A/L ICT Marking Scheme
 2018 - November 2019 (Gr.13) Batch

Field Work Center (FWC) Thondaimanaru

ICT

Part I - Answers

(1)	2	(11)	$\mathbf{4}$	(21)	5	(31)	2	(41)	2
(2)	4	(12)	2	(22)	4	(32)	4	(42)	2
(3)	5	(13)	1	(23)	3	(33)	4	(43)	2
(4)	1	(14)	3	(24)	2	(34)	5	(44)	4
(5)	3	(15)	5	(25)	2	(35)	2	(45)	3
(6)	4	(16)	4	(26)	4	(36)	4	(46)	2
(7)	4	(17)	5	(27)	3	(37)	1	(47)	4
(8)	5	(18)	5	(28)	3	(38)	5	(48)	5
(9)	1	(19)	1	(29)	4	(39)	5	(49)	5
(10)	4	(20)	3	(30)	3	(40)	3	(50)	5

Part - II A Answers

Note:- * Any other relevant answers.

Ques. No.	Suggested answers	Marks
(1) (a)	- Magnetic storage technology - Hard disk, Floppy disk, Zip drive, Jaz drive, Magnetic tape - Optical / Laser storage technology - CD, DVD, Blu-ray disc - Solid-state / semi-conductor storage technology - SSD, Flash drive, memory card	$\begin{aligned} & \mathbf{3} \text { marks (3 } \\ & \mathbf{x} \text { 1) } \\ & \text { if no } \\ & \text { example, } \\ & \text { deduct } 0.5 \\ & \text { for each } \\ & \hline \end{aligned}$
(1) (b)	An IRQ (interrupt request) value is an assigned location where the computer can expect a particular device to interrupt it when the device sends the computer signals about its operation. For example, when a printer has finished printing, it sends an interrupt signal to the computer. * [1 marks for example]	$\begin{aligned} & 3 \text { marks [} \\ & 2+1 \text {] } \\ & \text { [any } \\ & \text { suitable } \\ & \text { example] } \end{aligned}$
(1) (c)(i)	$A \bar{B}+\bar{A} B$ or $A \oplus B$	1 marks
(1) (c)(ii)	$A B$	1 marks
(1) (d)	$\begin{array}{ll} 19_{10}=00010011_{2} \longleftarrow & 0.5 \\ -13_{10}=11110011_{2} & 0.5 \\ \hline 0000011_{2} & 0.5 \\ \frac{\text { discard carry bit } 1]}{} \longleftarrow & 0.5 \end{array}$	2 marks

Teachers' note:

NRZ - I \rightarrow Transition at beginning (low-to- high or high-to-low) -1
No transition at beginning - 0
Therefore, consider both encoding schemes (low-to- high or high-to-low) for marking.

Part -II B Answers

(2) (a)		5 marks [3 for OSI, 2 for TCP/IP] [no partial marks given]
(2)(b)(i)	$2^{4}=16$	1 marks
(2)(b)(ii)	$2^{4}-2=14$	1 marks
(2)(b)(iii)	$\begin{aligned} & 200.138 .10 .1-200.138 .10 .14 \\ & 200.138 .10 .16-200.138 .10 .30 \\ & 200.138 .10 .32-200.138 .10 .46 \end{aligned}$	3 marks [1 for each]
(2)(b)(iv)	$\begin{aligned} & 200.138 .10 .15 \\ & 200.138 .10 .31 \\ & 200.138 .10 .47 \end{aligned}$	3 marks [1 for each]
(2) (c)	Two bits are changed. The single bit even parity check will not therefore detect the error, since it can only detect errors that cause an odd number of bits to change.	$\begin{aligned} & 2 \text { marks } \\ & {[1+1]} \end{aligned}$
(3) (a)	- Inaccuracy - Inefficiency	$\begin{aligned} & \mathbf{2} \text { marks } \\ & {[1+1]} \end{aligned}$
(3) (b)	- Financial / economic feasibility - Operational feasibility - Technical feasibility - Legal feasibility - Cultural feasibility	$\begin{aligned} & \mathbf{3} \text { marks } \\ & {[1+1+1]} \end{aligned}$
(3) (c)	- On site observation - Questionnaire - Interviews and discussions - Prototyping - Sampling - Research - Document reviews	$\begin{aligned} & \mathbf{3} \text { marks } \\ & {[1+1+1]} \end{aligned}$

(3) (d)	- Customer shall be able to use automated teller machine service - Employee / Customer shall be able to use online banking system - Employee / Customer shall be able to use money withdrawal facility - Employee / Customer shall be able to use cheque transactions - Employee / Customer shall be able to use money deposit facility - Employee shall be able to use loan facility service - Employee shall be able to use pawning service	$\begin{aligned} & \hline \text { 3 marks } \\ & {[1+1+1]} \end{aligned}$
(3) (e)	Financial expert system Expert System uses the credit rating weights for each factor that affecting the decision of the credit. An expert system tool that aids the decision maker to issue the right decision with familiar and easy-to-use interface. It uses to acquire the knowledge of credit evaluations systems in banking with effectiveness, efficiency and correctness. The knowledge has been verified and evaluated with other senior experts, and then some modifications and enhancements have been done to reach the final system.	4 marks [1 for the system and 3 for reason]
(4) (a)	1GL - Also called machine language. - Programs are written in binary / machine code $(1,0)$. - Execution of programs is very fast. - No program translation needed. - Difficult to write / test programs comparing with 3GL/4GL. - Tied up with the computer architecture. 3GL - Programs are written using mathematical symbols and natural language words. - Execution of programs is slow. - Valid program translator needed. - Easy to write / test programs in comparing with 1GL/2GL.	$\begin{aligned} & 4 \text { marks } \\ & (2 \times 2) \end{aligned}$

Part - I $2 \times 50=100$ marks \quad Part - II A $\quad 10 \times 4=40$ marks \quad Part - II B $15 \times 4=60$ marks

$200 / 2=100$ marks

