	Provincial Department of Education Northern Province Pilot Exam - 2019 Grade - 13	
Physics - I	01	

1. The dimension of energy stored in a unit volume of strain rod.
2. MLT^{-2}
3. $\mathrm{ML}^{2} \mathrm{~T}^{-2}$
4. $\mathrm{ML}^{-1} \mathrm{~T}^{-2}$
5. $\mathrm{ML}^{2} \mathrm{~T}^{-3}$
6. MLT^{-1}

Use of calculators is not allowed ($\mathrm{g}=10 \mathrm{Nkg}^{-1}$)

2. The quak composition of a Proton
3. uud
4. udd
5. uuu
6. uu
7. ud
8. Conside six resistors connected to a circuit given below. observe us outer ends which were connected. A circuits with a 6 V ideal cell and ideal ammeters canbe connected to any two points of the resister circuit. The least of amount of current flows through the ammeter

9. 0.29 A
10. 1.15 A
11. 1.17 A
12. 1.41 A
13. 1.25 A
4) A 100 W electric heater is immersed into a vessel containing $1 l$ water. Though the heater was inside the water for a long time and the water reachers its boiling point; water didn't boil. How long does it take to cool by $1{ }^{\circ} \mathrm{C}$ after removing the heater (specific heat capaecity $4.2 \mathrm{Jkg}^{-1} \mathrm{C}^{-1}$)
1. 20 s
2. 40 s
3. 60 s
4. 130s
5. 200 s
5) An ice cube A_{1} is Floating in a test tube containing water. Another ice cube A_{z} is traped at the bottom using awire gauze. Water is heated on a Bunsen burner whichone given below is the correct observation.
1. Both A_{1} and A_{z} Start to melt at the same time
2. A_{2} Starts to melt long after A_{1}
3. A_{1} starts to melt long after A_{z}
4. A_{1} melts where as A_{2} doesn't
5. A_{2} melts where as A_{1} doesn't

6) A black body at 400 K is in an environ met at 300 K . What is the initial met rate of radiation from a unit area of the object if stephani constant is equal to $5.7 \times 10^{8} \mathrm{Wm}^{-1} \mathrm{~K}^{-4}$
1. $5.7 \times 5 \mathrm{Wm}^{-2}$
2. $5.7 \times 25 \mathrm{~W} \mathrm{~m}^{-2}$
3. $5.7 \times 10^{-8} \mathrm{Wm}^{-2}$
4. $5.7 \times 7 \times 25 \mathrm{Wm}^{-2}$
5. $5.7 \times 400^{2} \mathrm{Wm}^{-2}$
7) A process with constant volume from A to B and aprocess with constant pressure from B to A are shown in the. The leat absorhed bg a system moving from A to C via55J. The work done turing process BC is 25 J and 15 J work is done during the process CA. During the process CA
1. 15 J heat is abosorved
2.65 J heat is released
3.45 J heat is released
2. 15 J heat is released
3. 15J heat is absorved

8) The identical logs are connected by a spring is hung from a roof by a robe is at rest as shown in the figure. If they robe suddenly collapses what will be the downward accelaration of the upper log

9) A Cylinder is filled with an ideal gass with a piston A and B are two processes done on the piston. The tare statement regading the behavicour of the gars.

	A - Piston is Compresses	B - Piston is Compresses
Slowly		

10) A bullet travelling with velocity V collides horizontally and penitrate in to a wheel which is n times greater than the mass of the bullet and has a radius r as shown in the figure. The penitrating length is negligible compared to the ratio of the wheel. The angle between the dierection of the velocity of the bullet add the radius of the wheel is θ, the anglular velocity of the system
(The moment of inertia of the wheel $\mathrm{I}=1 / 2 \mathrm{mr}^{2}$)

1. $\frac{2 V \sin \theta}{(n+2) r}$
2. $\frac{2 V \cos \theta}{(n+2) r}$
3. $\frac{2 V}{(n+2) r}$
4. $\frac{V \sin \theta}{(n+2) r}$
5. $\frac{2 V \tan \theta}{(n+2) r}$
11) A Particle A is projected 60° to the horizonal plane. Another particle B is projected horizontaly with the valocity of $5 \mathrm{~ms}^{-1}$ from is a point which is h abovem A If both particels collie at a point C what is the height h .
1. 10 m
2.30 m
3.15 m
4.25 m
5.60 m

12) A metal sphere with an outter radi radius us b, has a hole inside with a radius of a, Look at the diagram. The sphere floats in a water contain in vessel. If the relative density of the metal is what will be the value of $\frac{a}{b}$
1. $\frac{l}{x^{\frac{1}{3}}}$
2. $x^{\frac{1}{3}}$
3. $\left(\frac{x^{2}}{x-1}\right)^{\frac{1}{3}}$
4. $\left(\frac{x-1}{x}\right)^{\frac{1}{3}}$
5. $\left(\frac{x+1}{x}\right)^{\frac{1}{3}}$
13) A thin even rod of length L and mass M is connected to the friction less ternninal point and placed vertically as shown in the diagram. Then it is allowed to fall on the ground What is the velocity of the free end of rod when it strikes the ground.
1. $\sqrt{1 / 3 g L}$
2. $\sqrt{g L}$
3. $\sqrt{3 g L}$
4. $\sqrt{12 g L}$
5. $12 \sqrt{g L}$
14) There are two equal holes in the oppesite sides of a container as shown in the
 figure The hight between the two holes is h. when will the force act on the container becomes proportional when water colomn flows through the hole.
1. $h^{\frac{1}{2}}$
2. h
3. $h^{\frac{1}{2}}$
4. $h^{\frac{3}{2}}$
5. h^{3}
15) An infinite plate with a charge density ' σ ' intersects the surface of a spherical gole use of
 radius R from a distance x from its centre, The Electric flux ϕ canbe given as
1. $\frac{\pi R^{2} \sigma}{\epsilon_{o}}$
2. $\frac{2 \pi R^{2} \sigma}{\epsilon_{o}}$
3. $\frac{\pi(R-x)^{2} \sigma}{\epsilon_{0}}$
4. $\frac{\pi\left(R^{2}-x^{2}\right) \sigma}{\epsilon_{0}}$
5. $\frac{2 \pi\left(R^{2}-x^{2}\right) \sigma}{\epsilon_{0}}$
16) A, B are two strings with equal lenghts the cross sectional area of A is twice them B. The young modulus of A, B are Y_{1} and Y_{2}. They are placed parallaly to make a combined string. when a mass is hung the extension was observed to be ' e ' what will be the extension if the two strings are connected to the ends and the same mass is hung?
1. $\frac{\left(Y_{1}+Y_{2}\right) e}{2 Y_{1} Y_{2}}$
2. $\frac{\left(Y_{1}+Y_{2}\right) e^{2}}{2 Y_{1} Y_{2}}$
3. $\frac{\left(2 Y_{1}+Y_{2}\right)^{2} e}{2 Y_{1} Y_{2}}$
4. $\frac{\left(Y_{1}+2 Y_{2}\right) e}{2 Y_{1} Y_{2}}$
5. $\frac{2 Y_{1} Y_{2} e}{\left(Y_{1}+2 Y_{2}\right)^{2}}$
17) When an object was observed through n number of glass plates the image I was seen on the surface of the 3 rd plate. If the refrative index of glass is 1.5 what will be the value of n.
1. 6
2. 7
3. 8
4. 9
5. 10

18) The thickness of the front glass of a fish tanks is 9 cm . An insect ' O ' was in the air in fornt of the front glass. what is the apprarent displacement of the insect for the fish in the water (refract index of water $=4 / 3$, refract index of glass $=3 / 2$)

1. 2 cm towards the object
2. 2 cm away from the object
3. 3 cm away from the object
4. 4 cm away from the object
5. 4 cm towards the object
19) The equivalent ressitance between B and E in the circuit
1. $\frac{3 \mathrm{R}}{2}$
2. $\frac{\mathrm{R}}{2}$
3. R
4. $\frac{\mathrm{R}}{4}$
5. $\frac{5 \mathrm{R}}{6}$

20) Among the charactors given below which one is not a characteristic feature of a stationary wave
1. The vibration frequency of all particles are equal
2. The frequency amplitude differs from particle to particle
3. The distance between the adjacent nodes is the wave length
4. The particles between two adjacent nodes have the same vibration phace
5. Energy won't be trasmitted to any side of the string
21) Consider the statements about a system of coplaner forces
a. When the lines in which the forces act, are extended they meet of a point
b. This system of forces can be represented by the magnitude and directions of a regular pentagon
c. the sum of momentum of for of each force on any axis is equal to zero
1. only a and b are correct
2. only b and c are correct
3. only a and c are correct
4. only b is correct
5 . only c is correct
22) A magnetic field with an even flux density is applied from the south to North, A particle with mass M and charge q is projected from the west to south. The particle travels in a circular parthway of radious ' R ' The magnitude and direction of the electric field to make the particle to move in a straight line is
1. $\frac{B^{2} q R}{m}$ Vertically upwards from the bottom
2. $\frac{B q R}{m}$ from East to west
3. $\frac{B^{2} q R}{m}$ Vertically dowards From the top
4. $\frac{B^{2} q}{m R}$ From South to North
5. $\frac{B^{2} q^{2} R}{m}$ From North to South
23) Figure (a) shows a progressive wave and figure (b) shows a \qquad of static wave fromed by the over lapping of two was shown in Figure (a)
Look at the statements given below
(A) The velocity, wavelengh and frequency of both waves are equal
(B) The differences of phase of ponits A and B is equal to the difference of phases between the point A and B
(C) The amplitude of A is equal to that of B Among the Statements given below
1. Only ' A ' is correct

fig (a)

fig (b)
2. Only ' B ' is correct
3. Only 'A' and 'B' are correct
4. Only 'B' and ' C ' are correct
5. 'A', 'B' and 'C' are correct
24) A convex lense of focal length 30 cm and a Concave lense of focal length 20 cm are placed at 26 cm distance as shown in the figure. Height of the image produced by the convex lense for an object at infinite distance was 1.6 cm what is the height of the final image
1. 0.4 cm
2. 0.8 cm
3. 1.2 cm
4. 2.0 cm
5. 2.4 cm

25) The resistance of a semi conducter decreases suddenly when the temperature increases The reason for this?
1. The Vibration frequency of atoms of the semi conductor
2. The amplitude of vibration of atoms of the semiconductor increases
3. Concentration of free Vectors of charges increases
4. Speed of motion of vectors of charges increases
5. The Speed of random motion of vectors of charges increases
26) Consider the two movable capasitors connected at the centre in series, made of a strong metal of Length b The area of each plate is A The voltage between the outer plates V_{0} maintained to be constant what is the change in energy stored in the capacitor when the central part is removed.
1. $\frac{\in_{o} A V_{o}}{2(a-b)}\left(\frac{a}{b}\right)$
2. $\frac{\in o A V o}{2(a-b)}\left(\frac{b}{a}\right)^{2}$
3. $\frac{\in_{o} A V_{o}^{2}}{2(a-b)^{2}}\left(\frac{b}{a}\right)^{2}$
4. $\frac{\in_{o} A V_{o}^{2}}{2(a-b)}\left(\frac{b}{a}\right)$

5. $\frac{\in_{o} A V_{o}}{2(a-b)^{2}}\left(\frac{a}{b}\right)$
27) The value of R of the Rheostat is increased gradually from zero, in the voltmeter circuit shown in the diagram. The graph which Shows the change in the length of equillibrium is

28) The absolute temperature of a Black Body is increased by three factors. The correct statement / statements.
(A) The energy rediated by unit area at unit time is increased by 81 factor.
(B) The wave length of colour of high Concentration is decreased by 3 factor
(c) The intensity of the average radiation in infra red radiation decreased.
1.A only
2. B only
3. A and B only
4. B and C only
5. A, B, C all
29) The best explanation about the electromotive force of a Cell.
1. The energy provided by unit current
2. The rate of charge given by the cell
3. The rate of energy provided by the cell
4. The energy provided unit flow of charges by a cell
5. The energy provided by the cell by unit current
30) If the reading of the ammeter remains uncharged when clossing or opening the switch, what is the reading of the ammeter
1. 150 mA
2. 200 mA
3. 400 mA
4. 500 mA
5. 1000 mA

31) A part of a conductive wire is shown in the diagram. A magnetic flow density of 0.5 T acts inwards prependicular to the plane, The magnitude of the magnetic force action in the wire when 2A current flows through it.
1. $10^{3} \mathrm{~N}$
2. $5 \times 10^{-2} \mathrm{~N}$
3. $1.4 \times 10^{-2} \mathrm{~N}$
4. $1.2 \times 10^{-2} \mathrm{~N}$
5. 0.1 N

32) Consider the following statements regarding n-channel junction field effect transistor.
(A) The gate source voltage $\left(\mathrm{V}_{\mathrm{GS}}\right)$ of the transisters is always made positive
(B) when V_{GS} decreases the follwing base emitter current will decrease
(C) The breadth of the depletion zone dominate the current flow though the transister. Among the state ments
1. (A) only
2. (B) only
3. (A) and (C)
4. (B) and (C)
5. (A), (B), (C) all
33) $\mathrm{p}-\mathrm{n}$ Junction diode is shown in the diagram $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}$ three Gauss's Surfaces and the three cross Electric flux through these surfaces $\phi_{1}, \phi_{2}, \phi_{3}$ which one given below is the true statement.
1. $\phi_{1}>0, \phi_{2}>0, \phi_{3}=0$
2. $\phi_{1}<0, \phi_{2}>0, \phi_{3}=0$
3. $\phi_{1}>\phi_{2}>\phi_{3}$

4. $\phi_{1}=\phi_{2}=\phi_{3}=\mathrm{O}$

35) The energy stored in the condensor shown in the figure
1. $12 \mu \mathrm{~J}$
2. $24 \mu \mathrm{~J}$
3. $36 \mu \mathrm{~J}$
4. $48 \mu \mathrm{~J}$
5. $60 \mu \mathrm{~J}$
36)

The false statement about the Electic Flux through the surfaces $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}$ of the Gauss's in the Circuit

1. $\phi_{1}+\phi_{2}+\phi_{3}=0$
2. $\phi_{1}+\phi_{3}>0$
3. $\phi_{1}+\phi_{2}<O$
4. $\phi_{3}=2 \phi_{1}$
5. $\phi_{2}=-3 \phi_{1}$
37) The centre of gravity P of a rod $P Q$ of length $\phi_{2}=-3 \phi_{3}$ devides the length of the rod in $2: 1$. The rod is hung horizontally by two non-elastic threads at its ends as shown in the diagram. An even magnetic flux B is applied vertically to the rod. The current I Flows from P to Q. The tensions T_{1} and T_{2} in the threads respectively are

	(1)	(2)	(3)	(4)	(5)
T_{1}	$\frac{m g}{3}-B l l$	$\frac{m g}{2}-\frac{B l l}{2}$	$m g-B l l$	$\frac{m g}{3}-\frac{B l l}{2}$	$\frac{2 m g}{3}-\frac{B l l}{2}$
$\mathrm{~T}_{2}$	$\frac{2 m g}{3}-B l l$	$\frac{m g}{2}-\frac{B l l}{2}$	$m g-B l l$	$\frac{2 m g}{3}-\frac{B l l}{2}$	$\frac{m g}{3}-\frac{B l l}{2}$

38) The charges in the capacitors in the circuit X, Y, Z are respectively

	(1)	(2)	(3)	(4)	(5)
X	$12 \mu \mathrm{C}$	$8 \mu \mathrm{C}$	$24 \mu \mathrm{C}$	$36 \mu \mathrm{C}$	0
Y	$24 \mu \mathrm{C}$	$16 \mu \mathrm{C}$	$24 \mu \mathrm{C}$	$24 \mu \mathrm{C}$	0
Z	$26 \mu \mathrm{C}$	$24 \mu \mathrm{C}$	$24 \mu \mathrm{C}$	$12 \mu \mathrm{C}$	0

39) A point luminus object O is placed in liquid of refract index $5 / 3$ is shown in the figure. The radius of the dark region form at the bottom is

1. 4 m

2. 15 m
40) Two spherical water drops with the radious $1: 2$ ratio fall from a distant height. what will be the ratio of their moment un when they strike the ground.
1.1:32
2. 1:16
3. 1:8
4. 1:4
5. 1:2
41) The correct sequence of changes in the factors function when the relative humidily of the at mosphere increase

	Rate of evaporation of water in an open Vessel	density of air	relative humidily
(1)	decreases	decreases	Increases
(2)	decreases	decreases	decreases
(3)	decreases	Increases	Increases
(4)	Increases	Increases	decreases
(5)	Increases	Increases	Increases

42) The figure shows a child swinging in swing which is tied to a roof. A block is placed at $1 / 3 \mathrm{rd}$ of the length of the swing from the point where it is tied to the roof. The time of periodic movement of the swing is T When there is no blocking the time the child get wet when it is rainig if there is no block.
1. $\frac{T}{4}$
2. $\frac{T}{\sqrt{6}}$
3. $\frac{T}{2 \sqrt{3}}$
4. $\sqrt{\frac{2}{3}} T$
5. $\frac{T}{\sqrt{3}}$

43) A force F is excerted in a slant position on a body A which is placed on a rough horizontal plane. The force is increased gradually from zero, the body A starts to move Which graph shows the change in frictional force F_{1} with respect to the force F .

1.
2.

4.

5.

44) A tube which is opened at both ends resonates with a frequency of 440 Hz at $20^{\circ} \mathrm{C}$. what will be the frequency of resonance on a day. when the temperatuer is $20^{\circ} \mathrm{C}$ and the velocity of Sound is 1% less than usual?
1.414 Hz
2.427 Hz
3.436 Hz
4.440 Hz
5.453 Hz

45 The figure shows a glass tube with soap bubbles both ends. which statement / statements is are correct regrading to what happens when the screw is loosened?
(A) The gass in the system moves from the small bubble to the big bubble
(B) The ratio of both bubbles become equal
(C) The surface energies of both bubbles become equal

1. A only
2. B only
3. A and B only
4. A and C only
5. all A, B, C
46) The figure shows an obersver and three rings. The central ring moves towards the observer with velocity u, at the same time a current I flows through it in anti clock wise direction. The ring A and B are stationary look at the following statements about the observations made by the observer.
(A) A current flow in clock wise direction is induced in ring A
(B) A magnetic field is induced from A to B
(C) A current flow in anti clockwise direction is
 induced in ring B
1. A only
2. A and C only
3. B only
4. A and B only
47) ABCDE is a regular pentagon. Mass m is placed at its four verteses. Another mass 3 m is placed at vertex C . The distance between the verteses and its center is r . what is the gravitational force acts on a mass M placed after center O
1. $\frac{G M m}{2 r^{2}}$
2. $\frac{G M m}{r^{2}}$
3. $\frac{2 G M m}{r^{2}}$
4. $\frac{3 G M m}{r^{2}}$
5. $\frac{7 G M m}{r^{2}}$

48) A cylindrical vessel is filled with a liquid ρ to hight h. A piston with mass m and cross sectional area A is placed on it as shown in the diagram The velocity (V) of the liquid flows horizontally through the hole at the bottom is.
1. $\sqrt{2 g h}$
2. $\sqrt{2\left(g h+\frac{m g}{p A}\right)}$
3. $\sqrt{2\left(g h+\frac{m g}{A}\right)}$
4. $\sqrt{2\left(g h+\frac{m g}{A}\right)}$

49) Look at the statements about 'the black hole'
(A) Black hole is a region of high gravitational force, Therefore escape velocity takes the highest value.
(B) Asteroids travelling from other glaxisescanot be observed through teles copes because there may be black goles.
(C) A rotating object with electric charges is the black holes.
1. Only (A) and (B) are true
2. Only (B) and (C) are true
3. Only (A) and (C) are true
4. (A), (B), (C) are true
5. All (A), (B), (C) are true
50) This is a transformer which can give an alternate current voltage the wire in the secondary coil is continuous is devided in to $\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}$ number of coils to get the out put voltage. If the no of coils in the primary coil is 1200 value of $\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}$ are respectively.
1. $\mathrm{N}_{1}=15, \mathrm{~N}_{2}=15, \mathrm{~N}_{3}=30$
2. $\mathrm{N}_{1}=15, \mathrm{~N}_{2}=30, \mathrm{~N}_{3}=30$
3. $\mathrm{N}_{1}=15, \mathrm{~N}_{2}=15, \mathrm{~N}_{3}=60$

4. $\mathrm{N}_{1}=15, \mathrm{~N}_{2}=15, \mathrm{~N}_{3}=60$
5. $\mathrm{N}_{1}=30, \mathrm{~N}_{2}=60, \mathrm{~N}_{3}=90$

Answer all four questions on this paper it self $\left(\mathbf{g}=\mathbf{1 0} \mathrm{N} \mathrm{kg}^{-1}\right)$
1 The figure shows an experimental setup made by a Student in the school laboratory to compare the densities of two liquids. He has also placed a half meter rod.
a) 1. Explain an experiment to findout whether the two liquids are suitable for the experiment Before filling the tube and which liquid should be taken in the tube first.
\qquad
\qquad
\qquad

2. Enplain why is it necessary to carryout the experiment with the two liquids at the begining of the experiment.
\qquad
\qquad
b) 1. Draw the possition of the two liquids as they were taken in the U tube. Mention the heights $h_{1}, h_{2}\left(h_{1}>h_{2}\right)$ in the above figure.
2. Write the readigs to findout the value of h_{1}, h_{2}
(i)
(ii)
(iii)
c) How should the plane of the setup be maintain edinorder to obtain the readings you obtain in question (b) How Can you find out the plane is in a correct position?
d) When a straight line graph was drawn for the readings, The graph was included a intercept Mention the error which caused the intercept.
\qquad
e) The graphs drawn by the student according the readings is given below.

1. Mention the most suitable points selected by you from the more accurate graph using arrow marks.
2. Find the ratio of the densities of the two liquids
\qquad
\qquad
3. If water and mercury are used in the above experiment, Draw the graph using the above Xand Y ax is.

02 Conductivity of heat of a solid can be determined by using sherl's apparatus.
a) Mention the equipments other than sher's apparatus needed for this experiment.
\qquad 4. \qquad
\qquad 5. \qquad
6. \qquad
b) This experimental setup can't be used to determine the heat conductivity of non conductors Explain.
\qquad
\qquad
c) The given figure shows sherls apparatus

1. Name letters A, B, C, D

A \qquad

B \qquad

C \qquad

D \qquad
P, Q, R, S denotes the gates for the entry and exit of water and steam
2. a. Which part involves in the entry of steam
\qquad
b. Which part is responsible for the releasing steam
\qquad
c. Write the reasons for your answers?
\qquad
\qquad
3. a. Which part pumps water in?
\qquad
b. Which part pumps out water?
\qquad
c. Write the reasons for your answer?
\qquad
\qquad
d. Draw the possitions of the Thermometers in the above set up.
e. 1. How can you confirm that the transformation of heat takes place across the rod?
\qquad
\qquad
2. If staple flow of water and steam are necessary to attain stability Exaplain the reason, (explain the precautions made in the experiments)
f) The readings obtain in the experiments are shown below.

Thermometer readings :- $75.0^{\circ} \mathrm{C}, 61.0^{\circ} \mathrm{C}, 37.0^{\circ} \mathrm{C}, 28.0^{\circ} \mathrm{C}$
The distance between the two thermometer :-0.08 m
Mass of the water collocted in 3 minutes :- 0.4 kg
Area of the cross section of the rod :- $1.2 \times 10^{-3} \mathrm{~m}^{2}$
Specific heat Capacity of water :- $4200 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~mol}^{-1}$

Calculate the conductivity of the material used to make the rod
\qquad
\qquad
\qquad

03 A spring was hung vertically from its upper end and a variable mass M was hung at its lower end. The spring was made to oscillate vertically by extending it A student wanted to detemine the force constant (K) of the spring, measure to time for 20 oscillations for different valuse of mass M
a) 1. What are the equipments needed additionally to carry out the experiment?
2. Draw the diagram of the standard experimental setup for the experiment in the space given below.
b. 1. Write an equation for the time of oscillation T for the mass M in terms of K and M.
\qquad
2. Rearrange the equation in $\mathrm{b}(1)$ to determine the value of K by drawing a suitable graph.
\qquad
\qquad
c) Graph plotted y against x is shown below. All facters can provide in SI units.

1. Name the axis of the graph with units

X \qquad

Y \qquad
2. Calculate the value of K from the graph $\left(\pi^{2}=10\right)$
\qquad
3. Write the cordinates of the two points used to determine the value of K.
\qquad
d) The student did the experiment again using another spring with a high spring force constant. Draw an approximate graph on the same axis.
4. (a) A cell with internal resistance r and electromotive force E is connected to a circuit as shown the diagram.

The readings of voltmeter and ammeter were taken while changing the value of the variable resistor

(i) Explain why the readings of the voltmeter decreases with the increase of readings in the ammeter.
\qquad
\qquad
\qquad
(ii) Find the electromotive force and the internal resistance of the cell used the graph
\qquad
(iii) Draw suitable graphs in the same axis in the above graph during the following instances

1. Draw a graph by increasing the internal resistance twice while keeping the electromotive force constant and label it as ' A '
2. Keep the intenal resistance of the cell in its minimum value which is negliglble while keeping the electromotive force constant and Draw a graph and lable it as 'B'
(iv) The variable resister is adjusted to a suitable values inorder to obtain a current of 0.89 A in the circuit shown in figure 4.1
3. What is the value of charge flows through the cell in 15 seconds?
\qquad
\qquad
4. What is the power wasted by the cell?
\qquad
\qquad
b. Two students X and Y have made a voltmeter circuit as shown in the diagram seperatly to conduct the following experiment.

Explian how the length of equillibrium changes during the following instances while maintaining the other factors constant and give the reason.
(i) Student X increases the valus of resistant R .

...
\qquad
\qquad
(ii) Student Y decreases the value of resistant S .

3. If the viscosity coefficients of the liquid is $6 \times 10^{-3} \mathrm{Nsm}^{-2}$ find the difference of pressure across AB
4. In order to maintain the amount of liquid send in 20 s as $1 \mathrm{~cm}^{3}$ what is the speed the pistond to be moved.

Human eye is a complex organ. Eye produces clear images with highest ranges and sensitive to small colour changes. It can be compared to the process takes place in a camera. It has higher sensitivity and has 576 mega pixel clarity. The outer layer is the camea
It's reflex index is similar to water. The region behind the lens is filled with a gel like fluid, If protects the eye and focuses the image. Other important parts are lris and pupil. Pupil is the darkened central part. Iris funtions like a camera hole and controls the diameter of the pupil profacts the pupil ..light ray the eye in high light intensity.

Retina senses the light reaches the eye. Light doesn't reflect at the pupil. That's why it appears black to others. Pupil is the center part parted inside the eye. Blue and brown eyes are the result of iris. However lens is the most important part of the eye. It reflects 30% of the light. The lens filters most of the UV rays Lense. reduces the damages caused by UV rays and produce sharp images. Ciliary muscles changes the curvature of lens and helps in producing clear image for objects at different lengiths.

Retina is the screen in which images produced by the lens fall. It consist of 120 million rodells. and million cone cell, Rodcells sense the intensity of light. when the light intensity fulls it becomes impossible to feel the sense of light. Conceal identify different types of conceal which can trap light rays wilt short medium and longer wave long the
a. Some people have different eys colours. which part is responsible for this?
b. Write the to functions of cone cells.
c. What is the reason for pupil appears black?
d. "Man can't observe things inside water with out glasses clearly" Explain the physiological principal for this phenomenon.
e. When a child of 15 years, looking of a distant object the power of her/ his lense system is $50 \mathrm{D} . \mathrm{He}$ was able to increase the power of lens by 14% find the least distance of his near point.
f. The diameter of eye of a normal person is 2.2 cm . The high of letters in an advertisement board is 8.5 mm . Find the hight of the image when he reads the letters from a distance of 5 m .
(His eyes senses the clear image)
g. A short site person can't see objects beyond 2 m . His near point 18 cm .

1. To avoid this give the type of lens and its focal length.
2. What will be the near point when he wears the spectacles?
h. The diameter of on eye of a person is 2.2 cm (diameter of a healthy eye is 2.00 cm)

What type of defect he has? what type of lense he should wear and what is ti's focal length?
a) A system of tubes is connected to a tank of constant pressure the length of the wide tube is 0.8 m . Its radious is 1 cm . The length of the narrow tube is 0.2 m . Its radious is 0.5 cm . A tap T was connected at the end of the narrow tube, The water level is as 1 m height from the axis of the tube system. Atmosphere pressure is equal to 10 m height of water colum. The viscosity coeffecient of water is $10^{-4} \mathrm{Nsm}^{-4}$ and its density is $1000 \mathrm{kgm}^{-3}, \pi 3=3$

(i) Calculate the pressure at point X when the Tap is closed.
(ii) Calculate the pressure at point X when the tap is opened.
(iii) The cross sectional area of the tank is $200 \mathrm{~cm}^{2}$ and height is 150 cm . Calculate the time needed to fill the tank completely with water.
b) A metal sphere with radious 0.5 cm and density $2000 \mathrm{kgm}^{-3}$ was slowly lowered into liquid from its surface.
(i) Calculate the initial acceleration of the sphere.
(ii) Calculate the terminal velocity of the sphere.
(iii) Assume that the sphere altain the final velocity at the moment it was immersed in the liquid. Calculate the time taken by the sphere to reaches the bottom.
c) The above mention sphere is connected to another hollow sphere of inner radious 0.4 cm and outer radious 0.5 cm and made of the same material by a thin filament and slowly immersed into the liquid.
(i) Find the terminal velocity attained by the system.
(ii) Find the tension force in the filaments.

1. An experiment show 96500 C electric change is needed for depositing 1 mole of. an
 element with valency one. Calculate the amount of charges carried by the ion on of the element. The avagadaros constant is $6.02 \times 10^{23} \mathrm{~mol}^{-1}$.
2. Millikan has introduced an accurate method to measure the charge of an election e. The simple experimental set up used in the laboratory is shown below.
a) A_{1}

f closing the switch K The
distance between the plate is d , An oil droplet was sent through the hole in the upper plate P into the space between the two plates P and Q and made to move. The experiment was carried out in a dark room while the oil droplet is illuminated and its motion is observed through a microscope m , with a vertical scale The droplet with mass m was observed to be at rest. Write an equation for the charge q of the oil droplet. The upthrust of the atmosphere is negligible. The voltage differs between the plates is V_{o}
b) In order to improve accurancy of the experiment switch K was opened, and it was observed that the droplet falls with a constant velocity Vo The radios of the droplet is a. The co-effecient of viscosity is η density of oil is ρ_{a}
3. Mark the forces act on the droplet
4. Write a simple formula relating these factors
c) The switch is was closed again, and a potential difference V is applied to make the droplet falls with a terminal velocity V
(I) Mark the forces act on the droplet
(ii) Write an equation for q in relation to a, η, V, V_{o}, v and d
d) How does't the droplets get charged? What measures can be taken to confirm that all the droplets get charged?
e) Write an equation for the radius of the droplet?
f) The experiment was done with different droplets with charges $q_{1}, q_{2}, q_{3}, \ldots$ which were calculated, what is the conclusion made from the experiment about the charges of the different droplets

09 Answer part Aor B
a. Two experiments were done by students by providing two different types of power supply for an electric bulb which has a resistance of 6Ω
The circuit shows a power supply of E.M.V 12 V and 2Ω internal resistance is used to supply electricity to the bulb. Consider the ammeter used hear is an ideal one.

i. What is the reading of the ammeter
ii. The voltage supplied by the power supply
iii. The output power of the bulb
b. The bulb is connected to another power supply with the same E.M.V but a different internal resistance. The output power of the bulb is greater than that in question (a) (iii). If the resistance of the bulb remains the same, say whether the internal resistance of the new power supply is greater or equal or less than the previous one? Write the reason for your answer.
c. The two heating coils of an electric iron can be switched on separately using a switch, Three levels of temperature low, medium and high can be obtained using the switch. There is an indicator bulb which shows what type of temperature is attained. The circuit is
 shown in figure (1)
(i) When switch S_{1} is closed the bulb glows with a power of 60 W . Find the current which flows though the bulb
(ii) Switch S_{1} is open and S_{2} and S_{3} are closed.

1) Find the equivalent resistance of the two coils?
2) Find the total power production of the heating coils (element)
3) Which switch or switches are to be closed to get minimum temperatures
d. A circuit made by s student is shown in figure (2)

Fig 1
(i) Find the current through the circuit
(ii) Find the voltage difference across the bulb.
(iii) What changes can be made to control the power of the bulb?
e. Changes were made in the circuit as shown in figure (3)
(i) What types of changes are made in the adjustment of the equipment?

Fig 2
Fig 3
(ii) Explain the power of the bulb by comparing it to the one in Fig 2
a. The figure shows the transistor in a common emiter transister It's the base - emitter voltage when $\left(V_{\mathrm{BE}}\right) V_{\mathrm{BE}}<0.6 \mathrm{~V}$ it takes switch off stage and when $\mathrm{V}_{\mathrm{BE}}>1 \mathrm{~V}$ it takes saturated stage
(i) A direct current voltage of 0.1 V is supplied to input Vi. Calculate collector - emitter voltage and collector current (I_{c})
(ii) Calculate $V_{\mathrm{CE}}, \mathrm{I}_{\mathrm{C}}$ and when $\mathrm{V}_{1}=2 \mathrm{~V}$
(iii) Give the junctions when $\mathrm{Vi}=0.1 \mathrm{~V}$ and $\mathrm{Vi}=2 \mathrm{~V}$ at forward biased and backwardly biased stages respectively?
b. (i) Calculate Base - emitter voltage $\left(V_{\mathrm{BE}}\right)$ in the given circuit
(ii) Say whether this circuit can be used as an amplifier? Give
your reasons clearly
(iii) If R_{c} was changed to 400Ω and all other factors were unchanged write the answer for question b (ii)
c. The figure shows an ionizing chamber which is used to find radiation. It contains a metal cylinder surrounding an electrode. Metal cylinder has a voltage of +50 V in relation to the electrode. when radiation enters the chamber the air inside undergoes ionization resulting in a small increase of current through $10 \mathrm{M} \Omega$ resister. This current is directly proportional to the radiation
(i) The current sensed by the sensor is $2 \times 10^{-10} \mathrm{~A}$ What is the voltage across is $10 \mathrm{M} \Omega$ resister?

(ii) If the voltage difference is 200 m V . If a voltage what can show a full voluation, What will be the factor causing voltage amplification.

(iii) A non inverting amplifier is used to a amplify the above voltage. In complete inverting amplifier is shown in the figure. Copy this in your answer sheet, complete it, and say to which terminals the A, B should be connected and how would you connect the terminals of the voltmeter to the terminals of the amplifier
(iv) Calculate the relevant value of R for the voltages gain you obtained?
(v) $5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$, and $100 \mathrm{k} \Omega$ resistor are provided to connect R at Which resistor resistors could be used to measure the voltage with higher sensitivity. If you use it to connect two resistors, give reason for your answer.

10 AnswerpartAor B

A) Food and medicine are kept in refegerators for a long time to prevent spoilage. The structure and mechanisms are illustrated in the figures given below.

The basic functional mechanism is compression, condensation and evaporation. In the part where compression takes place a piston moved by an electric motor compress the gases which is then sent through a condensation tube (The capillarity tube at the end of the condenser compressed the gass immediately) When the gass is compressed its temperature increases when the gas flows through the tube the heat is lost to the environment by conduction. Convention and radiation Conducting wires and plates are used to increase the surface area hence increases the rate of heat loss. When heat is lost the gass condenses into liquid. The specific feature of the gass used in the condenser is that it has the ability to be condensed into liquid at room temperature.
the gass which reaches the terminal of the capillary completely turns into liquid at room temperature. The liquid at high pressure turns into lower pressure (6 atm). It Starts to boil at the lower pressure. As the latent heat needed for this is obtained from its internal energy the temperature of the area starts to decrease. The gasses is sent to the condensation area. Again. This cycle process continues.

Refrigerator removes heat from high temperature area to lower temperature area, So It can be considered as a reverse engine.

The external work done by electric energy supplied to basic power supply W , and the heat obtained by the liquid and compressing part Q_{2} are lost to the environment by the cooler

The process take place in the air conditioner is also similar the above process. The air inside the closed room is brought by an electric fan sent to the cooler. The temperature becomes Ice point water vapour is condensed and removed. So air at room temperature with less humidity is sent to the room by a device.
a. (i) Write to features of the gass found in the cooler?
(ii) Explain the temperature of a gass increases during adiabatic compression with the help of the 1st law of the thermo dynamics.
(iii) If the compressor tube is made of copper its surface should be darkened. Explain?
(iv) The compressor tube is fixed at the outer surface of the cooler. Explain?
(v) Write the reason for keeping the vapourization dence at the upper part of the cooler
(vi) If rate of external work done is W , the power received by the cooling part is Q_{z} what will be the rate of
heat loss to the envoirment
(v) The co efficient of performance of the cooler is given as $E=\frac{Q_{2}}{W}$ The gass used in the cooler is an ideal gass

$$
E=\frac{T_{2}}{T_{1}-T_{2}}
$$

T_{1} is the highest and T_{2} is the lowest temperatures
(i) Heat is transformed from the cold part at $10^{\circ} \mathrm{C}$ to the hot part at $30^{\circ} \mathrm{C}$ at a rate of 263 W consider the gass used in this cooler as an ideal gass find the power of consumption?
(ii) Although the door of the cooler is closed tightly power supply takes place very of len due to the small exchang of heat from the environment. Draw a graph to show how the power consumed by the cooler changed with time?
(iii) If the door of the cooler (or air conditioner) is opened in a room which is highly is insulated to heat, say whether the temperature of the room will decrease or not? Explain
(iv) The temperature of a closed room is $30^{\circ} \mathrm{C}$ and its humidity is 80%. An air conditioner is switched on to decrease the temperature of the room to $20^{\circ} \mathrm{C}$ and the relative humidity was made to suitable value. If the mass of condensed water during this period is 77.5 g find the relative humidity of the room.
Density of saturated water vapour at $30^{\circ} \mathrm{C}=30 \times 10^{-6} \mathrm{~kg} \mathrm{~m}^{-3}$
Density of saturated water vapour at $20^{\circ} \mathrm{C}=17 \times 10^{-6} \mathrm{kgm}^{-3}$
B) The bond between proton and a neutron in an atom is very strong when this bond is broken a very large amount of energy is produced. This phenomenon is large as nuclear reaction.

$$
\frac{238}{92} U+{ }_{0}^{1} n \rightarrow{ }_{56}^{x} \mathrm{Ba}+{ }_{y}^{92} \mathrm{Kr}+3{ }_{0}^{1} n+\text { Power }
$$

A heavy nuclei split into many small nuclei is known as nuclear fission when uranium ${ }_{a 2}^{235} U$ is bombard by a neutron with a high velocity, Nuclear fission takes place and Radioactive elements like Ba, Kr and three neutrons and large amount of energy is released. These neutrons further collide with many uranium nuclei and continues as a chain of reactions The loss of mass is converted into energy according to Einstein equation $\mathrm{E}=\mathrm{mC}^{2}$ Here C is the velocity of light in the air

The atomic mass unit (u) is used to measure small masses $1 \mathrm{u}=1.66 \times 10^{-23} \mathrm{~kg}$

$$
\begin{array}{ll}
\mathrm{u} \text { Nuclear mass of } \mathrm{u} & =235.0439 \mathrm{u} \\
\mathrm{Ba} \text { Nuclear mass of } \mathrm{Ba} & =137.9050 \mathrm{u} \\
\mathrm{Kr} \text { Nuclear mass of } \mathrm{Kr} & =94.9 \mathrm{u} \\
\mathrm{n} \text { mass of nuclears } & =1.008665 \mathrm{u}
\end{array}
$$

The nuclear mass of ${ }_{a 2}^{235} U$ can be give as 235 u
In nuclear power plants nuclear reaction occur under controlled condition and the heat energy released is converted into electric energy.

In nuclear power plant an outer concrete protective wall and an inner thin lead wall are constructed to prevent the leakage of α, β particles and r rays, emitted from unstable Ba, Kr atoms. Radioactivity is defined as the rate of radiations emitted from a radioactive element in one second. It is also known as decay

The activity of a radioactive element is given as in the following formula $R=\lambda N$. Here n is the number of radio active nuclei in the sample and λ is the decay constant.

$$
\lambda=\frac{0.693}{T_{\frac{1}{2}}} \quad T_{\frac{1}{2}} \text { is the half life times of the radio active element. }
$$

The half life time of Krypton (Kr) is 15 minutes. The radiation emitted from radioactive element are damgerous to human body. They cause different types of illness. These are known as health hazards. IJ radiation energy absorbed by kg of a living body is known as 1 grey radiation dose $1 \mathrm{~Gy}=1 \mathrm{Jkg}^{-1}$ If the value of radiation does exceeds 20 Gy . It will lead to sudden death. If it is 3.5 Gy bodies immune system will get affected. Therefore living beings should be protected from radiation.
a. (i) Find the value of x, y in the above mentioned nuclear fission reaction?
(ii) What is the loss of mass in the uranium nuclear fission reaction?
(iii) How much of energy is released during the nuclear fission reaction of uranium?
(iv) 120 GW Electrical power is produced from the atomic power plant. How much of Uranium is need to produce this amount of energy A vagadoces constant $=6.022 \times 10^{23}$
b. (i) Write the characteristic features of $\alpha \quad \beta$ articles and γ rays?
(ii) Give an example for sensors of radiation
(iii) Write the nuclear equation for the emission of β particles?
c. (i) What do you understand by the half life time of a radioactive element.
(ii) What is the number of nucleus found in $60 \mu \mathrm{~g}$ radioactive sample of ${ }^{95} \mathrm{Kr}$
(iii) What is the initial function of Radioactive sample?
(iv) Write the uses of radio active elements in the field of medicine, engineering and agriculture?
(v) Write three precaution made by you to protect yourself from radiation when you are engaged in radio active experiments?

