 - 1500 1000 - 1500 1100 - 1500 1000 - 1500 1100 - 1500 1000 - 1500	>
 Instructions: * Answer all questions. * Write your Index Number in the space provided in the answer sheet. * Statistical tables will be provided. Use of calculator is not allowed. * Instructions are given on the back of the answer sheet. Follow those carefully. * In each of the questions 1 to 50, pick one of the alternatives from (1), (2), (3), (4), (5) which is correct or most appropriate and mark your response on the answer sheet with a cross (so on the number of the correct option in accordance with the instructions given at the back of the answer sheet. 	ch ×) of
 Which of the following statements is true? The data collected through newspapers and periodicals are primary data. Making inferences about the whole population by studying only a random sample selection is a misuse of statistics. Sampling errors cannot be reduced by increasing the sample size. Statistics does not study an individual value. The purpose of a pilot survey is to test the questionnaire. 	cted
2. Consider the following statements	
 A - Histogram can be constructed even for a frequency distribution with unequal class intervals B - The area between the 45 degree line and the Lorenze curve is called Gini co-efficient C - If the Lorenze curve lies exactly on 45 degree line, the value of the Gini co-efficient is zero. Of the above statements, only A is true. only A and C are true. (1) only A and C are true. (2) only C is true. (3) only A and C are true. (4) only B and C are true. 	als. ent. ient
3. Consider the following statements regarding scales of measurements.	
 A - There is no relationship among subgroups in nominal scale of measurements. B - Since interval scale of measurements has unit of measurements, it can be used mathematical operations. C - Ratio scale of measurements is the only scale which has a fixed startion of the scale of measurements. 	for
Of the above statements,	
(1) only A is true. (2) only C is true.	
 (3) only A and B are true. (4) only A and C are true. (5) all A, B and C are true. 	
4. The most suitable diagram to represent the total value with the component values is	
(1) Simple bar diagram.(2) Multiple bar diagram.(3) Pictogram.(4) Profile chart.(5) Pie diagram.(3) Pictogram.	
[see page	two

- 2 -

-	
5.	The import of a commodity increased by 20% in 2008, decreased by 18% in 2009 and then increased by 30% in the following year. The increase or decrease in each year is measured relative to its previous year. Which of the following is equal to the average rate of change of imports per annum? (1) 10% (2) 10.7% (3) 22.6%
	(4) $[(0.2)(-0.18)(0.3)]^{\frac{1}{3}}$ (5) $[(100+20)(100-18)(100+30)]^{\frac{1}{3}} - 100$
6.	If the mid values (X_i) of class intervals of a frequency distribution were transformed into U
	values as $U_i = \frac{X_i - A}{C}$, which of the following gives the mean \overline{X} and the standard deviation σ of the distribution respectively?
	(1) $\overline{X} = A + \overline{U}, \sigma = C\sigma$ (2) $\overline{X} = A + C\overline{U}, \sigma = C\sigma$
	(3) $\overline{X} = A - C\overline{U}, \ \sigma = C\sigma$ (4) $\overline{X} = \overline{U}, \ \sigma = C\sigma$
	(5) $\overline{X} = A + C\overline{U}, \sigma_x = \sigma_u$ (1) $\overline{X} = C, \sigma_x = C\sigma_u$
7.	In a moderately skewed distribution, the mode and the mean are 32 and 35 respectively. What is the median of the distribution? (1) 32 (2) 33 (3) 34 (4) 25 (5) 26
8	For a certain distribution K shows a sufficient of L is a finite set of L in the set of L is a sufficient
0,	What is the value of P_{90} of the distribution?
	(1) 100 (2) 110 (3) 130 (4) 140 (5) 160
	 (1) Bowley's co-efficient of skewness cannot be used when a distribution has open end classes. (2) Kelly's co-efficient of skewness covers more extreme values than Bowley's co-efficient of skewness. (3) The distribution with a negative co-efficient of skewness has a longer tail to the right. (4) Bowley's co-efficient of skewness is based on only the central 50% of the observations. (5) In a distribution with a longer tail to the right, mean > median > mode.
10.	The means of runs scored by the five batsmen A, B, C, D and E in a series of 10 innings are 75, 60, 50, 45 and 20 respectively. The standard deviations of their runs are 30, 25, 30, 15, 10 respectively. Who is the most consistent batsman of the five batsmen? (1) A (2) B (3) C (4) D (5) E
11.	A motor car travels 250 km with the speed of 50 km/hour, 120 km with the speed of 40 km/hour and the remaining 50 km with the speed of 25 km/hour. Which of the following is equal to average speed of the motor car for the entire trip? (1) $38\frac{1}{2}$ km h ⁻¹ (2) 42 km h ⁻¹ (3) c_{1}^{2} km h ⁻¹
	(4) 140 km h ⁻¹ (5) $(50 \times 40 \times 25)^{\frac{1}{3}}$ km h ⁻¹ (5) $63\frac{1}{3}$ km h ⁻¹
12.	Consider the following data set. 14, 15, 8, 10, 13, 18, 9, 11, 7, 16, 19, 22, 21 Select the correct answer which gives the first quartile, second quartile, and the third quartile of this data set respectively.
13.	 Which of the following statements is true about regression and correlation? (1) If a constant is subtracted from the two variables X and Y, the correlation co-efficient between X and Y will also change accordingly. (2) If correlation co-efficient between X and Y is zero, we can conclude that there is no relationship between X and Y.
	 (3) The correlation co-efficient is only a measure of linear relationship between X and Y. (4) The free hand method can also be used to fit a multiple regression model. (5) If the regression co-efficient of Y on X is b₁ and the regression co-efficient of X on Y is b₂ then the correlation co-efficient between X and Y is b₁b₂.

- 3 -

0542

 14. Consider the following statements regarding A - If the regression co-efficient of X and Y is also positive. B - The co-efficient of determination in simple linear regression. C - A multiple regression model cam 	g the regression analysis. Y on X is positive, the correlation co-efficient between n is equal to the square of the correlation co-efficient have only two independent variables.
Of the above statements,(1) only B is true.(2)(3) only A and C are true.(4)(5) all A, B and C are true.(4)	 a) only A and B are true. b) only B and C are true.
 15. If the yield increases by 12 kg when the feeline, what is the regression co-efficient? (1) 0.42 (2) 2.4 	rtilizer increases by 5 kg according to a fitted regression (4) 7 (5) 10
 16. Consider the following statements about the A - For the probability of a certain answer under classical approach B - If the number of all possible out favourable to the event A is m, C - Under the mathematical approach of the sample space P(S) = 1. 	approaches to probability. event, every person gets the same answer as the correct in to probability. comes of an experiment is n and the number of outcomes the probability of the event A occurs is $P(A) = \frac{m}{n}$. ch to probability, it is not required that the probability
Of the above statements,(1) only A is true.(3) only A and C are true.(5) all A, B and C are true.	 2) only A and B are true. 4) only B and C are true.
17. The sample space for a certain random exp for the given sample space is (1) $P(a_1) = \frac{1}{2}$, $P(a_2) = \frac{1}{2}$, $P(a_3) = -$	beriment is $S = \{a_1, a_2, a_3, a_4\}$. The Probability function $\frac{1}{4}, P(a_4) = \frac{1}{5}$.
(2) $P(a_1) = \frac{1}{2}, P(a_2) = \frac{1}{4}, P(a_3) = -$	$\frac{1}{4}, P(a_4) = \frac{1}{2}.$
(3) $P(a_1) = \frac{3}{2}, P(a_2) = \frac{1}{4}, P(a_3) = \frac{1}{8}$	$\frac{1}{3}, P\left(a_4\right) = \frac{1}{8}.$
(4) $P(a_1) = \frac{1}{2}, P(a_2) = 0, P(a_3) = \frac{1}{4}$	$, P\left(a_4\right) = \frac{1}{4} .$
(5) $P(a_1) = \frac{1}{4}, P(a_2) = \frac{1}{5}, P(a_3) = \frac{1}{4}$	$\frac{1}{5}, P\left(a_{4}\right) = \frac{1}{4}.$
18. If A and B are any two events with $P(A)$ of the event $A \cup (A' \cap B)$ is (1) $P_1 + P_2 - P_3$. (4) $1 - P_1 - P_2 + P_3$.	$= P_{1}, P(B) = P_{2} \text{ and } P(A \cap B) = P_{3} \text{ then the probability}$ (2) $P_{2} - P_{3}$. (3) $P_{1} - P_{3}$. (5) $1 - P_{3}$.
19. If A and B are two events with $P(A \cap A)$ value of k is,	$(B) = \frac{1}{2}, P(A' \cap B') = \frac{1}{3}$ and $P(A) = P(B) = k$ then the
(1) $\frac{1}{3}$. (2) $\frac{1}{2}$.	(3) $\frac{7}{8}$. (4) $\frac{8}{9}$. (5) $\frac{7}{12}$.
20. If A, B and C are any three events, which A or B occur but not C occurs? (1) $P(A \cap B \cap C')$	th of the following expressions gives the probability that (2) $P[(A \cup B) \cap C']$
(3) $P[(A' \cap C') \cup (B' \cap C')]$	$(4) 1 - P[(A \cup B) \cap C']$
$(5) P[(A' \cup B') \cap C]$	

[see page four

- 4 -

22. 23.	x 0 1 2 $f(x)$ 0.1 K 0.2 Which could be the smallest value (1) 1.0(2) 2.0If a random variable X has a point of $P(X > 0)$?(1) 0 1353(2) 0 3870	2K ue of X for (3) isson distri	$ \begin{array}{c c} 4 \\ 0.3 \\ P(X \le x) \\ 3) 2.5 \end{array} $	$\frac{5}{K}$ > 0.5? (4)	2.0		
22.	Which could be the smallest value (1) 1.0 (2) 2.0 If a random variable X has a point of $P(X > 0)$?	ue of X for (3)	$P(X \le x)$ 3) 2.5		2.0		
22. 23.	(1) 1.0 (2) 2.0 If a random variable X has a point of $P(X > 0)$? (1) 0.1353 (2) 0.3870	isson distri	$P(X \le x)$ 3) 2.5	> 0.5?	2.0		
22. 23.	If a random variable X has a point of $P(X > 0)$? (1) 0 1353 (2) 0 3870	isson distri			3.0	(5) 4.0	
23.	(1) 0 1353 $(2) 0 3879$		bution with	P(X = 1)	= P(X = 2)) then what is the	valı
23.	(1) 0.1000 (2) 0.007	9 (3	3) 0.4060	(4)	0.5940	(5) 0.8647	
	If a male birth or a female bir girls than boys in a family of 5	th are equa 5 children?	ally likely,	what is th	he probabili	ty that there are	few
	(1) 0.0313 (2) 0.1583	3 (3	3) 0.1876	(4)	0.5001	(5) 0.8126	
24.	The marks of a certain examined deviation 15. If the best 15% comminimum mark to receive an A (1) 77 (2) 85	nation are of the stud pass? (3	in a norm ents are av	al distribuvarded A	ition with passes, wha 92	mean 76 and sta at is the approxim	ndar natel
5	2.5% of the items produced by	e contain fe		(-) . 	,		
	selected from these items, the pr (1) 0.0821. (2) 0.2052	obability th 2. (3	hat at most $0.2873.$	one item (4)	a random is defective 0.7127.	sample of 100 iter e is (5) 0.9179.	ms :
	of the systematic sampling B - Systematic sampling c cluster from k cluster	The pling is satisfied by the pling is satisfied by the pline pline plane pla	ame as the sidered as a n.	precision a cluster s	of the simpling wi	ple random sampli th the selection of	ing. f or
	Of the above statements	g, $\frac{1}{n}$ is c	called the s	ampling fi	raction.		
	(1) only A is true.	(2) only A a	nd B are	true.		
	(3) only A and C are true.(5) all A, B and C are true.	(4) only B a	nd C are	true.		
7.	Which of the following statement	nts is true	about samp	oling?			
	(1) If the sampling fraction is 1 (2) If the variations among clu	large, the fi	inite popula	tion correc	tion can be	ignored.	
	(3) Quota sampling can be con	sidered as	a non-proba	ability strat	tified sampli	cient.	
	(4) Cluster sampling is not use(5) The method of selecting a is called simple random sample rando	d when the sample giv npling.	ere is no sar ing a know	mpling fra n probabil	me. ity to every	unit of the popul	atio
8.	In simple random sampling with a certain specified unit of the po	out replaced	ment, which	h of the fo in the sam	ollowing giv	ves the probability	' tha
	(1) $\frac{1}{N}$ (2) $\frac{n}{N}$	(3)	$\frac{n-1}{N}$	(4)	$\frac{1}{NC}$	(5) $\frac{1}{n^n}$	
9	According to the central limit th (1) normal for large samples. (2) normal if the population pro (3) approximately normal if the	eorem, the oportion is	sampling $\pi = 0.5$.	distribution	$\int_{n}^{n} \int_{n}^{n} \int_{n$	mple proportion p	is

30. Which of the following statements is true?

- (1) The accuracy of an estimate is measured by its standard error.
- (2) $X \mu$ is always a statistic since it is a function of the sample elements.
- (3) The standard error of the mean of a sample from a finite population is larger than the standard error of the mean of a sample from an infinite population for the same sample size.
- (4) Chi-square distribution is skewed to the left.
- (5) The shape of the T-distribution depends only on the sample size.

31. It is required to estimate the population mean μ by the sample mean \overline{X} of a random sample taken from the population $N(\mu, 100)$. What is the sample size 'n' required for estimating population mean μ , within the range $\mu \pm 5$ with probability 0.954?

(1) 4 (2) 11 (3) 15 (4) 16 (5) 80

32. In a random sample of size 16 from a normal population with mean μ and variance $\sigma^2 = 25$, the sample mean was $\overline{X} = 75$ and the sample variance was $s^2 = 16$. The best 95% confidence interval for μ is

(1) (73.04, 76.96)	(2) (72.55, 77.45)	(3) (72.33, 77.67)
(4) (72.87, 77.13)	(5) $(71.94, 78.06)$	

33. Consider the following statements about confidence intervals.

- A If the sample size is small the confidence interval for the mean μ of a normal distribution based on the *t*-distribution is wider than the confidence interval based on *z*-distribution.
- B One way of reducing the width of a confidence interval for a given confidence level is to increase the sample size.
- C The meaning of the 95% confidence interval for population mean μ is that the variable μ lies in the interval with probability 0.95.
- Of the above statements, (1) only A is true.
- (2) only B is true.
- (3) only A and B are true. (4) only B and C are true.
- (5) all A, B and C are true.

34. Which of the following statements is false?

- (1) If the mean of a normal population with unknown variance is μ , H_0 : $\mu = 100$ is a composite hypothesis.
- (2) If the p-value of a hypothesis test is high the null hypothesis is more credible.
- (3) The value of a test statistic is calculated under the assumption that the null hypothesis is true.
 (4) The probability that the H₁ hypothesis is accepted when H₁ is true is called the power of the test.
- (5) A better hypothesis test can be performed by reducing the significance level.
- 35. The mean of a random sample of size 45 from distribution $N(\mu_1, 90)$ is 920 and the mean of a random sample of size 50 from $N(\mu_2, 100)$ distribution is 925. When testing hypothesis $H_0: \mu_1 = \mu_2$ against $H_1: \mu_1 < \mu_2$ at 5% significance level, the conclusion is
 - (1) reject H_0 : since p-value = 0.0062 < 0.05
 - (2) do not reject H_0 : since p-value = 0.0062 < 0.05
 - (3) reject H_0 : since p-value = 0.0124 < 0.05
 - (4) do not reject H_0 : since p-value = 0.0124 < 0.05
 - (5) reject H_0 : since p-value = 0.0124 < 1.64

36. The critical region for testing the hypothesis H_0 : $\mu = 62$ against H_1 : $\mu = 63$ by taking a random sample of size 30 from $N(\mu, 120)$ population is given by $\overline{X} > 64$. The probability of type I error for this hypothesis test is

(1) 0.1587. (2) 0.1915. (3) 0.3085. (4) 0.3413. (5) 0.6587.

1

	(1) $z = -0.4 > -1$ (3) $z = -0.39 > -$ (5) $-1.96 < z = -0$.64 1.64 0.4 < 1.9	6	((2) $z = 0$ (4) $z = 0$).4<1).39<	1.64 1.64		
3. ′	The number of error	rs in 100	accou	ints se	lected a	t rand	lom fro	om a con	npany are given below.
	Number of Errors	0	1	2	3	4	5	6	
	Number of Account	s 40	35	19	2	0	2	2	
	What is the table (c 5% level of the poi	eritical va sson dist	lue) va ributior	alue of n fitteo	f the Ch d for th	ii-squa is dist	are dist ributio	ribution i n?	n testing goodness of fit a
	(1) 5.99	(2) 7.8	31		(3) 9.49)	(4	4) 11.1	(5) 12.6
).	The incomplete anal is given below.	ysis of v	ariance	e table	e constru	icted	to com	ipare mea	in output of three machine
	An	alysis of	variar	nce ta	ble	191			
	Source	SS	d	f	MS		F		
	Between samples	а	2		65	10.00	d		
	Within samples	96	12	2	С				
	Total Variation	226	b	,					
	(5) $a = 130, b = 10$	0, c=8, c	d = 0.12	23			1 .		
0.	Consider the follow A - Method B - The mul various f	ing state of semi-a tiplicative factors af	ments average e mode fect ea	about can el of ch oth	time set be used time set her.	ries al only ries as	when the	the trend that the	is linear. components caused due t
	$C - \ln \text{ movin}$	ng averag	ge metr	100, 11	is assu	med	inat the	e trend va	arres according to a mic.
	(1) only A is tru	e.			(2) only	y B is	s true.		
	(3) only A and I	B are true	e.		(4) onl	уАа	nd C a	are true.	
	(5) all A , B and C	C are true	e.						
1.	The trend equation origin is shifted from	with the om 2006	origin to 200	n 2006 2 wha	5 is given at is the	en by new	$Y_t = trend$	56 - 4t.	Time unit = 1 year. If the contract of the co
	(1) $Y_t = 56 - t$ (4) $Y_t = 72 - 4t$				$\begin{array}{ccc} (2) & Y_t \\ (5) & Y_t \end{array}$	= 40 = 72	-4t + 4t		(3) $I_t = 70 - 4I$
			l index	for the	he garm	ent sa	les is 8	80 for the	first quarter and 130 for the
2.	In a certain shop th fourth quarter. If the of the garments that (1) Rs.61530	e seasona value of the shop (2) R	the tot should s. 1300	al sale d keep 100	s for the for the (3) Rs.	first fourth 16250	quarter 1 quarte 00 (is Rs. 100 er in orde 4) Rs. 500	0 000, what is the sales va r to meet the demand? 0 000 (5) Rs.800 000

44.	The statistical chart constructed to control the number of defects per unit of a product is (1) nP - chart (2) P - chart (3) C - chart (4) \overline{X} - chart (5) R - chart.
45.	The average number of defectives in 10 samples each of the size 100 was found to be $\overline{P} = 0.20$. The Lower control limit (L.C.L.) and Upper Control Limit (U.C.L.) of the P – chart respectively are (1) (0. 16, 0. 24). (2) (0. 18, 0. 28). (3) (0. 20, 0. 32). (4) (0. 08, 0. 32). (5) (0. 08, 0. 20).
46.	 Consider the following statements. A - Rejecting a good lot is called producer's risk. B - The maximum allowable number of defectives in the sample in acceptance sampling is called acceptance number. C - The quality level of a bad lot is called the Acceptable Quality Level. Of the above statements, only A is true. only A and B are true. only A and B are true. all A, B and C are true.
47.	For an acceptance sampling plan with $N = 1200$, $n = 100$ and $C = 1$, what is the probability
	of acceptance of a lot with fraction defective for 4%?
	(1) 0.0183 (2) 0.0733 (3) 0.0916 (4) 0.9084 (5) 0.9817
48.	 A worker earlied Rs. 50000 per month in year 2005. The cost of noning metric metric process of noning metric metric p
	2003 2004 2005 2006 2007 2008 2009 2010
1	140 200 210 230 250 260 280 300
	Select the correct answer which gives the new index numbers for 2004 and 2010 respectively, if the base year is shifted from 1998 to 2007.
	(1) 70, 110 (2) 80, 120 (3) 85, 125 (4) 90, 130 (5) 125, 83
50	 In a situation where prices are increasing, the index that tends to overestimate the price increase is (1) Laspeyre's price index. (2) Paache's price index. (3) Marshall - Edgewerth price index. (4) Fisher's price index. (5) Simple aggregate price index.
	* * *

(i) Calculate the cumulative percentages for the income, for the number of persons in group A and for the number of persons in group B.

(ii) Draw the two Lorenze curves in the same graph and comment on the income distributions of two groups.

(07 marks)

- 2 -

2. (a) Describe what is meant by skewness and kurtosis of a distribution. The per hour wage rates of 100 workers are given in the following distribution.

Wage Rate	10-19	20-29	30-39	40-49	50-59	60-69
Number of workers	08	12	20	35	20	05

Calculate Kelly's coefficient of skewness based on percentiles and comment on the skewness of the distribution.

- (b) The coefficients of variation of wages of male workers and female workers in a certain institute are 55% and 60% respectively, while the standard deviations are 22 and 15 respectively. If 80% of the workers are male, calculate the overall average wage of all workers.
- (c) The heights of the students of a certain class are given in the following distribution.

Height (inches)	58-60	61-63	64-66	67-69	70-72	73-75
Number of students	10	20	30	20	15	05

Calculate the mean, median, mode, standard deviation and Karl Pearson's coefficient of skewness and comment on the distribution.

- 3. (a) What is an index number?

Explain the Laspeyre's price index and Paasche's price index in terms of the total cost of a basket of goods in the base year and total cost of a basket of goods in the given year. (03 marks)

(b) Consider the following table.

	Bas	se Year	Current Year			
Item	Price	Total Value	Price	Total Value		
Α	6	300	10	560		
В	4	240	06	360		
С	2	200	02	240		
D	8	320	12	960		
Е	10	300	12	288		

Using the data in the table, calculate the following.

- (i) Laspeyre's price index
- (ii) Paasche's price index
- (iii) Fisher's price index

(iv) Marshall-Edgeworth price index

Does the Marshall-Edgeworth price index satisfy the time reversal test and the factor reversal test? Give reasons for the answer. (07 marks)

(c) What is a Time Series?

Describe three uses of time series analysis in the business field. Describe what is meant by cyclical variation and seasonal variation in time series analysis.

- (05 marks)
- (d) The trend equation fitted by the method of least squares for the sales of garments is given below.

Y = 840 + 72X

Origin is 2005

Time unit = 1 year

Y = Number of units sold per year

- (i) Convert this trend equation into a monthly trend equation.
- (ii) Estimate the sale for the month of October in the year 2011.

(05 marks) see page three

(10 marks)

(04 marks)

(06 marks)

4.

(a) A sales department of a certain company gives a training to its salesmen and then a test is held. The following table gives the test scores, and sales made by the salesmen after the training.

Test scores (X)	19	24	14	22	26	21	19	20	15	20
Sales (in Rs.1000) (Y)	36	48	31	45	50	37	39	41	33	40

- 3 -

 $\Sigma X = 200, \ \Sigma Y = 400, \ \Sigma X^2 = 4120, \ \Sigma Y^2 = 16346, \ \Sigma XY = 8193$

- (i) Calculate the correlation coefficient between test scores and sales, and state whether there is a relationship between them.
- (ii) Fit the regression line of Y on X by the method of least squares.
- (iii) Calculate the coefficient of determination and comment on your result.
- (iv) The department is considering to terminate the service of some salesmen based on the test scores and sales. If the department expects a minimum sale of Rs. 30 000 from each salesman, what should be the minimum test score to consider the termination of the service of a salesman? (10 marks)
- (b) Explain the difference between the terms of each pair given below.
 - (i) Chance variation and Assignable variation
 - (ii) Process Control and Product Control

(c) Explain the difference between C-chart and U-chart. The number of defects in ten woollen carpets manufactured are given in the following table.

Carpet No.	1	2	3	4	5	6	7	8	9	10
Number of defects	2	3	6	5	3	3	6	4	5	3

Construct a suitable control chart for these data and state whether the quality characteristic under inspection is in control. (06 marks)

Part II

- (a) Describe the classical approach to probability and relative frequency approach to 5. probability, stating two limitations of each. (04 marks)
 - (b) If $P(A) = \frac{1}{2}$, $P(A \cup B) = \frac{3}{4}$ and $P(B') = \frac{5}{8}$,
 - (i) Find $P(A' \cap B')$, $P(A' \cup B')$ and $P(B \cap A')$
 - (ii) State whether the events A and B are independent.
 - (c) In a manufacturing industrial firm, there are 5 production engineers and 3 maintenance engineers in one section and there are 4 production engineers and 5 maintenance engineers in the other section. From any of these sections, a single selection of two engineers was made. Find the probability that one of them would be a production engineer and the other person would be a maintenance engineer. (04 marks)
 - State the law of total probability and Bayes' Theorem. (d)The probability that a doctor will diagnose a disease X correctly is 0.8. The probability that a patient with disease X will die by his treatment after correct diagnosis is 0.3. The probability that a patient with disease X will die after not diagnosing the disease correctly is 0.7. If a patient with disease X died, find the probability that the doctor had diagnosed disease X correctly. (08 marks)

(04 marks)

(04 marks)

- 4 -

6. (a) State the probability function of the binomial distribution. What are the conditions that should be satisfied by a random experiment for deriving this function?	
On average, 20% of the nails produced by a certain machine is defective. A batch is accepted if a random sample of 10 nails taken from that batch does not contain defective nails and the batch is rejected, if the sample contains 3 or more defectives. In other cases, a second sample is taken. Find the probability of taking a second sample.	(06 marks)
(b) Define the Poisson distribution and state three examples for the application of this distribution.	
The number of telephone calls received at a switchboard in any time interval of length T minutes has a Poisson distribution with mean $\frac{1}{2}T$. The telephone	
operator leaves the switchboard for 6 minutes	
(i) Find the probability that no call is coming when the operator is not at the switchboard.	
(ii) Find the probability that three or more calls are coming when the operator is not at the switchboard .	
(iii) Find also the maximum length of time in nearest second for which the operator could be absent with 90% probability of receiving no calls.	
$(\log_{10} e = 0.4343, \log_{10} (0.90) = -0.0458)$	(06 marks)
(c) Explain three uses of the normal distribution in the field of statistics.	
The life-time of a certain kind of bulbs has a normal distribution with mean life-time of 500 hours and standard deviation of 45 hours. Find,	
(i) the percentage of bulbs with a life-time of at least 570 hours.	
(ii) the percentage of bulbs with life-time between 485 and 515 hours.	
(iii) the minimum life time of the best 5% of the bulbs.	(08 <i>marks</i>)
 7. (a) Describe the following methods of sampling, stating two advantages and two disadvantages of each sampling method. (i) Stratified random sampling (ii) Cluster sampling 	
(iii) Quota sampling	
(iv) Systematic sampling	(08 <i>marks</i>)
(b) Describe how the following population structures affect the expected precision of the systematic sampling.	
(i) Population with the units in random order.	
(ii) Population with linear trend.	
(111) Population with cyclic variations.	(06 <i>marks</i>)
 (c) (i) State the Central Limit Theorem. Explain, why the Central Limit Theorem is considered as the most important theorem in Statistics. 	
(ii) A random sample of size 50 is taken from a Poisson distribution with mean	
$\lambda = 2$. Find the probability approximately that the sample mean will exceed 2.5.	(06 marks)
probability that a month will difference a deputer a provently in 0.8, 71m	
is not with site line I swellin from instant a net attribute bull the start of a start of	

8. (a) Explain what is meant by Unbiasedness and Efficiency of a point estimator. If $\{X_1, X_2, X_3\}$ is a random sample from a population with mean μ and variance σ^2 , show that both estimators $\hat{\theta}_1 = \frac{X_1 + X_2 + X_3}{3}$ and $\hat{\theta}_2 = \frac{X_1 + 2X_2 + X_3}{4}$ are unbiased

- 5 -

estimators for μ .

Out of these estimators, what is the most efficient estimator?

(06 marks)

(b) Samples of two types of electric bulbs were tested for finding their life-time and the following values were observed.

Types of bulbs	No. of bulbs used	Sample mean (hours)	Standard Deviation
A	50	2015	80
B	70	2045	60

- (i) Construct a 95% confidence interval for the difference of mean life-time between A and B.
- (ii) Using the confidence interval, test the hypothesis that mean life-time of bulbs A and B are equal.
- (06 marks)

(c) The prices of a certain commodity in three cities P, Q and R are given in the table.

P	Q	R
14	10	2
6	8	8
8	8	6
12	4	4

 $\sum x_{ij}^2 = 804$

Test whether the average prices of the commodity in the three cities are significantly different at 5% level. (08 marks)
