3645

ക്രമം 5താമ മറ്റോറ്റ്റാര് ജ്ഞാംപ വ്യീലങ്ങള partment of Examina	මන්තුව ලී ලංකා වනාන නිකාශානයාගාල ශිලාත්තාය	monoil Relation the	an analytic Balance was shared and an an	Read-prot/Ornalities				
and the star	tions, Sri Lanka Departme	Department of I	Lood 3. Boostadanti - Lood Brown of F xaminations, Sri Lanka concerning a	Liert Amaritati antitation Sitiad Meas occubrishing Liest Countration				
අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஒகஸ்ந General Certificate of Education (Adv. Level) Examination, August 2018								
പംപ്പമ്പ്പാ ഗക്ഷ ഉഞ്ഞെந்த ക Combined N	லை I ணிதம் I Iathematics I		E)I 06.08.2018 / 0830 -	1140				
ലുപ്പ എമാപ്പി முன்று மணித Three hours	ந்தியாலம்		අමතර කියවීම කාලය - மேலதிக வாசிப்பு நேரம் - Additional Reading Time -	මිනිත්තු 10 යි 10 நிமிடங்கள் 10 minutes				
Use additional that you give pr	reading time to ge iority in answering	o through the ques	tion paper, select the questions and decide or	the questions				
	Index	Number						
nstructions:								
* Th	s question paper	consists of two p	parts;					
Pa	rt A (Questions 1	- 10) and Part	B (Questions 11 - 17).					
* Pa	rt A:	177.1.						
An	swer all questions	s, Write your ans	wers to each question in the space provid	led. You may				
use	additional sheets	s if more space i	s needed.					
* Pa	rt B:							
An	swe r five question	is only Write you	r answers on the sheets provided					
* At	the end of the l	time allotted, tie	the answer scripts of the two parts toge	ether so that				
Pa			* At the end of the time allotted, tie the answer scripts of the two parts together so that					
A 44	Part A is on top of Part B and hand them over to the supervisor.							
* You are permitted to remove only Part B of the question paper from the Examination Hall								
* You	rt A is on top of i are permitted to	f Part B and hai remove only Pa	nd them over to the supervisor. In \mathbf{B} of the question paper from the Exam	uination Hall				
* You	rt A is on top oj i are permitted to	f Part B and han remove only Pa For Exa	nd them over to the supervisor. rt B of the question paper from the Exam miners' Use only	ination Hall				
* You (10)	rt A is on top of are permitted to Combined Mathe	f Part B and han remove only Pa For Exa matics I	nd them over to the supervisor. rt B of the question paper from the Exam miners' Use only	iination Hall				
* You (10) Part	T A is on top of are permitted to Combined Mathe Question No.	f Part B and han remove only Pa For Exa matics I Marks	nd them over to the supervisor. rt B of the question paper from the Exam miners' Use only	ination Hall				
* You (10) Part	Combined Mathe Question No.	f Part B and han remove only Pa For Exa matics I Marks	nd them over to the supervisor. rt B of the question paper from the Exam miners' Use only Paper 1	ination Hall				
* You (10) Part	Combined Mathe Question No. 1 2	f Part B and han remove only Pa For Exa matics I Marks	nd them over to the supervisor. rt B of the question paper from the Exam miners' Use only Paper I Paper II	ination Hall				
* You (10) Part	Combined Mathe Question No. 1 2 3	f Part B and han remove only Pa For Exa matics I Marks	nd them over to the supervisor. rt B of the question paper from the Exam miners' Use only Paper I Paper II	ination Hall				
* You (10) Part	Combined Mathe Question No. 1 2 3 4	f Part B and han remove only Pa For Exa matics I Marks	nd them over to the supervisor. rt B of the question paper from the Exam miners' Use only Paper I Paper II Total	nination Hall				
* You (10) Part	Combined Mathe Question No. 1 2 3 4	f Part B and han remove only Pa For Exa matics I Marks	nd them over to the supervisor. rt B of the question paper from the Exam miners' Use only Paper I Paper II Total	ination Hall				
* You (10) Part	Combined Mathe Question No. 1 2 3 4 5	f Part B and han remove only Pa For Exa matics I Marks	nd them over to the supervisor. rt B of the question paper from the Exam miners' Use only Paper I Paper II Total Final Marks	nination Hall				
* You (10) Part	Combined Mathe Question No. 1 2 3 4 5 6	f Part B and han remove only Pa For Exa matics I Marks	nd them over to the supervisor. rt B of the question paper from the Exam miners' Use only Paper I Paper II Total Final Marks	nination Hall				
* You (10) Part	T A is on top of of are permitted to Combined Mathe Question No. 1 2 3 4 5 6 7	f Part B and has remove only Pa For Exa matics I Marks	nd them over to the supervisor. rt B of the question paper from the Exam miners' Use only Paper I Paper II Total Final Marks	ination Hall				
* You (10) Part	Combined Mathe Question No. 1 2 3 4 5 6 7 8	f Part B and has remove only Pa For Exa matics I Marks	nd them over to the supervisor. rt B of the question paper from the Exam miners' Use only Paper I Paper II Total Final Marks	nination Hall				
* You (10) Part	Combined Mathe Question No. 1 2 3 4 5 6 7 8 9	f Part B and has remove only Pa For Exa matics I Marks	nd them over to the supervisor. rt B of the question paper from the Exam miners' Use only Paper I Paper II Total Final Marks Final Marks	nination Hall				
* You (10) Part	Combined Mathe Question No. 1 2 3 4 5 6 7 8 9 10	f Part B and has remove only Pa For Exa matics I Marks	nd them over to the supervisor. rt B of the question paper from the Exam miners' Use only Paper I Paper II Total Final Marks Final Marks In Numbers	ination Hall				
* You (10) Part	Combined Mathe Question No. 1 2 3 4 5 6 7 8 9 10	f Part B and has remove only Pa For Exa matics I Marks	nd them over to the supervisor. rt B of the question paper from the Exam miners' Use only Paper I Paper II Paper III Total Final Marks Final Marks In Numbers In Numbers	ination Hall				
* You (10) Part	It A is on top of are permitted to Combined Mathe Question No. 1 2 3 4 5 6 7 8 9 10	f Part B and has remove only Pa For Exa matics I Marks	nd them over to the supervisor. rt B of the question paper from the Exam miners' Use only Paper I Paper II Total Final Marks Final Marks In Numbers In Words	nination Hall				
* You (10) Part	It A is on top of are permitted to Combined Mathe Question No. 1 2 3 4 5 6 7 8 9 10 11 12	f Part B and has remove only Pa For Exa matics I Marks	nd them over to the supervisor. rt B of the question paper from the Exam miners' Use only Paper I Paper II Total Final Marks Final Marks In Numbers In Words	ination Hall				
* You (10) Part	It A is on top of are permitted to Combined Mathe Question No. 1 2 3 4 5 6 7 8 9 10 11 12 13	f Part B and has remove only Pa For Exa matics I Marks	nd them over to the supervisor. rt B of the question paper from the Exam miners' Use only Paper I Paper II Total Final Marks Final Marks In Numbers In Words Code Numb	nination Hall				
* You (10) Part A	It A is on top of are permitted to Combined Mathe Question No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	f Part B and has remove only Pa For Exa matics I Marks	nd them over to the supervisor. rt B of the question paper from the Exam miners' Use only Paper I Paper II Total Final Marks Final Marks In Numbers In Words Code Numb Marking Examiner	ers				
* You (10) Part A	It A is on top of are permitted to Combined Mathe Question No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	f Part B and has remove only Pa For Exa matics I Marks	nd them over to the supervisor. rt B of the question paper from the Exam miners' Use only Paper I Paper II Total Final Marks Final Marks In Numbers In Words Code Numb Marking Examiner	ers				
* You (10) Part A B	It A is on top of are permitted to Combined Mathe Question No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	f Part B and has remove only Pa For Exa matics I Marks	nd them over to the supervisor. rt B of the question paper from the Exam miners' Use only Paper I Paper II Total Final Marks Final Marks In Numbers In Words Code Numb Marking Examiner Checked by: 1	ers				
* You (10) Part A B	It A is on top of are permitted to Combined Mathe Question No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	f Part B and has remove only Pa For Exa matics I Marks	nd them over to the supervisor. rt B of the question paper from the Examining Solution (Second) Paper II Paper II Total Final Marks Final Marks In Numbers In Words Code Numb Marking Examiner Checked by: 1 2	ers				
* You (10) Part A	It A is on top of are permitted to Combined Mathe Question No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	f Part B and has remove only Pa For Exa matics I Marks	nd them over to the supervisor. rt B of the question paper from the Examining S'Use only Paper I Paper II Total Final Marks Final Marks Final Marks Code Numb Marking Examiner Checked by: 1 Supervised by: 1	ers				
* You (10) Part A B	Tt A is on top of are permitted to Combined Mathe Question No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Total	f Part B and has remove only Pa For Exa matics I Marks	nd them over to the supervisor. rt B of the question paper from the Exam miners' Use only Paper I Paper II Total Final Marks Final Marks Final Marks Code Numb Marking Examiner Checked by: 1 Supervised by:	ers				

AL/2018/10/E-I

1	Part A
1.	Using the Principle of Mathematical Induction, prove that $\sum_{n=1}^{n} r^3 = \frac{1}{4}n^2(n+1)^2$ for all $n \in \mathbb{Z}^+$.
1	
2.	Sketch the graphs of $y=3- x $ and $y= x-1 $ in the same diagram
	Hence or otherwise, find all real values of x satisfying the inequality $ x + x - 1 \le 3$.
_	

- 2 -

[see page three

Sketch, in an Argand diagram, the locus of the points that represent complex numbers z satisfying
$\operatorname{Arg}(z-3i) = -\frac{\pi}{3}.$
Hence or otherwise, find the minimum value of $ z-1 $ such that $\operatorname{Arg}(\overline{z}+3i)=\frac{\pi}{3}$.
The coefficients of x and x^4 of the binomial expansion of $\left(x^2 + \frac{3k}{2}\right)^8$ are equal. Find the value of
The coefficients of x and x^4 of the binomial expansion of $\left(x^2 + \frac{3k}{x}\right)^8$ are equal. Find the value of the constant k.
The coefficients of x and x^4 of the binomial expansion of $\left(x^2 + \frac{3k}{x}\right)^8$ are equal. Find the value of the constant k.
The coefficients of x and x^4 of the binomial expansion of $\left(x^2 + \frac{3k}{x}\right)^8$ are equal. Find the value of the constant k.
The coefficients of x and x^4 of the binomial expansion of $\left(x^2 + \frac{3k}{x}\right)^8$ are equal. Find the value of the constant k.
The coefficients of x and x^4 of the binomial expansion of $\left(x^2 + \frac{3k}{x}\right)^8$ are equal. Find the value of the constant k.
The coefficients of x and x^4 of the binomial expansion of $\left(x^2 + \frac{3k}{x}\right)^8$ are equal. Find the value of the constant k.
The coefficients of x and x^4 of the binomial expansion of $\left(x^2 + \frac{3k}{x}\right)^8$ are equal. Find the value of the constant k.
The coefficients of x and x^4 of the binomial expansion of $\left(x^2 + \frac{3k}{x}\right)^8$ are equal. Find the value of the constant k.
The coefficients of x and x^4 of the binomial expansion of $\left(x^2 + \frac{3k}{x}\right)^8$ are equal. Find the value of the constant k.
The coefficients of x and x^4 of the binomial expansion of $\left(x^2 + \frac{3k}{x}\right)^8$ are equal. Find the value of the constant k.
The coefficients of x and x^4 of the binomial expansion of $\left(x^2 + \frac{3k}{x}\right)^8$ are equal. Find the value of the constant k.
The coefficients of x and x^4 of the binomial expansion of $\left(x^2 + \frac{3k}{x}\right)^8$ are equal. Find the value of the constant k.
The coefficients of x and x^4 of the binomial expansion of $\left(x^2 + \frac{3k}{x}\right)^8$ are equal. Find the value of the constant k.
The coefficients of x and x^4 of the binomial expansion of $\left(x^2 + \frac{3k}{x}\right)^8$ are equal. Find the value of the constant k.
The coefficients of x and x^4 of the binomial expansion of $\left(x^2 + \frac{3k}{x}\right)^8$ are equal. Find the value of the constant k.
The coefficients of x and x^4 of the binomial expansion of $\left(x^2 + \frac{3k}{x}\right)^8$ are equal. Find the value of the constant k.
The coefficients of x and x^4 of the binomial expansion of $\left(x^2 + \frac{3k}{x}\right)^8$ are equal. Find the value of the constant k.

-		
5.	Show that $\lim_{x \to 0} \frac{1 - \cos\left(\frac{\pi x}{4}\right)}{x^2(x+1)}$	$=\frac{\pi^2}{32}.$
1		
	+	

	***************************************	***************************************
	·····	******
6.	Show that the area of the region $3(a^2 + 1)$ converses write	ion enclosed by the curves $y = e^{2x}$, $y = e^{3-x}$, $x = 0$, $x = 3$ and $y = 0$
6.	Show that the area of the region $\frac{3}{2}(e^2-1)$ square units.	ion enclosed by the curves $y = e^{2x}$, $y = e^{3-x}$, $x = 0$, $x = 3$ and $y = 0$
б.	Show that the area of the region $\frac{3}{2}(e^2-1)$ square units.	ion enclosed by the curves $y = e^{2x}$, $y = e^{3-x}$, $x = 0$, $x = 3$ and $y = 0$
5.	Show that the area of the region $\frac{3}{2}(e^2-1)$ square units.	ion enclosed by the curves $y = e^{2x}$, $y = e^{3-x}$, $x = 0$, $x = 3$ and $y = 0$
б.	Show that the area of the region $\frac{3}{2}(e^2-1)$ square units.	ion enclosed by the curves $y = e^{2x}$, $y = e^{3-x}$, $x = 0$, $x = 3$ and $y = 0$
5.	Show that the area of the region $\frac{3}{2}(e^2-1)$ square units.	ion enclosed by the curves $y = e^{2x}$, $y = e^{3-x}$, $x = 0$, $x = 3$ and $y = 0$
6.	Show that the area of the region $\frac{3}{2}(e^2-1)$ square units.	ion enclosed by the curves $y = e^{2x}$, $y = e^{3-x}$, $x = 0$, $x = 3$ and $y = 0$
6.	Show that the area of the region $\frac{3}{2}(e^2-1)$ square units.	ion enclosed by the curves $y = e^{2x}$, $y = e^{3-x}$, $x = 0$, $x = 3$ and $y = 0$
6.	Show that the area of the region $\frac{3}{2}(e^2-1)$ square units.	ion enclosed by the curves $y = e^{2x}$, $y = e^{3-x}$, $x = 0$, $x = 3$ and $y = 0$
6.	Show that the area of the region $\frac{3}{2}(e^2-1)$ square units.	ion enclosed by the curves $y = e^{2x}$, $y = e^{3-x}$, $x = 0$, $x = 3$ and $y = 0$
6.	Show that the area of the region $\frac{3}{2}(e^2-1)$ square units.	ion enclosed by the curves $y = e^{2x}$, $y = e^{3-x}$, $x = 0$, $x = 3$ and $y = 0$
6.	Show that the area of the region $\frac{3}{2}(e^2-1)$ square units.	ion enclosed by the curves $y = e^{2x}$, $y = e^{3-x}$, $x = 0$, $x = 3$ and $y = 0$
6.	Show that the area of the region $\frac{3}{2}(e^2-1)$ square units.	ion enclosed by the curves $y = e^{2x}$, $y = e^{3-x}$, $x = 0$, $x = 3$ and $y = 0$
6.	Show that the area of the region $\frac{3}{2}(e^2-1)$ square units.	ion enclosed by the curves $y = e^{2x}$, $y = e^{3-x}$, $x = 0$, $x = 3$ and $y = 0$
6.	Show that the area of the region $\frac{3}{2}(e^2-1)$ square units.	ion enclosed by the curves $y = e^{2x}$, $y = e^{3-x}$, $x = 0$, $x = 3$ and $y = 0$
6.	Show that the area of the region $\frac{3}{2}(e^2-1)$ square units.	ion enclosed by the curves $y = e^{2x}$, $y = e^{3-x}$, $x = 0$, $x = 3$ and $y = 0$
6.	Show that the area of the region $\frac{3}{2}(e^2-1)$ square units.	ion enclosed by the curves $y = e^{2x}$, $y = e^{3-x}$, $x = 0$, $x = 3$ and $y = 0$

Isec page five

7.	A curve C is given by the parametric equations $x = \ln\left(\tan\frac{t}{2}\right)$ and $y = \sin t$ for $\frac{\pi}{2} < t < \pi$.
	Show that $\frac{dy}{dt} = \cos t \sin t$.
	dx Deduce that the gradient of the tangent line drawn to the curve C at the point corresponding t
	$t = \frac{2\pi}{3}$ is $-\frac{\sqrt{3}}{4}$.
	CHRISTON AND ALL CONTRACTOR DEPENDENT OF THE ALL CONTRACTOR AND
2	Let <i>l</i> be the straight line $x + y = 5 = 0$. Find the equation of the straight line <i>l</i> passing through
5.	Let l_1 be the straight line $x + y - 5 = 0$. Find the equation of the straight line l_2 passing through the point $P \equiv (3, 4)$ and perpendicular to l_1 . Let Q be the point of intersection of l_1 and l_2 , and let R be the point on l_2 such that PQ: QR = 1:2. Find the coordinates of R.
	Let l_1 be the straight line $x + y - 5 = 0$. Find the equation of the straight line l_2 passing through the point $P \equiv (3, 4)$ and perpendicular to l_1 . Let Q be the point of intersection of l_1 and l_2 , and let R be the point on l_2 such that PQ: QR = 1:2. Find the coordinates of R .
١.	Let l_1 be the straight line $x + y - 5 = 0$. Find the equation of the straight line l_2 passing through the point $P \equiv (3, 4)$ and perpendicular to l_1 . Let Q be the point of intersection of l_1 and l_2 , and let R be the point on l_2 such that PQ: QR = 1:2. Find the coordinates of R.
	Let l_1 be the straight line $x + y - 5 = 0$. Find the equation of the straight line l_2 passing through the point $P \equiv (3, 4)$ and perpendicular to l_1 . Let Q be the point of intersection of l_1 and l_2 , and let R be the point on l_2 such that PQ: QR = 1:2. Find the coordinates of R.
	Let l_1 be the straight line $x + y - 5 = 0$. Find the equation of the straight line l_2 passing through the point $P \equiv (3, 4)$ and perpendicular to l_1 . Let Q be the point of intersection of l_1 and l_2 , and let R be the point on l_2 such that PQ: QR = 1:2. Find the coordinates of R .
	Let l_1 be the straight line $x + y - 5 = 0$. Find the equation of the straight line l_2 passing through the point $P \equiv (3, 4)$ and perpendicular to l_1 . Let Q be the point of intersection of l_1 and l_2 , and let R be the point on l_2 such that PQ: QR = 1:2. Find the coordinates of R.
5.	Let l_1 be the straight line $x + y - 5 = 0$. Find the equation of the straight line l_2 passing through the point $P \equiv (3, 4)$ and perpendicular to l_1 . Let Q be the point of intersection of l_1 and l_2 , and let R be the point on l_2 such that PQ: QR = 1:2. Find the coordinates of R .
	Let l_1 be the straight line $x + y - 5 = 0$. Find the equation of the straight line l_2 passing through the point $P \equiv (3, 4)$ and perpendicular to l_1 . Let Q be the point of intersection of l_1 and l_2 , and let R be the point on l_2 such that PQ: QR = 1:2. Find the coordinates of R .
	Let l_1 be the straight line $x + y - 5 = 0$. Find the equation of the straight line l_2 passing through the point $P \equiv (3, 4)$ and perpendicular to l_1 . Let Q be the point of intersection of l_1 and l_2 , and let R be the point on l_2 such that PQ: QR = 1:2. Find the coordinates of R .
	Let l_1 be the straight line $x + y - 5 = 0$. Find the equation of the straight line l_2 passing through the point $P \equiv (3, 4)$ and perpendicular to l_1 . Let Q be the point of intersection of l_1 and l_2 , and let R be the point on l_2 such that PQ: QR = 1:2. Find the coordinates of R .
	Let l_1 be the straight line $x + y - 5 = 0$. Find the equation of the straight line l_2 passing through the point $P \equiv (3, 4)$ and perpendicular to l_1 . Let Q be the point of intersection of l_1 and l_2 , and let R be the point on l_2 such that PQ: QR = 1:2. Find the coordinates of R .
	Let l_1 be the straight line $x + y - 5 = 0$. Find the equation of the straight line l_2 passing through the point $P \equiv (3, 4)$ and perpendicular to l_1 . Let Q be the point of intersection of l_1 and l_2 , and let R be the point on l_2 such that PQ: QR = 1:2. Find the coordinates of R .
	Let l_1 be the straight line $x + y - 5 = 0$. Find the equation of the straight line l_2 passing through the point $P \equiv (3, 4)$ and perpendicular to l_1 . Let Q be the point of intersection of l_1 and l_2 , and let R be the point on l_2 such that PQ: QR = 1:2. Find the coordinates of R .
3.	Let l_1 be the straight line $x + y - 5 = 0$. Find the equation of the straight line l_2 passing through the point $P \equiv (3, 4)$ and perpendicular to l_1 . Let Q be the point of intersection of l_1 and l_2 , and let R be the point on l_2 such that PQ: QR = 1:2. Find the coordinates of R .
3.	Let l_1 be the straight line $x + y - 5 = 0$. Find the equation of the straight line l_2 passing through the point $P \equiv (3, 4)$ and perpendicular to l_1 . Let Q be the point of intersection of l_1 and l_2 , and let R be the point on l_2 such that PQ: QR = 1:2. Find the coordinates of R .

	Let $P \equiv (1, 2)$ and $Q \equiv (7, 10)$. Write down the values of the constants a and b such that the equation of the circle with points P and Q as the ends of a diameter is $S \equiv (x-1)(x-a) + (y-2)(y-b) = 0$
	Let $S' \equiv S + \lambda (4x - 3y + 2) = 0$, where $\lambda \in \mathbb{R}$. Show that the points P and Q lie on the circle $S' = 0$ and find the value of λ such that this circle passes through the point $R \equiv (1, 4)$.

10.	
	Show that $\sec^3 x + 2 \sec^2 x \tan x + \sec x \tan^2 x = \frac{\cos x}{(1 - \sin x)^2}$ for $x \neq (2n+1)\frac{\pi}{2}$, where $n \in \mathbb{Z}$.
	Show that $\sec^3 x + 2 \sec^2 x \tan x + \sec x \tan^2 x = \frac{\cos x}{(1 - \sin x)^2}$ for $x \neq (2n+1)\frac{\pi}{2}$, where $n \in \mathbb{Z}$.
	Show that $\sec^3 x + 2 \sec^2 x \tan x + \sec x \tan^2 x = \frac{\cos x}{(1 - \sin x)^2}$ for $x \neq (2n+1)\frac{\pi}{2}$, where $n \in \mathbb{Z}$.
	Show that $\sec^3 x + 2 \sec^2 x \tan x + \sec x \tan^2 x = \frac{\cos x}{(1 - \sin x)^2}$ for $x \neq (2n+1)\frac{\pi}{2}$, where $n \in \mathbb{Z}$.
	Show that $\sec^3 x + 2 \sec^2 x \tan x + \sec x \tan^2 x = \frac{\cos x}{(1 - \sin x)^2}$ for $x \neq (2n+1)\frac{\pi}{2}$, where $n \in \mathbb{Z}$.
	Show that $\sec^3 x + 2 \sec^2 x \tan x + \sec x \tan^2 x = \frac{\cos x}{(1 - \sin x)^2}$ for $x \neq (2n+1)\frac{\pi}{2}$, where $n \in \mathbb{Z}$.
	Show that $\sec^3 x + 2 \sec^2 x \tan x + \sec x \tan^2 x = \frac{\cos x}{(1 - \sin x)^2}$ for $x \neq (2n+1)\frac{\pi}{2}$, where $n \in \mathbb{Z}$.
	Show that $\sec^3 x + 2 \sec^2 x \tan x + \sec x \tan^2 x = \frac{\cos x}{(1 - \sin x)^2}$ for $x \neq (2n+1)\frac{\pi}{2}$, where $n \in \mathbb{Z}$.
	Show that $\sec^3 x + 2 \sec^2 x \tan x + \sec x \tan^2 x = \frac{\cos x}{(1 - \sin x)^2}$ for $x \neq (2n+1)\frac{\pi}{2}$, where $n \in \mathbb{Z}$.
	Show that $\sec^3 x + 2 \sec^2 x \tan x + \sec x \tan^2 x = \frac{\cos x}{(1 - \sin x)^2}$ for $x \neq (2n+1)\frac{\pi}{2}$, where $n \in \mathbb{Z}$.
	Show that $\sec^3 x + 2 \sec^2 x \tan x + \sec x \tan^2 x = \frac{\cos x}{(1 - \sin x)^2}$ for $x \neq (2n+1)\frac{\pi}{2}$, where $n \in \mathbb{Z}$.
	Show that $\sec^3 x + 2 \sec^2 x \tan x + \sec x \tan^2 x = \frac{\cos x}{(1 - \sin x)^2}$ for $x \neq (2n+1)\frac{\pi}{2}$, where $n \in \mathbb{Z}$.
	Show that $\sec^3 x + 2 \sec^2 x \tan x + \sec x \tan^2 x = \frac{\cos x}{(1 - \sin x)^2}$ for $x \neq (2n+1)\frac{\pi}{2}$, where $n \in \mathbb{Z}$.
	Show that $\sec^3 x + 2 \sec^2 x \tan x + \sec x \tan^2 x = \frac{\cos x}{(1 - \sin x)^2}$ for $x \neq (2n+1)\frac{\pi}{2}$, where $n \in \mathbb{Z}$.
	Show that $\sec^3 x + 2 \sec^2 x \tan x + \sec x \tan^2 x = \frac{\cos x}{(1 - \sin x)^2}$ for $x \neq (2n+1)\frac{\pi}{2}$, where $n \in \mathbb{Z}$.
	Show that $\sec^3 x + 2 \sec^2 x \tan x + \sec x \tan^2 x = \frac{\cos x}{(1 - \sin x)^2}$ for $x \neq (2n+1)\frac{\pi}{2}$, where $n \in \mathbb{Z}$.

see page eight

13.(a) Let
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 4 & -1 \end{pmatrix}$$
 and $\mathbf{B} = \begin{bmatrix} 3 & 2a \\ -1 & 0 \\ 1 & 3a \end{bmatrix}$, where $a \in \mathbb{R}$.

Find the matrix **P** defined by $\mathbf{P} = \mathbf{AB}$ and show that \mathbf{P}^{-1} does not exist for any value of a.

Show that if
$$\mathbf{P}\begin{pmatrix}1\\2\end{pmatrix} = 5\begin{pmatrix}2\\1\end{pmatrix}$$
, then $a = 2$.

With this value for a, let Q = P + I, where I is the identity matrix of order 2.

Write down \mathbf{Q}^{-1} and find the matrix **R** such that $\mathbf{A}\mathbf{A}^{\mathrm{T}} - \frac{1}{2}\mathbf{R} = \left(\frac{1}{5}\mathbf{Q}\right)^{-1}$.

(b) Let z = x + iy, where $x, y \in \mathbb{R}$. Define the modulus |z| and the conjugate \overline{z} of z. Show that (i) $z\overline{z} = |z|^2$,

(ii) $z + \overline{z} = 2 \operatorname{Re} z$ and $z - \overline{z} = 2i \operatorname{Im} z$.

Let $z \neq 1$ and $w = \frac{1+z}{1-z}$. Show that $\operatorname{Re} w = \frac{1-|z|^2}{|1-z|^2}$ and $\operatorname{Im} w = \frac{2\operatorname{Im} z}{|1-z|^2}$. Show further that if $z = \cos \alpha + i \sin \alpha$ ($0 < \alpha < 2\pi$), then $w = i \cot \frac{\alpha}{2}$.

(c) In an Argand diagram, the points A and B represent the complex numbers -3i and 4 respectively. The points C and D lie in the first quadrant such that ABCD is a rhombus and $B\hat{A}D = \theta$, where $\theta = \sin^{-1}\left(\frac{7}{25}\right)$. Find the complex numbers represented by the points C and D.

14.(a) Let
$$f(x) = \frac{16(x-1)}{(x+1)^2(3x-1)}$$
 for $x \neq -1, \frac{1}{3}$.

Show that f'(x), the derivative of f(x), is given by $f'(x) = \frac{-32x(3x-5)}{(x+1)^3(3x-1)^2}$ for $x \neq -1, \frac{1}{3}$. Sketch the graph of y=f(x) indicating the asymptotes and the turning points.

Using the graph, find the values of $k \in \mathbb{R}$ such that the equation $k(x+1)^2(3x-1) = 16(x-1)$ has exactly one root.

(b) A bottle with a volume of $391 \pi \text{ cm}^3$ is to be made by removing a disc of radius r cm from the top face of a closed hollow right circular cylinder of radius 3r cm and height 5h cm, and fixing an open hollow right circular cylinder of radius r cm and height h cm, as shown in the figure. It is given that the total surface area $S \text{ cm}^2$ of the bottle is $S = \pi r (32h + 17r)$. Find the value of r such that S is minimum.

15.(a) (i) Comparing the coefficients of x^2 , x^1 and x^0 , find the values of the constants A, B and C such that $Ax^2(x-1) + Bx(x-1) + C(x-1) - Ax^3 = 1$ for all $x \in \mathbb{R}$.

Hence, write down $\frac{1}{x^3(x-1)}$ in partial fractions and find $\int \frac{1}{x^3(x-1)} dx$.

(ii) Using integration by parts, find $\int x^2 \cos 2x \, dx$.

(b) Using the substitution $\theta = \tan^{-1}(\cos x)$, show that $\int_{0}^{1} \frac{\sin x}{\sqrt{1 + \cos^2 x}} dx = 2\ln(1 + \sqrt{2})$.

Using the formula $\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx$, where *a* is a constant, find $\int_{0}^{a} \frac{x \sin x}{\sqrt{1 + \cos^2 x}} dx$.

16. Let A ≡ (-2, -3) and B ≡ (4, 5). Find the equations of the lines l₁ and l₂ through the point A such that the acute angle made by each of the lines l₁ and l₂ with the line AB is π/4. The points P and Q are taken on l₁ and l₂ respectively such that APBQ is a square. Find the equation of PQ, and the coordinates of P and Q. Also, find the equation of the circle S through the points A, P, B and Q. Let λ > 1. Show that the point R ≡ (4λ, 5λ) lies outside the circle S. Find the equation of the chord of contact of the tangents drawn from the point R to the circle S. As λ (> 1) varies, show that these chords of contact pass through a fixed point.

17. (a) Solve $\cos 2\theta + \cos 3\theta = 0$ for $0 \le \theta \le \pi$.

Write down $\cos 2\theta$ and $\cos 3\theta$ in terms of $\cos \theta$, and show that

 $\cos 2\theta + \cos 3\theta = 4t^3 + 2t^2 - 3t - 1$, where $t = \cos \theta$.

Hence, write down the three roots of the equation $4t^3 + 2t^2 - 3t - 1 = 0$ and show that the roots of the equation $4t^2 - 2t - 1 = 0$ are $\cos \frac{\pi}{5}$ and $\cos \frac{3\pi}{5}$.

Deduce that $\cos \frac{3\pi}{5} = \frac{1-\sqrt{5}}{4}$.

(b) Let ABC be a triangle and let D be the point on BC such that BD:DC = m:n, where m, n > 0. It is given that $B\hat{A}D = \alpha$ and $D\hat{A}C = \beta$. Using the Sine Rule for the triangles BAD and DAC, show that $\frac{mb}{nc} = \frac{\sin \alpha}{\sin \beta}$, where b = AC and c = AB.

Hence, show that $\frac{mb-nc}{mb+nc} = \tan\left(\frac{\alpha-\beta}{2}\right) \cot\left(\frac{\alpha+\beta}{2}\right)$.

(c) Show that $2\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{4}{3}\right) = \frac{\pi}{2}$.

* * *

情 (Both) 世	teres repartment	Bergel & aven Ber	n acculaces (2 20000	තිරාන දෙපාටන	මේණ්තුළුව වනය දෙ	nionsāniņā ir	
Department (G. more (Unit and an in of Estamination from providential 	Geschildung Bars sens, Stilluoka Depa Seinel Al auto Para	etment of the Community	Ullumets dis	need to see the	anka Department	of Examinations, S
Bornibie	i tationedi i	Germaniti Barr	pepenment	of Examination	er si eanka	unp Serviced	and have schole
	9	യാരാ രഷ ഒക്കിറ വണം	പ്പ് തൽൽത്ത് ഇള പ്പ് പ്രസംസ്പ്പം) (උසස් පෙළ ශ්ෂී (ම පාර්	දා විභාගය, 20	2018 created	9
	G	ieneml Certifi	cate of Educatio	on (Adv. Level) Examination,	August 20	18
සංයුක මූකෙන Comi	්ත ගණිස මේුණු සං bined M	ംය ഞിதம் athematics		EII	08,08,	2018 / 0830	- 1140
Ola dang		5		C	අඹතර කියුවීඹ	234/2/5	කියින්න 10
மூன்று மணித்தியாலம்		தியாலம்			மேலதிக வாசிட்	பு நேரம்	- 10 நிமிடங்
Thre	e hours			6	Additional Rea	iding Time	- 10 minute
Use at that yo	dditional r	reading time to brity in answeri	o go through the quing.	uestion paper, se	elect the question	ns and decide	on the questi
Instr	netioner	L.	ndex Number	1 1			
111311	*	This question	paper consists of	of two parts;			
		Part A (Ques	stions $1-10$) and	Part B (Ques	tions 11 – 17)		
	381	Part A:					
		Answer all a	actions White yo	ve demodes to	and augustion is		
		maner an ya	iestions write you	ur answers to e	uch question in	i me space j	proviaea. Iou
		use additional	i sheets if more :	space is needed	l.,		
		Part B:					
		Answer five a	mestions only Wh	rite where desug	re on the chee	to provided	
	ale.	At the and a	faconoris oray. M	d de your unswe	is on the sheet	s proviaea	
	242	At the end of	the time allotte	a, lie the answ	ver scripts of th	he two parts	s together so
		Part A is on	top of Part B c	and hand them	over to the su	pervisor.	
	*	You are nermi	itted to remove or	nly Part B of t	he question par	er from the	Framination
_		ton are permi	thea to remove or	ing rate b of a	he question pap	er from the	Examination
	*	In this question	on paper, g denot	tes the accelera	tion due to gra	vity.	
-	_						
			For Ex	aminers' Use of	ıly		
	(10) (Combined Mat	thematics II				
	Part	Question No	o. Marks	6	_		-
		1		Рарс	er I		
		2		Раре	er II		
	1 1	3				_	
	_	4		Tota	1		
		5		Fina	l Marks		
	A	5		Fina	l Marks		
	A	5 6 7		Fina	l Marks		
	A	5 6 7 8		Fina	l Marks		
	A	5 6 7 8 9		Fina	l Marks Fii	nal Marks	
	A	5 6 7 8 9 10		Fina	l Marks Fin	nal Marks	
	A	5 6 7 8 9 10		Fina In Nu In We	l Marks Fin umbers	nal Marks	
	A	5 6 7 8 9 10 11 12		Fina In Nu In We	l Marks Fin Imbers Drds	nal Marks	
	A	5 6 7 8 9 10 11 12 13		Fina In Nu In Wo	l Marks Fin mbers ords	nal Marks	mbers
	A	5 6 7 8 9 10 11 11 12 13 14		Fina In Nu In Wo Mark	l Marks Fin Imbers ords	nal Marks Code Nu	mbers
	B	5 6 7 8 9 10 11 12 13 14		Fina In Nu In Wo Mark	I Marks Fin mbers ords ing Examiner	nal Marks Code Nu	mbers
	B	5 6 7 8 9 10 11 12 13 14 15		Fina In Nu In Wo Mark Chec	l Marks Fin Imbers ords ing Examiner ked by:	nal Marks Code Nu	mbers
	B	5 6 7 8 9 10 11 12 13 14 15 16		Fina In Nu In Wo Mark Chec	l Marks Fin mbers ords ing Examiner ked by: 2	nal Marks Code Nu	mbers
	B	5 6 7 8 9 10 11 12 13 14 15 16 17		Fina In Nu In Wo Mark Chec Super	l Marks Fin mbers ords ing Examiner ked by: l 2 rvised by:	nal Marks Code Nu	mbers
	B	5 6 7 8 9 10 11 12 13 14 15 16 17 Total		Fina In Nu In We Mark Chec Super	l Marks Fin mbers ords ling Examiner ked by: l 2 rvised by:	nal Marks Code Nu	mbers

[see page two

	L/2018/10/E-II	- 2 -	
		Part A	
ι.	Two particles A and B of masses along the same straight line toward	2m and m respectively, moving or ds each other with the same speed	in a smooth horizontal table u , collide directly. Just after
	collision, the particle A comes to magnitude of the impulse exerted	rest. Show that the coefficient of n on B due to collision is $2mu$.	restitution is $\frac{1}{2}$, and that the

	(
		······································	
	***********************************	i a se the besidential around of a	$r_{\rm opelo} = \alpha \left(0 - \alpha - \frac{\pi}{2}\right) to the$
2.	A particle is projected from a po- horizontal, with initial speed $u =$	bint on the horizontal ground, at a $\sqrt{2gR}$, where R is the horizontal between the two possible initial d	In angle $\alpha \left(0 < \alpha < \frac{\pi}{2} \right)$ to the large of the projectile of interctions of projection is $\frac{\pi}{2}$
2.	A particle is projected from a po- horizontal, with initial speed $u =$ the ground. Show that the angle	bint on the horizontal ground, at a $\sqrt{2gR}$, where R is the horizontal between the two possible initial d	In angle $\alpha \left(0 < \alpha < \frac{\pi}{2} \right)$ to the large of the projectile of irections of projection is $\frac{\pi}{3}$
2.	A particle is projected from a po- horizontal, with initial speed $u =$ the ground. Show that the angle	bint on the horizontal ground, at a $\sqrt{2gR}$, where R is the horizontal between the two possible initial differences of the two possibles of two possibles	In angle $\alpha \left(0 < \alpha < \frac{\pi}{2} \right)$ to the large of the projectile of irections of projection is $\frac{\pi}{3}$
2.	A particle is projected from a po- horizontal, with initial speed $u =$ the ground. Show that the angle	bint on the horizontal ground, at a $\sqrt{2gR}$, where R is the horizontal between the two possible initial d	In angle $\alpha \left(0 < \alpha < \frac{\pi}{2} \right)$ to the large of the projectile of the projection is $\frac{\pi}{3}$
2.	A particle is projected from a po- horizontal, with initial speed $u =$ the ground. Show that the angle	bint on the horizontal ground, at a $\sqrt{2gR}$, where R is the horizontal between the two possible initial di	In angle $\alpha \left(0 < \alpha < \frac{\pi}{2}\right)$ to the large of the projectile of the projection is $\frac{\pi}{3}$
2.	A particle is projected from a po- horizontal, with initial speed $u =$ the ground. Show that the angle	bint on the horizontal ground, at a $\sqrt{2gR}$, where R is the horizontal between the two possible initial d	In angle $\alpha \left(0 < \alpha < \frac{\pi}{2} \right)$ to the large of the projectile of irections of projection is $\frac{\pi}{3}$
2.	A particle is projected from a po- horizontal, with initial speed $u =$ the ground. Show that the angle	bint on the horizontal ground, at a $\sqrt{2gR}$, where R is the horizontal between the two possible initial d	In angle $\alpha \left(0 < \alpha < \frac{\pi}{2} \right)$ to the large of the projectile on irections of projection is $\frac{\pi}{3}$
2.	A particle is projected from a por horizontal, with initial speed <i>u</i> = the ground. Show that the angle	bint on the horizontal ground, at a $\sqrt{2gR}$, where R is the horizontal between the two possible initial differences of the two possible initial differences of the two possibles initial differences of the two possibles in the two possibles	In angle $\alpha \left(0 < \alpha < \frac{\pi}{2} \right)$ to the large of the projectile of irections of projection is $\frac{\pi}{3}$
2.	A particle is projected from a por horizontal, with initial speed <i>u</i> = the ground. Show that the angle	bint on the horizontal ground, at a $\sqrt{2gR}$, where R is the horizontal between the two possible initial differences of the two possible initial differences of the two possibles initial differences of the two possibles in the two possibles	In angle $\alpha \left(0 < \alpha < \frac{\pi}{2}\right)$ to the large of the projectile of the projection is $\frac{\pi}{3}$
2.	A particle is projected from a por horizontal, with initial speed <i>u</i> = the ground. Show that the angle	bint on the horizontal ground, at a $\sqrt{2gR}$, where R is the horizontal between the two possible initial differences of the two possible initial differences of the two possibles initial differences of the two possibles of the two possibles initial differences of the two possibles of two possibles o	In angle $\alpha \left(0 < \alpha < \frac{\pi}{2}\right)$ to the large of the projectile of the projection is $\frac{\pi}{3}$
2.	A particle is projected from a por horizontal, with initial speed <i>u</i> = the ground. Show that the angle	bint on the horizontal ground, at a $\sqrt{2gR}$, where R is the horizontal between the two possible initial differences of the two possible initial differences of the two possibles initial differences of the two possibles in the two possibles	In angle $\alpha \left(0 < \alpha < \frac{\pi}{2}\right)$ to the large of the projectile on irections of projection is $\frac{\pi}{3}$
2.	A particle is projected from a por horizontal, with initial speed <i>u</i> = the ground. Show that the angle	bint on the horizontal ground, at a $\sqrt{2gR}$, where R is the horizontal between the two possible initial distributions of the two possible initial distributions of the two possibles in the two poss	In angle $\alpha \left(0 < \alpha < \frac{\pi}{2}\right)$ to the large of the projectile on irections of projection is $\frac{\pi}{3}$
2.	A particle is projected from a por horizontal, with initial speed <i>u</i> = the ground. Show that the angle	bint on the horizontal ground, at a $\sqrt{2gR}$, where R is the horizontal between the two possible initial differences of the two possible initial differences of the two possible initial differences of the two possibles of the two possibles in the two possibles	In angle $\alpha \left(0 < \alpha < \frac{\pi}{2} \right)$ to the l range of the projectile on irections of projection is $\frac{\pi}{3}$
2.	A particle is projected from a por horizontal, with initial speed <i>u</i> = the ground. Show that the angle	bint on the horizontal ground, at a $\sqrt{2gR}$, where R is the horizontal between the two possible initial differences of the two possible initial differences of the two possible initial differences of the two possibles of the two possibles in the two possibles	In angle $\alpha \left(0 < \alpha < \frac{\pi}{2} \right)$ to the large of the projectile of the projection is $\frac{\pi}{3}$
2.	A particle is projected from a por horizontal, with initial speed <i>u</i> = the ground. Show that the angle	bint on the horizontal ground, at a $\sqrt{2gR}$, where R is the horizontal between the two possible initial differences of the two possible initial differences of the two possibles in the two possible	In angle $\alpha \left(0 < \alpha < \frac{\pi}{2} \right)$ to the large of the projectile of irections of projection is $\frac{\pi}{3}$
2.	A particle is projected from a por horizontal, with initial speed <i>u</i> = the ground. Show that the angle	bint on the horizontal ground, at a $\sqrt{2gR}$, where R is the horizontal between the two possible initial differences of the two possible initial differences of the two possibles in the two possible	In angle $\alpha \left(0 < \alpha < \frac{\pi}{2} \right)$ to the line projectile of the projection is $\frac{\pi}{3}$
2.	A particle is projected from a por horizontal, with initial speed <i>u</i> = the ground. Show that the angle	bint on the horizontal ground, at a $\sqrt{2gR}$, where R is the horizontal between the two possible initial di	In angle $\alpha \left(0 < \alpha < \frac{\pi}{2} \right)$ to the line projectile of the projection is $\frac{\pi}{3}$

_	
3.	A particle P of mass m and a particle Q of mass λm are attached to the two ends of a light inextensible string which passes over a smooth fixed pulley. The system is released from rest, with the string taut, as shown in the figure. The particle P moves downwards with acceleration $\frac{g}{2}$. Show that $\lambda = \frac{1}{2}$.
	If the particle <i>P</i> strikes a horizontal inelastic floor with speed <i>v</i> and the particle
	Q never reaches the pulley, find the time taken by the particle Q to reach the Q_{Am}
	maximum height from the instant when the particle P struck the floor.
	mmmm
	······································

4	A car of mass 1200 kg moves with the engine shut off, down a straight road of inclination α to the
	horizontal, where $\sin \alpha = \frac{1}{30}$, at a certain constant speed. Taking the acceleration due to gravity
Ŀ	$g = 10 \text{ m s}^{-2}$, find in newtons, the resistance to the motion of the car.
Ľ	Find the power of the engine in kilowatts, when the car ascends the same road, under the same
	resistance with an acceleration $\frac{1}{6}$ m s ⁻² , at the instant when its speed is 15 m s ⁻¹ .
Ľ	
L	
L	
L	
ł	
1	
1	
	C
	Isee page fou

S
4
6
\mathfrak{S}

A	L/2018/10/E-II	= 4	
5.	In the usual notation, le respectively, with respect to	et 3i and $2i+3j$ be the position vectors of to a fixed origin O. Let C be the point on the s	of two points, A_ and A straight line OB such that
	$OCA = \frac{N}{2}$. Find OC in the	erms of i and j.	
			nu and an
	Caller and a second sec		(*****()*)*******************
	1		******
		·····	

	A uniform rod AB of length	2a and weight W, is held in equilibrium	unno

extensible string BC, and by a horizontal force Pbу applied at the end A, as shown in the figure. Given that the rod makes an angle 45° with the horizontal, show that angle θ that the string BC makes with the horizontal is given by $\tan \theta = 2$.

Find the tension in the string, in this position, in terms of W.

ы TTELEVOLUTION IN CONTRACTOR INCONTRACTOR IN CONTRACTOR INCONTRACTOR IN CONTRACTOR INCONTRACTOR IN CONTRACTOR INCONTRACTOR INTENTO INCONTRACTOR INCONTRACTOR INCONTRACTOR INTENTO INCONTRACTOR INTENTO INCONTRACTOR INCONTRACTOR INTENTO INCONTRACTOR INTENTO INCONTRACTOR INTENTO INTE errere the second s

10000	

510000	

107223	
on M	
15 11	to a the second s
(i) th (ii) th	e balls drawn are of the same colour, e balls drawn, on any two consecutive draws are of different colours
(i) th jii) th	e balls drawn are of the same colour, e balls drawn, on any two consecutive draws are of different colours.
(i) th jii) th	e balls drawn are of the same colour, e balls drawn, on any two consecutive draws are of different colours.
(i) th ii) th	e balls drawn are of the same colour, e balls drawn, on any two consecutive draws are of different colours.
(i) th ii) th	e balls drawn are of the same colour, e balls drawn, on any two consecutive draws are of different colours.
(i) th ii) th	e balls drawn are of the same colour, e balls drawn, on any two consecutive draws are of different colours.
(i) th ii) th	e balls drawn are of the same colour, e balls drawn, on any two consecutive draws are of different colours.
(i) th ii) th	e balls drawn are of the same colour, e balls drawn, on any two consecutive draws are of different colours.
(i) th ii) th	e balls drawn are of the same colour, e balls drawn, on any two consecutive draws are of different colours.
(i) th ii) th	e balls drawn are of the same colour, e balls drawn, on any two consecutive draws are of different colours.
(i) th ii) th	e balls drawn are of the same colour, e balls drawn, on any two consecutive draws are of different colours.
(i) th ii) th	e balls drawn, on any two consecutive draws are of different colours.
(i) th ii) th	e balls drawn are of the same colour, e balls drawn, on any two consecutive draws are of different colours.
(i) th ii) th	e balls drawn are of the same colour, e balls drawn, on any two consecutive draws are of different colours.
(i) th ii) th	e balls drawn are of the same colour, e balls drawn, on any two consecutive draws are of different colours.
(i) th ii) th	e balls drawn are of the same colour, e balls drawn, on any two consecutive draws are of different colours.

6 -	
-----	--

9	Five positive integers each of which is less than 8, have only one mode. Their mean, mode an median are in the ratios 6:10:5. Find these five integers.

	that two of the above temperatures have been mistakenly entered as 35° C and 21° C, they were later corrected as 25° C and 31° C. Find the correct values of μ and σ .
	that two of the above temperatures have been mistakenly entered as 35 °C and 21 °C, they were later corrected as 25 °C and 31 °C. Find the correct values of μ and σ .
	that two of the above temperatures have been mistakenly entered as 35 °C and 21 °C, they were later corrected as 25 °C and 31 °C. Find the correct values of μ and σ .
	that two of the above temperatures have been mistakenly entered as 35° C and 21° C, they were later corrected as 25° C and 31° C. Find the correct values of μ and σ .
	that two of the above temperatures have been mistakenly entered as 35° C and 21° C, they were later corrected as 25° C and 31° C. Find the correct values of μ and σ .
	that two of the above temperatures have been mistakenly entered as 35° C and 21° C, they were later corrected as 25° C and 31° C. Find the correct values of μ and σ .
	that two of the above temperatures have been mistakenly entered as 35° C and 21° C, they were later corrected as 25° C and 31° C. Find the correct values of μ and σ .
	that two of the above temperatures have been mistakenly entered as 35 °C and 21 °C, they were later corrected as 25 °C and 31 °C. Find the correct values of μ and σ .
	that two of the above temperatures have been mistakenly entered as 35° C and 21° C, they were later corrected as 25° C and 31° C. Find the correct values of μ and σ .
	that two of the above temperatures have been mistakenly entered as 35° C and 21° C, they were later corrected as 25° C and 31° C. Find the correct values of μ and σ .
	that two of the above temperatures have been mistakenly entered as 35 °C and 21 °C, they were later corrected as 25 °C and 31 °C. Find the correct values of μ and σ .
	that two of the above temperatures have been mistakenly entered as 35° C and 21° C, they were later corrected as 25° C and 31° C. Find the correct values of μ and σ .
	that two of the above temperatures have been mistakenly entered as 35°C and 21°C, they were later corrected as 25°C and 31°C. Find the correct values of μ and σ.
	that two of the above temperatures have been mistakenly entered as 35°C and 21°C, they were later corrected as 25°C and 31°C. Find the correct values of μ and σ .
	that two of the above temperatures have been mistakenly entered as 35°C and 21°C, they were later corrected as 25°C and 31°C. Find the correct values of μ and α .
	that two of the above temperatures have been mistakenly entered as 35°C and 21°C, they were later corrected as 25°C and 31°C. Find the correct values of μ and α .
	that two of the above temperatures have been mistakenly entered as 35°C and 21°C, they were later corrected as 25°C and 31°C. Find the correct values of μ and σ .
	that two of the above temperatures have been mistakenly entered as 35°C and 21°C, they were later corrected as 25°C and 31°C. Find the correct values of μ and σ .
	that two of the above temperatures have been mistakenly entered as 35°C and 21°C, they were later corrected as 25°C and 31°C. Find the correct values of μ and σ .

**

3645 7 AL/2018/10/E-II සියලු ම හිමිකම් ආච්රිණි / முழுப் பதிப்புரிமையுடையது / All Rights Reserved] இ வேற்றில் பிரிகைகள் கொடல் குறையில் குறும் குறையில் குறையில் குறும் குறும் குறையில் குறையில் குறையில் குறையில் குறையில் குறையில் குறைக்கு கையில் குறையில் குறையில் குறையில் குறையில் குறும் குறையில் குறும் குறும் குறும் குறும் குறையில் குறையில் குறும் குறையில் குறையில் குறையில் குறையில் குறையில் குறையில் குறையில் குறு குறுக்கு குறுக்கு குறுக்கு குறுக்கு குறைக்கு குறைக்கு குறைக்கு குறைக்கு குறைக்கு குறைக்கு குறை குறையில் குறையில் குறையில் குறையில் குறையில் குறையில் குறையில் குறையில் குறையில் குறும் குறையில் குறையில் குறையில் குறை குறையில் குறுற අධායයා පොදු සහකික පසු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2018 සංයුක්ත ගණිතය п இணைந்த கணிதம் Π **Combined Mathematics II** Part B * Answer five questions only. (In this question paper, g denotes the acceleration due to gravity.) 11. (a) A lift moving in a mine pit of depth 4d metres begins to move vertically downwards from rest from a point A, at time t = 0. First, it moves a distance d metres with constant acceleration $\frac{g}{2}$ m s⁻², and then it moves with the velocity attained at the end of that motion, for another distance of d metres. The lift then moves the remaining distance with constant retardation so as to come to rest exactly at the point B at a distance 4d metres below A. Sketch the velocity-time graph for the motion of the lift. Hence, find the total time taken by the lift to move down from A to B_{\pm} (b) A ship is sailing due North with uniform speed $u \text{ km h}^{-1}$, relative to earth. At a certain instant a boat B_1 is observed at an angle β East of South, from the ship at a distance p km from the path of the ship. At the same instant, a boat B_2 is observed Westward at a distance q km from the ship. Both boats sail in straight line paths, with uniform speed v (> u) km h⁻¹ relative to earth, intending to intercept the ship. Sketch in the same diagram, velocity triangles to determine the paths of the boats relative to earth. Show that the path of the boat B_1 relative to earth makes an angle $\beta - \sin^{-1}\left(\frac{u\sin\beta}{v}\right)$ West of North, and find the path of the boat B_2 relative to earth. Let $\beta = \frac{\pi}{3}$ and $\nu = \sqrt{3}u$. Show that if $3q^2 > 8p^2$, then the boat B_1 will intercept the ship before the boat B_2 . 12.(a) The trapezium ABCD such that AB = a and $B\hat{A}D = \frac{\pi}{6}$, shown in the figure, is a vertical crosssection through the centre of gravity of a smooth uniform block of mass 2m. The lines AD and BC are parallel, and the line AB is a line of greatest slope of the face containing it. The block is placed with the face containing AD on a smooth horizontal floor. A particle P of mass m is placed at the point A and it is given a velocity u along \overrightarrow{AB} , where $u^2 = \frac{7ga}{3}$, as shown in the figure. Show that the retardation of P relative to the block is $\frac{2g}{3}$ and find the velocity of the particle P relative to the block when the particle P reaches B. Also, there is a small hole on the upper face of the block at the point E on BC such that $BE = \frac{\sqrt{3}a}{2}$. By considering the motion relative to the block, show that the particle P will fall into the hole at E. В E

see page eight

Ð

(b) One end of a light inextensible string of length *a* is attached to a fixed point *O* and the other end to a particle *P* of mass *m*. The particle hangs at rest vertically below *O*, and it is given a horizontal velocity of magnitude $u = \sqrt{kag}$, where 2 < k < 5. Show that, when the string has turned through an angle θ and still taut, the speed *v* of the particle is given by $v^2 = (k-2)ag + 2ag \cos \theta$.

Find the tension in the string, in this position.

Deduce that the string becomes slack when $\theta = \alpha$, where $\cos \alpha = \frac{2-k}{3}$.

- 13. A particle P of mass m is attached to two ends of two equal light elastic strings, each of natural length a and modulus mg. The free end of one string is attached to a fixed point A, and the free end of the other string is attached to a fixed point B which is at a distance 4a vertically below A. (See the figure.) Show that, with both strings taut, the particle will be in equilibrium at a distance $\frac{5a}{2}$ below A.
 - The particle P is now raised to the mid-point of AB and is gently released from rest in that position. When both strings are taut and the length of the string AP is x, show that $\ddot{x} + \frac{2g}{a}\left(x \frac{5a}{2}\right) = 0$.

Re-write this equation in the form $\bar{X} + \omega^2 X = 0$, where $X = x - \frac{5a}{2}$ and $\omega^2 = \frac{2g}{a}$. Using the formula $\dot{X}^2 = \omega^2 (c^2 - X^2)$, find the amplitude c of this motion.

At the instant when the particle P reaches its lowest position, the string PB is cut.

Show that the particle reaches its highest position in the new motion when x = a.

Show further that the total time taken by the particle P to move from its initial position at x = 2a, a distance a downwards, and then a distance $\frac{a}{2}$ upwards is $\frac{\pi}{3}\sqrt{\frac{a}{2g}}(3+\sqrt{2})$.

14.(a) Let OAB be a triangle, D be the mid-point of AB and E be the mid-point of OD. The point F lies on OA such that OF: FA = 1:2. The position vectors of A and B with respect to O are **a** and **b** respectively. Express the vectors \overrightarrow{BE} and \overrightarrow{BF} in terms of **a** and **b**.

Deduce that *B*, *E* and *F* are collinear and find the ratio *BE*: *EF*. Find the scalar product $\overrightarrow{BF} \cdot \overrightarrow{DF}$ in terms of $|\mathbf{a}|$ and $|\mathbf{b}|$ and show that if $|\mathbf{a}| = 3|\mathbf{b}|$, then \overrightarrow{BF} is perpendicular to \overrightarrow{DF} .

(b) A system of forces in the Oxy-plane consists of three forces 3Pi + 2Pj, 2Pi - Pj and -Pi + 2Pj acting at the points (-a, 2a), (0, a) and (-a, 0) respectively, where P and a are positive quantities measured in newtons and metres, respectively. Show that the clockwise moment of the system about the origin O is 12Pa N m.

Also, show that the system is equivalent to a single resultant force of magnitude 5PN and find its direction and the equation of the line of action.

Now, an extra force is introduced to the system so that the new system is equivalent to a couple with clockwise moment 24Pa N m. Find the magnitude, direction and the equation of the line of action of the extra force.

annann

Pin

B

40-5

- 9
- 15.(a) A uniform rod AB of weight W and length 2a, has its end A placed on a rough horizontal ground and the end B against a smooth vertical wall. The rod lies in a vertical plane perpendicular to the wall and makes an angle θ with the horizontal, where $\tan \theta = \frac{3}{4}$. A particle of weight W is attached to the point C on the rod with AC = x. The rod with the particle is in equilibrium. The coefficient of friction between the rod and the ground is $\frac{5}{6}$. Show that $x \leq \frac{3a}{2}$.
 - (b) The framework shown in the adjoining figure is made of five light rods AB, BC, AC, CD and AD freely jointed at their ends. It is given that AB = a, BC = 2a, AC = CD and $C\hat{A}D = 30^{\circ}$. A load of weight W hangs at D and the framework is in equilibrium in a vertical plane with AB horizontal and AC vertical, supported by vertical forces P and Q acting respectively at A and B in the **directions** indicated in the figure. Find the value of Q, in terms of W.

Draw a stress diagram using Bow's notation and hence, find the stresses in the five rods and state whether these stresses are tensions or thrusts.

16. Show that the centre of mass of a uniform solid hemisphere of radius a is at a distance $\frac{3}{8}a$ from its centre.

A hemispherical portion of radius *a* is carved out from a uniform solid right circular cylinder of radius *a*, height *a* and density ρ . Now, a uniform solid hemisphere of radius *a* and density $\lambda \rho$ is fastened at its circular face to the circular face of the remaining portion of the cylinder, so that the two axes of symmetry coincide, as shown in the adjoining figure. Show that the centre of mass of the body *S* thus formed, lies on its axis of symmetry at $(11\lambda + 3)a$

a distance $\frac{(11\lambda + 3)a}{4(2\lambda + 1)}$ from *O*, the centre of the rim.

Let $\lambda = 2$ and let A be a point on the circular rim of the body S.

This body S is kept in equilibrium against a rough vertical wall by means of a light inextensible string with one end attached to the point A and the other end to a fixed point B on the vertical wall. In this equilibrium position, the axis of symmetry of S is perpendicular to the wall and the hemispherical surface of S touches the wall at the point C at a distance 3a vertically below the point B. (See the adjoining figure.) The points O, A, B and C lie on a vertical plane perpendicular to the wall.

If μ is the coefficient of friction between the hemispherical surface of S and the wall, show that $\mu \ge 3$.

see page ten

17.(a) All applicants who apply for a certain job in an institute are required to sit for an aptitude test. Those who obtain A grades in this aptitude test are selected for the job, and the rest of the applicants have to face an interview. In a survey, it was found that 60% of the applicants get A grades, and of these, 40% are females. From the applicants who face the interview, only 10% get selected and 70% of them are females.

Find the probability that

- (i) a male is selected for this job,
- (ii) a male who has been selected for the job has obtained an A grade for the aptitude test.
- (b) Waiting times (in minutes) before being treated of 100 patients at a certain hospital are collected. The following table gives the distribution of values obtained by subtracting 20 minutes from each of these times and dividing each of the resulting differences by 10.

Range of values	Number of patients
-2 - 0	30
0 — 2	40
2 - 4	15
4 — 6	10
6 — 8	5

Estimate the mean and the standard deviation of the distribution given in this table.

Hence, estimate the mean μ and the standard deviation σ of the waiting times of the 100 patients.

Also, estimate the coefficient of skewness κ defined by $\kappa = \frac{\mu - M}{\sigma}$, where M is the mode of the waiting times of the 100 patients.

* * *