

 Department of Examinationss Sri Lanka 														

15.08.2018 / 0830-1030

Instructions:

* Periodic Table is provided,
* This paper consists of 09 pages.
* Answer all the questions.
* Use of calculators is not allowed.
* Write your Index Number in the space provided in the answer sheet.
* Follow the instructions given on the back of the answer sheet carefully.
* In each of the questions 1 to 50, pick one of the alternatives from (1), (2), (3), (4), (5) which is correct or most appropriate and mark your response on the answer sheet with a cross (x) in accordante with the instructions given on the back of the answer sheet

$$
\begin{array}{ll}
\text { Universal gas constant } R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
\text { Avogadro constant } & N_{A}=6.022 \times 10^{23} \mathrm{~mol}^{-1} \\
\text { Planck's constant } & h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\
\text { Velocity of light } & c=3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}
\end{array}
$$

1. The number of unpaired electrons present in a gaseous Co^{3+} ion in its ground state is,
(1) 1
(2) 2
(3) 3
(4) 4
(5) 5
2. Which quantum number(s) (n, l, m_{p}, m_{s}) is/are associated with the shape of an atomic orbital of an atom?
(1) l
(2) m_{i}
(3) n and l
(4) n and m_{t}
(5) l and m_{l}
3. What is the IUPAC name of the compound shown below?

(1) 4-bromo-3-nitro-2-hexenoicacid
(2) 4-bromo-3-nitro-2-hexenoic acid
(3) 3-nitro-4-bromo-2-hexenoicacid
(4) 3-nitro-4-bromo-2-hexenoic acid
(5) 3-bromo-4-nitro-4-hexenoic acid
4. The correct answer when the molecules $\mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{OF}_{2}$ and $\mathrm{O}_{2} \mathrm{~F}_{2}$ (struccure similar to $\mathrm{H}_{2} \mathrm{O}_{2}$) are arranged in the decreasing order of the oxidation state of oxygen (O) is,
(1) $\mathrm{O}_{2} \mathrm{~F}_{2}>\mathrm{OF}_{2}>\mathrm{O}_{2}>\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{O}_{2}$
(2) $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{O}_{2}>\mathrm{O}_{2} \mathrm{~F}_{2}>\mathrm{OF}_{2}$
(3) $\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{O}_{2} \mathrm{~F}_{2}>\mathrm{O}_{2}>\mathrm{OF}_{2}>\mathrm{H}_{2} \mathrm{O}$
(4) $\mathrm{OF}_{2}>\mathrm{O}_{2} \mathrm{~F}_{2}>\mathrm{O}_{2}>\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{O}_{2}$
(5) $\mathrm{OF}_{2}>\mathrm{O}_{2} \mathrm{~F}_{2}>\mathrm{O}_{2}>\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{H}_{2} \mathrm{O}$
5. The most acceptable Lewis structure for the thiocyanate ion SCN^{-}is,
(1)

(2) $\ddot{\mathrm{S}}=\mathrm{C}=\stackrel{\ominus}{\mathrm{N}}:$
(3)

(4)

(5)

6. The molarity (mol dm^{-3}) of a NaI solution which has a density of $1.03 \mathrm{~g} \mathrm{~cm}^{-3}$ and is $3 \% \mathrm{NaI}$ by mass is,
$(\mathrm{Na}=23, \mathrm{I}=127)$
(1) 0.21
(2) 0.23
(3) 0.25
(4) 0.28
(5) 0.30
7. Precipitates of AgI and AgBr were added to a small amount of distilled water This mixture was allowed to reach equilibrium at $25{ }^{\circ} \mathrm{C}$. It was observed that both the solids were present in the system at equilibrium. Which of the following relations is applicable to this solution?
$\left(K_{\operatorname{spp}(\mathrm{ADD})}=8.0 \times 10^{-17} \mathrm{~mol}^{2} \mathrm{dm}^{-6}, K_{\mathrm{sp(Ag} B r)}=5.0 \times 10^{-19} \mathrm{~mol}^{2} \mathrm{dm}^{-6}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$
(1) $\left[\mathrm{Br}^{-}\right]=\sqrt{5.0 \times 10^{-1.3}} \mathrm{~mol} \mathrm{dm}{ }^{-3}$ and $\left\lfloor\mathrm{I}^{-}\right\rfloor=\sqrt{8.0 \times 10^{-17}} \mathrm{~mol} \mathrm{dm}{ }^{-3}$
(2) $\left[\mathrm{Br}^{-}\right]\left[\mathrm{I}^{-}\right]=\left[\mathrm{Ag}^{+}\right]^{2}$
(3) $\left[\mathrm{Ag}^{+}\right]=\left(\sqrt{5.0 \times 10^{-13}}+\sqrt{8.0 \times 10^{-17}}\right) \mathrm{mol} \mathrm{dm}{ }^{-3}$
(4) $\frac{\left[\mathrm{Br}^{-}\right]}{\left[\mathrm{I}^{-}\right]}=\frac{5.0}{8.0} \times 10^{4}$
(5) $\left[\mathrm{Ag}^{+}\right\rceil=\left[\mathrm{Br}^{-}\right]=\left[\mathrm{I}^{-}\right]$
8. Which of the following statements is false?
(1) Although the carbonates of all the group two metals in the Periodic Table are insoluble in water, their bicarbonates are soluble.
(2) The hydroxides of all the group two metals in the Periodic Table are soluble in water.
(3) The nitrates of all the group two metals in the Periodic Table are soluble in water.
(4) The oxides and hydroxides of Na and Mg show basic properties whereas the oxide and hydroxide of AI show amphoteric properties.
(5) The hydrides of Si and S show weakly acidic properties,
9. In which list are the elements given in the order of increasing (left to right) atomic radii?
(1) $\mathrm{Li}, \mathrm{Na}, \mathrm{Mg}, \mathrm{S}$
(2) $\mathrm{C}, \mathrm{Si}, \mathrm{S}, \mathrm{Cl}$
(3) B, C, N, P
(4) $\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Ca}$
(5) $\mathrm{B}, \mathrm{Be}, \mathrm{Na}, \mathrm{K}$
10. Liquids A and B form an ideal solution. Consider a mixture of liquids A and B in equilibrium with the vapour in a closed rigid container at constant temperature. $\mathrm{P}_{\mathrm{A}}^{0}$ and $\mathrm{P}_{\mathrm{a}}^{0}$ respectively are the saturated vapour pressures of A and B while P is the total pressure of the container and X_{A}^{g} is the mole fraction of A in the vapour phase. Which of the following is correct about this system?
(1) $P=\left(P_{A}^{o}-P_{B}^{o}\right) X_{A}^{g}+P_{B}^{o}$
(2) $\frac{1}{\mathrm{P}}=\left(\frac{1}{\mathrm{P}_{\mathrm{A}}^{o}}-\frac{1}{\mathrm{P}_{\mathrm{B}}^{o}}\right) \mathrm{X}_{\mathrm{A}}^{\mathrm{g}}+\frac{1}{\mathrm{P}_{\mathrm{B}}^{o}}$
(3) $P=\left(P_{A}^{0}+P_{B}^{o}\right) X_{A}^{g}-P_{B}^{o}$
(4) $\frac{\mathrm{I}}{\mathrm{P}}=\left(\frac{1}{\mathrm{P}_{\mathrm{B}}^{0}}-\frac{1}{\mathrm{P}_{\mathrm{A}}^{0}}\right) \frac{1}{\mathrm{X}_{\mathrm{A}}^{\mathrm{g}}}$
(5) $\frac{1}{\mathrm{P}}=\left(\frac{1}{\mathrm{P}_{\mathrm{A}}^{\alpha}}-\frac{1}{\mathrm{P}_{\mathrm{B}}^{\circ}}\right) \frac{1}{\mathrm{X}_{\mathrm{A}}^{\mathrm{g}}}$
11. The increasing order of boiling points of the following substances is, $\mathrm{He}, \mathrm{CH}_{4}, \mathrm{CCl}_{4}, \mathrm{CBr}_{4}, \mathrm{SiH}_{4}$
(1) $\mathrm{CH}_{4}<\mathrm{He}<\mathrm{SiH}_{4}<\mathrm{CCl}_{4}<\mathrm{CBr}_{4}$
(2) $\mathrm{He}<\mathrm{SiH}_{4}<\mathrm{CH}_{4}<\mathrm{CCl}_{4}<\mathrm{CBr}_{4}$
(3) $\mathrm{He}<\mathrm{CH}_{4}<\mathrm{SiH}_{4}<\mathrm{CCl}_{4}<\mathrm{CBr}_{4}$
(4) $\mathrm{CH}_{4}<\mathrm{He}<\mathrm{SiH}_{4}<\mathrm{CBr}_{4}<\mathrm{CCl}_{4}$
(5) $\mathrm{He}<\mathrm{CH}_{4}<\mathrm{CCl}_{4}<\mathrm{SiH}_{4}<\mathrm{CBr}_{4}$
12. Identify the correct statement from the following.
(1) Among the electronic transitions $n=2 \longrightarrow n=1, n=3 \longrightarrow n=2$ and $n=4 \longrightarrow n=3$ in a hydrogen atom, most energy is released in $n=3 \longrightarrow n=2$.
(2) Among the species $\mathrm{OF}_{2}, \mathrm{OF}_{4}$ and SF_{4}, the least stable is SF_{4}.
(3) Among the elements $\mathrm{Li}, \mathrm{C}, \mathrm{N}, \mathrm{Na}$ and P , the least electronegative element is Li .
(4) In the following pairs ($\mathrm{Li} \& \mathrm{~F}$), $\left(\mathrm{Li}^{+} \& \mathrm{~F}^{-}\right),\left(\mathrm{Li}^{+} \& \mathrm{O}^{2-}\right)$ and $\left(\mathrm{O}^{2-} \& \mathrm{~F}^{-}\right)$, the difference in radii is greatest between Li^{+}and O^{2-}
(5) The only type of intermolecular force present in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the liquid phase is dipole-dipole forces.
13. Consider the reaction: $\mathrm{CH}_{4}(\mathrm{~g}) \longrightarrow \mathrm{CH}_{3}(\mathrm{~g})+\mathrm{H}(\mathrm{g})$

The standard change in enthalpy of the above reaction is,
(1) the standard enthalpy change for the dissociation of the first $\mathrm{C}-\mathrm{H}$ bond in methane,
(2) the standard atomisation enthalpy change of methane.
(3) the standard first ionisation enthalpy change of methane.
(4) the standard bond dissociation enthalpy change of methane,
(5) the standard radical formation enthalpy change of methane.
14. The elementary reaction $2 \mathrm{~A}(\mathrm{~g}) \longrightarrow \mathrm{B}$ (g) occurs in a closed rigid container at a constant temperature Initial pressure of the container is P_{a} and the pressure when the rate of reaction is 50% of the initial value is P_{r}. Which of the following gives the correct value for $\frac{P_{r}}{P_{\mathrm{o}}}$?
(1) $\frac{P_{r}}{P_{0}}=\frac{1}{2}$
(2) $\frac{P_{f}}{P_{o}}=\frac{1}{\sqrt{2}}$
(3) $\frac{P_{1}}{P_{5}}=\frac{1+\sqrt{2}}{2 \sqrt{2}}$
(4) $\frac{P_{t}}{P_{0}}=\frac{\sqrt{2}}{1+\sqrt{2}}$
(5) $\frac{P_{i}}{P_{0}}=\frac{\sqrt{2}-1}{1+\sqrt{2}}$
15. An equimolar aqueous solution of the weak acids HA and $\mathrm{HB}\left(1.0 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in each acid) with $\mathrm{p} K_{\text {a }}$ values 4.7 and 5.0 respectively is at equilibrium. The value of $\log \left(\frac{\left|A^{-}\right|}{\left|B^{\prime}\right|}\right)$ is approximately equal to,
(1) 23.5
(2) -0.3
(3) 03
(4) 0.94
(5) 106
16. Which of the following statements about $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ is false?
(1) Reacts with $\mathrm{CH}_{3} \mathrm{COCl}$ to form a phenyl ester
(2) Reacts with bromine water to give a white precipitate.
(3) Evolves CO_{2} gas when treated with NaHCO ,
(4) Gives a coloured compound when trented with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}^{+} \mathrm{Cl}$ in the presence of NaOH
(5) Gives a coloured (purplish) solution when treated with neutral FeCl_{3}.
17. The half life of a reaction is,
(1) always independent of the initial concentration of reactants.
(2) always dependent on the rate constant.
(3) always independent of the order of the reaction.
(4) always independent of temperature.
(5) equal to twice the total reaction time.
18. Electromotive force of an electrochemical cell does not depend on,
(1) the nature of the electrolytes,
(2) temperature.
(3) the concentrations of the electrolytes.
(4) the surface areas of the electrodes.
(5) the types of metals that form the electrodes.
19. IO_{3}^{-}(iodate ion) oxidizes the SO_{3}^{2-} ion to SO_{4}^{2-} in acidic medium. The mass of KIO_{3} required to
 $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is $1.07 \mathrm{~g} .(\mathrm{O}=16, \mathrm{~K}=39, \mathrm{I}=127)$
The final oxidation state of iodine after the completion of the reaction is,
(1) -1
(2) 0
(3) +1
(4) +2
(5) +3
20. Which of the following statements is false with regard to the s-block elements in the Periodic Table?
(1) All elements in group I react with water liberating H_{2} gas.
(2) All elements in group I except Li react with N_{2} gas.
(3) All elements in group II react with N_{2} gas.
(4) Na reacts with excess O_{2} to give $\mathrm{Na}_{2} \mathrm{O}_{2}$ whereas K gives KO_{2}.
(5) All elements in the s-block are good reducing agents.
21. A system consisting of two rigid containers containing an ideal gas is shown in the diagram. The containers can be connected to each other by opening the tap. The system changes from configuration \mathbf{A} to configuration \mathbf{B} when the tap is opened. In general n, P, V and T represent number of moles, pressure, volume and temperature respectively.

configuration \mathbf{A} (tap closed)

configuration B (tap opened)

Which of the following relations is correct about this system?
(1) $P_{1} V_{1}=P_{2} V_{2}$
(2) $\frac{P_{3} T_{1}}{P_{1}}+\frac{P_{3} T_{2}}{P_{2}}=2 T_{3}$
(3) $\frac{T_{1}}{P_{1}}=\frac{T_{2}}{P_{2}}$
(4) $P_{1} T_{1}=P_{2} T_{2}$
(5) $P_{1} V_{1}+P_{2} V_{2}=P_{3}\left(V_{1}+V_{2}\right)$
22. Which of the following statements is false with regard to $3 d$-elements of the Periodic Table?
(1) Atomic radii are smaller than the atomic radii of the s-block elements in the same period.
(2) Densities are higher than the densities of the s-block elements in the same period.
(3) $\mathrm{V}_{2} \mathrm{O}_{5}, \mathrm{CrO}_{3}$ and $\mathrm{Mn}_{2} \mathrm{O}_{7}$ are acidic oxides.
(4) First ionization energies are less than the first ionization energies of the s-block elements in the same period.
(5) The most common oxidation states of cobalt in cobalt compounds are +2 and +3 .
23. Standard Gibbs energy changes for the reaction, $\mathrm{MO}(\mathrm{s}) \rightarrow \mathrm{M}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$ at two different temperatures are given below.

T / K	$\Delta \mathrm{G}^{\circ} / \mathrm{kJ} \mathrm{mol}^{-\mathrm{L}}$
1000	-100.2
2000	-148.6

The standard entropy change of the reaction is,
(1) $248.8 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
(2) $-248.8 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
(3) $-48.4 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
(4) $348.4 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
(5) $48.4 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
24. Which of the following represents a correct step in the mechanism of nitration of benzene with conc. HNO_{3} / conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$?
(1)

(2)

(3)

(5)

25.

(1) NaBH_{4}
(2) $\mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{O}$

X $\xrightarrow[\mathrm{CH}_{3} \mathrm{MgBr}]{\text { excess }} \quad \mathbf{Y}$
In the reaction sequence given above, the structures of \mathbf{X} and \mathbf{Y} respectively are,
(1)

(2)

(3)

(5)

26. When $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}(\mathrm{~s}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(\mathrm{~s})$ and $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s})$ are heated, the nitrogen containing compounds obtained are respectively,
(1) $\mathrm{NH}_{3}, \mathrm{~N}_{2}$ and NO_{2}
(2) $\mathrm{N}_{2} \mathrm{O}, \mathrm{N}_{2}$ and NH_{3}
(3) $\mathrm{NH}_{3}, \mathrm{~N}_{2}$ and $\mathrm{N}_{2} \mathrm{O}$
(4) $\mathrm{N}_{2}, \mathrm{~N}_{2} \mathrm{O}$ and NH_{3}
(5) $\mathrm{N}_{2}, \quad \mathrm{NH}_{3}$ and $\mathrm{N}_{2} \mathrm{O}$
27. Which of the following would occur soon after connecting a rod of Zn and a rod of Ag immersed in a saturated solution of AgCl and $\mathrm{AgCl}(\mathrm{s})$ kept in a beaker as shown in the diagram, by a conductor?

$$
\mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{e} \longrightarrow \mathrm{Zn}(\mathrm{~s}) \mathrm{E}^{\circ}=-0.76 \mathrm{~V}
$$

$$
\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e} \longrightarrow \mathrm{Ag}(\mathrm{~s}) \mathrm{E}^{0}=0.80 \mathrm{~V}
$$

(1) Zn dissolves, Ag deposits, $\mathrm{AgCl}(\mathrm{s})$ dissolves.
(2) Zn dissolves, Ag dissolves, $\mathrm{AgCl}(\mathrm{s})$ dissolves.
(3) Zn dissolves, Ag dissolves, $\mathrm{AgCl}(\mathrm{s})$ deposits.
(4) Zn deposits, Ag dissolves, $\mathrm{AgCl}(\mathrm{s})$ dissolves.
(5) Chloride concentration in the solution decreases.

28. In the reaction sequence given below, the structures of \mathbf{P} and \mathbf{Q} respectively are,

(1)

(2)

(3)

(4)

(5)

29. Which of the following statements is incorrect regarding polymers?
(1) Bakelite is a thermosetting polymer.
(2) Teflon is a thermoplastic polymer.
(3) Nylon 6,6 is formed by addition polymerisation between 1,6 -diaminohexane and hexanedioic acid.
(4) Terelene is formed by condensation polymerisation between ethylene glycol and terephthalic acid.
(5) Natural rubber consists of cis-polyisoprene chains.
30. An experiment was carried out to find the order (m) with respect to $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$ of the reaction $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{s})$. Initial rate of the reaction (R) was measured by adding different volumes (v) of $0.01 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}$ into a solution of an acid. The H^{+} concentration of the reaction mixture was kept constant, but the total volume (V) was allowed to vary. Which of the following relations regarding the initial rate of the reaction is correct?
(1) $R \propto\left(\frac{v}{V}\right)^{m}$
(2) $R \propto v^{m}$
(3) $R \propto v^{\frac{1}{m}}$
(4) $R \propto\left(\frac{v}{V}\right)^{\frac{1}{m}}$
(5) $R \propto V^{m}$

- For each of the questions $\mathbf{3 1}$ to $\mathbf{4 0}$, one or more responses out of the four responses (a), (b), (c) and (d) given is/are correct. Select the correct response/responses. In accordance with the instructions given on your answer sheet, mark
(1) if only (a) and (b) are correct.
(2) if only (b) and (c) are correct.
(3) if only (c) and (d) are correct.
(4) if only (d) and (a) are correct.
(5) if any other number or combination of responses is correct.

Summary of above Instructions

(1)	(2)	(3)	(4)	(5)
Only (a) and (b) are correct	Only (b) and (c) are correct	Only (c) and (d) are correct	Only (d) and (a) are correct	Any other number or combination of responses is correct

31. Consider a titration between a weak acid (fixed volume) and a strong base. Which of the following is/are independent of the weak acid concentration?
(a) pH at the equivalence point.
(b) Volume of the strong base required to reach the end point,
(c) Dissociation constant of the weak acid
(d) Value of $\left[\mathrm{H}^{+}\right] \times\left[\mathrm{OH}^{-}\right]$of the solution in the titration flask.
32. Which of the following statements is/are true regarding the molecule given below?

(a) All four carbon atoms lie in the same plane,
(b) The angle between $\mathrm{C}_{\mathbf{d}}-\mathbf{H}$ and the $\mathrm{C}_{\mathbf{d}}-\mathrm{C}_{\mathbf{c}}$ bonds is approximately 120°.
(c) Between C_{b} and C_{c}, there are two σ-bonds and one π-bond.
(d) Between C_{b} and $\mathrm{C}_{\mathbf{c}}$, there is one σ-bond and two π-bonds.

33 Which of the following statement/s is/are true with regard to the manufacture of $\mathrm{Na}_{2} \mathrm{CO}_{3}$?
(a) CO_{2} is one of the raw materials used.
(b) The reaction between CO_{2} and aqueous NaCl saturated with NH_{3} is endothermic.
(c) The manufacturing process involves five stages.
(d) Most of the NH_{3} used in the process can be recovered.
34. Temperature must be maintained at a constant value during the experimental determination of the order of an elementary reaction, because,
(a) the order of the reaction depends on temperature.
(b) the activation energy changes with temperature.
(c) the mechanism of the reaction changes with temperature.
(d) the rate constant changes with temperature.
35. Which of the following statement/s is/are true regarding ethene and ethyne?
(a) CaC_{2} reacts with water to form ethyne.
(b) CaC_{2} reacts with water to form ethene.
(c) Ethene reacts with ammoniacal AgNO_{3} to give a precipitate
(d) Ethyne reacts with ammoniacal $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$ to give a precipitate.
36. Which of the following statement/s is/are true with regard to halogens?
(a) The boiling points of halogens increase down the group.
(b) Unlike other halogens, fluorine always has an oxidation state of (-1) except in F_{2}
(c) All halogens are good reducing agents.
(d) Although fluorine is the most reactive of all the elements in the Periodic Table, it does not react with inert gases.
37. For the reaccion $\mathrm{C}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})$ occurring in a closed rigid container, percentage yiclds of $\mathrm{CO}(\mathrm{g})$ at $700{ }^{\circ} \mathrm{C}$ and $800^{\circ} \mathrm{C}$ are 60% and 80% respectively. Which of the following statement/s is/are correct regarding the above reaction?
(a) The reaction is endothermic,
(b) The reaction is exothermic.
(c) Reverse reaction is favoured by decreasing the temperature.
(d) Equilibrium can be shifted towards the reactants by removing $\mathrm{C}(\mathrm{s})$
38. Cyclopropane \longrightarrow propene is an elementary reaction.

Which of the following statement/s is/are correct regarding the above reaction?
(a) Half life of the reaction depends on cyclopropane concentration.
(b) Rate of the reaction does not depend on propene concentration.
(c) The fraction of cyclopropane molecules having energy greater than the activation energy increases with increasing temperature.
(d) Reaction occurs via a bimolecular collision (molecularity $=2$),
39. Which of the following statement/s is/are true regarding 3-hexene?
(a) Does not show geometric isomerism.
(b) Shows optical isomerism,
(c) The compound obtained when reacted with $\mathrm{H}_{2} / \mathrm{Pd}$ does not show optical isomerism.
(d) The compound obtained when reacted with HBr shows optical isomerism.
40. Which of the following statements is/are correct with regard to the nitrogen cycle?
(a) N_{2} in the atmosphere is fixed only by atmospheric and industrial fixation.
(b) N_{2} is reduced during atmospheric fixation.
(c) N_{2} is oxidized during industrial fixation.
(d) Nitrates and mitrites fomed during atmospheric fixation are utilized by plants to make proteins when the rainfall deposit them on the ground

- In question Nos, 41 to 50 , two statements are given in respect of each question.

From the Table given below, select the response out of the responses (1), (2), (3), (4) and (5) that best fits the two statements and mark appropriately on your answer sheet.

Response	First Statement	Second Statement
(I)	True	True, and correctly explains the first statement
(2)	True	True, but does not explain the first statement correctly
(3)	True	False
(5)	False	True

[^0] amine has a lower tendency to form a bond with H^{+}, than the lone pair of electrons on oxygen in an alcohol.
43. A reaction at cquilibrium can be driven forward (ie. shift of equilibriam point to the right) by adding a catalyst.

44 CO_{3}^{2-} and SO_{3}^{2-} ions have similar shapes, $\quad \begin{aligned} & \text { Central atoms of both } \mathrm{CO}_{3}^{2-} \text { and } \mathrm{SO}_{3}^{2-} \text { have } \\ & \text { lone pairs of electrons. }\end{aligned}$

45 The boiling point of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ is higher than the boiling points of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$ and $\mathrm{CH}_{3} \mathrm{COCH}_{3}$.
46. A reaction occurring spontaneously in an isolated system always has a negative Gibbs energy change.
47. Commonly used soap contain the sodium or potassium salts of fatty acids formed by the reaction of NaOH or KOH with oils and fats.
48. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$ does not react easily with NaOH to form $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$.
49. When an aqueous solution of a weak acid is diluted, both the fraction of dissociated acid molecules and pH of the medium are increased.
50.

In the presence of sunlight CO_{2} is fixed in green plants.
lone pairs or electrons,
The carbon oxygen double bond is stronger than the carbon oxygen single bond.

A process in an isolated system cannot be changed from outside.

The reaction of an ester with aqueous NaOH or KOH gives the sodium or potassium salt of the carboxylic acid and the alcohol.

The phenyl carbocation is very stable.

Dissociation of weak acid molecules occur in such a way that the acid dissociation constant K_{a} remains constant

Increase of CO_{2} level in the atmosphere cannot be controlled by green plants.

The Periodic Table

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
$\mathbf{L a}$	$\mathbf{C e}$	$\mathbf{P r}$	$\mathbf{N d}$	$\mathbf{P m}$	Sm	Eu	$\mathbf{G d}$	$\mathbf{T b}$	$\mathbf{D y}$	$\mathbf{H o}$	$\mathbf{E r}$	$\mathbf{T m}$	$\mathbf{Y b}$	$\mathbf{L u}$
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
$\mathbf{A c}$	$\mathbf{T h}$	$\mathbf{P a}$	U	$\mathbf{N p}$	$\mathbf{P u}$	$\mathbf{A m}$	$\mathbf{C m}$	$\mathbf{B k}$	$\mathbf{C f}$	$\mathbf{E s}$	$\mathbf{F m}$	$\mathbf{M d}$	$\mathbf{N o}$	$\mathbf{L r}$

11)

gicy 3506 Three hours	 త్రిగ్మ 10 B 10 Бு\|டிடங்கள் Additional Reading Time - $\mathbf{1 0}$ minutes

Use additional reading time to go through the question paper, select the questions and decide on the questions
that you give priority in answering.

A Periodic Table is provided on page 16

Index No.:

* Use of calculators is not allowed.
* Universal gas constant, $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
* Avogadro constant, $N_{A}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
* In answering this paper, you may represent alkyl groups in a condensed manner

Example

- PART A - Structured Essay (pages 2-8)

* Answer all the questions on the question paper itself.

米 Write your answer in the space provided for each question. Please note that the space provided is sufficient for the answer and that extensive answers are not expected

- PART B and PART C - Essay (pages 9-15)
* Answer four questions selecting two questions from each part. Use the papers supplied for this purpose.
* At the end of the time allotted for this paper, tie the answers to the three Parts \mathbf{A}, \mathbf{B} and \mathbf{C} together so that Part \mathbf{A} is on top and hand them over to the Supervisor.
* You are permitted to remove only Parts B and C of the question paper from the Examination Hall.

For Examiner's Use Only

Part	Question No.	Marks
A	1	
	2	
	3	
	4	
B	5	
	6	
	7	
	9	
Total	10	
Percentage		

Final Mark

In Numbers	
In Letters	

Code Numbers

Marking Examiner 1	
Marking Examiner 2	
Checked by :	
Supervised by :	

PART A - STRUCTURED ESSAY

1. (a) State whether the following statements are true or false. (Reasons are not required.)
(i) The polarizability of halide ions increases with increasing size.
(ii) The $\mathrm{O}-\mathrm{N}-\mathrm{O}$ bond angle of NO_{2} is greater than that of NO_{2}^{-}.
(iii) London dispersion forces among CCl_{4} molecules are smaller than the London dispersion forces among SO_{3} molecules.
(iv) The shape of the HSO_{4}^{-}ion is trigonal bipyramidal.
(v) All $3 d$ atomic orbitals of an atom are represented by quantum numbers (n, l, m_{l}) 3, 2, 1.
(vi) The addition of an electron to a gaseous phosphorus atom is an exothermic process whereas for a gaseous nitrogen atom it is endothermic.
(b) (i) Draw the most acceptable Lewis structure for the molecule $\mathrm{SF}_{3} \mathrm{~N}$.
(ii) The most stable Lewis structure for the molecule $\mathrm{C}_{3} \mathrm{O}_{2}$ (carbon suboxide) is shown below. Draw another two Lewis structures (resonance structures) for this molecule.
(Note: Marks will not be awarded for Lewis structures drawn with octet rule violated.)

$$
\ddot{O}=C=C=C=O
$$

(iii) Based on the Lewis structure given below, state the following regarding the C, N and P atoms given in the table below.
I. VSEPR pairs around the atom II. electron pair geometry around the atom
III. shape around the atom
IV. hybridization of the atom

The atoms are numbered as follows:

	C^{1}	N^{2}	C^{3}	P^{4}
I.	VSEPR pairs			
I.	electron pair geometry			
III.	shape			
IV.	hybridization			

(iv) Identify the atomic/hybrid orbitals involved in the formation of the following a bonds in the Lewis structure giyen in part (iii) above. (Numbering of atoms is as in part (iii).)
I. $\mathrm{F}=\mathrm{C}^{1}$
F. \qquad C^{1}
${ }^{4}$.
II. $\mathrm{C}^{1}-\mathrm{N}^{2}$
C^{1}
N^{2}
III. $\mathrm{N}^{2}-\mathrm{C}^{3}$
N^{1}
²
C
C^{3}
IV. $\mathrm{C}^{\mathrm{X}}-\mathrm{p}^{t}$
-
p^{4}
V. $\mathrm{P}-\mathrm{Cl}$
P^{4}
Cl
(v) Identify the atomic orbituls involved in the formation of the following π bonds in the Lewis structure given in part (iii) above. (Nambering of atoms is as in part (iii).)
I. $\mathrm{N}^{2}-\mathrm{C}^{2}$
N^{2}
C^{3}
II. $\mathrm{C}^{3}-\mathrm{p}^{4}$
C^{3}
p 4
(5.2 markx)
(c) Arrange the following in the increasing order of the property indicated in parenthesis. (Reasons are not required.)
(i) $\mathrm{B}, \mathrm{Na}, \mathrm{P}, \mathrm{Be}, \mathrm{N}$ (first ionization energy)
 $<$ \qquad
(ii) $\mathrm{NH}_{3}, \mathrm{NOCl}, \mathrm{NO}_{2} \mathrm{Cl}, \mathrm{NH}_{4}^{+}, \mathrm{F}_{2} \mathrm{C}-\mathrm{NC}$ (electronegativity of nitrogen)
\qquad $<$ \qquad $<$ \qquad $<$ \qquad < \qquad
(iii) Quantum numbers of electrons in an atom $\left(n, l, m_{i}, m_{c}\right)$

$$
\left(3,1,0,-\frac{1}{2}\right),\left(3,0,0,+\frac{1}{2}\right),\left(2,0,0,+\frac{1}{2}\right),\left(2,1,+1,+\frac{1}{2}\right),\left(3,2,-1,+\frac{1}{2}\right) \text { (energy of electron) }
$$

\qquad
\qquad $<$ \qquad $<$ \qquad (2.4 markr)

2, (a) \mathbf{X} is a p-block element in the Periodic Table. It exists as a diatomic gas. \mathbf{X} exhibits a wide range of oxidation states, \mathbf{Y} is the most common hydride of $\mathbf{X} . \mathbf{Y}$ dissolves readily in water to give a basic solution. \mathbf{Y} acts as an oxidizing agent, a reducing agent, an acid and a base. The diatomic gas of \mathbf{X} is used in the manufacture of \mathbf{Y}.
(i) Identify \mathbf{X} and \mathbf{Y}.

$$
\mathrm{X}=\ldots \ldots \ldots \ldots+\ldots . \quad \mathrm{Y}=
$$

\qquad
(ii) The diatomic gas of \mathbf{X} is generally considered as inert Briefly explain.
(iii) Write the chemical formulae of three oxides of \mathbf{X}, and indicate the oxidation state of X in each compound,
\qquad
\qquad
\qquad
(iv) In each of the following instances, give a balanced chemical equation to indicate the action of \mathbf{Y}.

1. \mathbf{Y} as an oxidizing agent
II. Y as a reducing agent
(v) Consider the hydrides of the elements in the group to which \mathbf{X} belongs, which are analogous to \mathbf{Y}. Sketch the variation in boiling points of these hydrides (including \mathbf{Y}) in the graph below. In your sketch indicate the hydrides using their chemical formulae.
(Note: Values of boiling points are not required.)
Boiling point \mid Hydride
(vi) Give reasons for the variation in boiling points in part (v) above.
\qquad
\qquad
\qquad
\qquad
\qquad
(vii) I. Write what you would observe when an excess of an aqueous solution of \mathbf{Y} is added to a solution of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$.
II. Write the chemical formula of the species that gives rise to your observation in part I above.
(viii) Give one chemical test to identify Y.

Test:
Observation:
(ix) \mathbf{Z} is an oxo-acid of \mathbf{X} and a strong oxidizing agent.

I. Identify \mathbf{Z}.

II. State the products obtained when hot concentrated \mathbf{Z} reacts with sulphur.
(6.0 marks)
(b) A and \mathbf{B} are compounds of two p-block elements that belong to the same group in the Periodic Table. A exists as a colourless, odourless liquid at room temperature and atmospheric pressure. It is also found in the gaseous and solid states. The solid state of \mathbf{A} is less dense than its liquid state. Ionic and polar compounds are readily soluble in \mathbf{A}.
B is a colourless gas at room temperature and atmospheric pressure. A filter paper moistened with lead acetate turns black on treatment with B.
(i) Identify \mathbf{A} and \mathbf{B}.
A = \qquad B $=$
\qquad
(ii) Sketch the shapes of \mathbf{A} and \mathbf{B} showing lone pairs of electrons where necessary.
(iii) Giving reasons, state whether \mathbf{A} or \mathbf{B} has the larger bond angle.
\qquad
\qquad
\qquad
(iv) In each of the following instances, give a balanced chemical equation to indicate the action of \mathbf{A}.
I. \mathbf{A} as an acid \qquad
II. A as a base:
(v) Write the balanced chernical equation for the reaction of \mathbf{B} with aqueous lead acetate.
(vi) I. Write what you would observe when \mathbf{A} and \mathbf{B} are added separately to an acidified solution of BiCl_{3}. with \mathbf{A} (excess) :
with B:
II. Write balanced chemical equations for your observations in part I above.
\qquad
(4,0 marks)
3. The reaction $\mathbf{A}+\mathbf{B} \rightleftharpoons 2 \mathbf{C}+\mathbf{D}$ (elementary in both directions) was carried out at $25^{\circ} \mathrm{C}$. Initially, the reaction mixture was made by dissolving 0.10 mol of \mathbf{A} and $0,10 \mathrm{~mol}$ of \mathbf{B} in distilled water (total volume $100.00 \mathrm{~cm}^{3}$). Variation in the concentration of \mathbf{A} in this solution with time is shown in the graph.

$$
\text { concentration (mol dm} \left.m^{-3}\right)
$$

(i) Calculate the amount of \mathbf{A} (in moles) reacted during the first 4.0 minutes of the reaction.
\qquad
\qquad
\qquad
(ii) Would the rate of the forward reaction be less than the rate of the reverse reaction after 4.0 minutes? Explain your answer.

$$
-2
$$

\qquad
\qquad
\qquad
(iii) Given that the rate constant of the forward reaction ($k_{\text {forward }}$) is $18.57 \mathrm{~mol}^{-1} \mathrm{dm}^{3} \mathrm{~min}^{-1}$, calculate the initial rate of the forward reaction.
\qquad
\qquad
\qquad
\qquad
\qquad
(iv) Calculate the concentrations of C and D at equilibrium.

Draw the relevant curves showing the variation of the concentrations of \mathbf{C} and \mathbf{D} with time in the above graph and label them.
\qquad
\qquad
\qquad
\qquad
\qquad
(v) Write the expression for the equilibrium constant K_{c} of the above reaction and calculate its value.
\qquad
\qquad
\qquad
\qquad
\qquad
(vi) Calculate the value of the rate constant ($k_{\text {reverse }}$) of the reverse reaction.
\qquad
\qquad
\qquad
\qquad
\qquad
(vii) After reaching equilibrium, the volume of the solution was doubled by adding $100.00 \mathrm{~cm}^{3}$ of distilled water. Predict the direction of the net reaction soon after doubling the volume of the solution, by means of a suitable calculation.
\qquad
\qquad
\qquad
\qquad
\qquad
(viii) Consider that the above experiment was conducted at a temperature lower than $25^{\circ} \mathrm{C}$. How would this affect the rate of the reverse reaction? Explain your answer giving reasons.
\qquad
\qquad
\qquad
4. (a) (i) Compounds A, B and C are structural isomers of each other having the molecular formula $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$. All three compounds give yellow-orange precipitates with $2,4-\mathrm{DNP}$. None of them give a silver mirror in the silver mirror test. When \mathbf{A}, \mathbf{B} and \mathbf{C} were separately reacted with NaBH_{4}, compounds D, E and \mathbf{F} respectively were obtained. Only \mathbf{E} and \mathbf{F} showed optical isomerism. When \mathbf{B} and \mathbf{C} were separately reacted with $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{MgBr}$ followed by hydrolysis, compounds \mathbf{G} and \mathbf{H} respectively, were obtained. Only G showed optical isomerism. Draw the structures of A, B, C, D, E, F, G and H in the boxes given below. (It is not necessary to show stereoisomeric forms.)

A

D

G

B

E

H
(ii) Draw the structure of the product of the following reaction.

$$
\text { A } \xrightarrow[\text { (2) dehydration }]{\text { (1) } 2,4-\text { DNP }}
$$

(45 marls)
(b) Draw the structure of the major organic product in each of the following reactions.
(i) $\mathrm{C}_{6} \mathrm{H}_{6}$

\square
(ii)

\qquad
(iii) $\mathrm{CH}_{3} \mathrm{CHO}$

> (1) aqueous NaOH
> (2) dehydration
(iv)

\qquad

(v) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CONH}_{2}$ \qquad
\square
(vi)

\qquad
(vii) $\mathrm{CH}_{3} \mathrm{COCl}$ \qquad NH_{3}

(viii) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}$ \qquad
(ix) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ \qquad
(x) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COCH}_{3}$ \qquad

(35 marks)
(c) One of the products in the reaction of Cl_{2} with CH_{4} in the presence of light is $\mathrm{CH}_{3} \mathrm{Cl}$. Write the steps of the mechanism of the reaction which shows how $\mathrm{CH}_{3} \mathrm{Cl}$ is formed. Indicate movement of electrons using curved arrows / curved half arrows ($\curvearrowright / \curvearrowright$).

Sebach Serone II

Chemistry
II

* Universal gas constant $R=8314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
* Avogadro constant $N_{A}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$

PART B - ESSAY

Answer two questions only, (Each question carries 15 marks.)
5. (a) Consider the following reactions,

$$
\begin{aligned}
& \mathrm{M}\left(\mathrm{CO}_{3}\right)_{2}-\mathrm{nH}_{2} \mathrm{O}(\mathrm{~s}) \rightarrow \mathrm{M}\left(\mathrm{CO}_{3}\right)_{2}(\mathrm{~s})+\mathrm{nH}_{2} \mathrm{O}(\mathrm{~g}) \\
& \mathrm{M}\left(\mathrm{CO}_{3}\right)_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{MO}_{2}(\mathrm{~s})+2 \mathrm{CO}_{2}(\mathrm{~g})
\end{aligned}
$$

A small amount $(0.10 \mathrm{~mol})$ of $\mathrm{M}\left(\mathrm{CO}_{3}\right)_{2} \cdot \mathrm{nH}_{2} \mathrm{O}(\mathrm{s})$ is present in an evacuated rigid container of volume $0.08314 \mathrm{~m}^{3}$. The temperature of the container was raised to 400 K . The metal carbonate, $\mathrm{M}\left(\mathrm{CO}_{3}\right)_{2}$ does not decompose at this temperature but the crystalline water evaporates completely. The pressure of the container was measured to be $1.60 \times 10^{4} \mathrm{~Pa}$. Volume occupied by the solids is negligible.
Determine the value of ' n ' in the formula $\mathrm{M}\left(\mathrm{CO}_{3}\right)_{2} \cdot \mathrm{nH}_{2} \mathrm{O}$ (s).
(2.0 marks)
(b) The temperature of the above system was then increased to 800 K . It was observed that some amount of the solid metal carbonate is decomposed and is in equilibrium with the gas phase. The pressure of the container was measured to be $4.20 \times 10^{4} \mathrm{~Pa}$.
(i) Calculate the partial pressure of water vapour in the container at 800 K ,
(ii) Calculate the partial pressure of CO_{2} in the container at 800 K .
(iii) Write an expression for the pressure equilibrium constant, K_{p} for the decomposition of $\mathrm{M}\left(\mathrm{CO}_{3}\right)_{2}(\mathrm{~s})$. Calculate K_{p} at 800 K .
(iv) Calculate the molar percentage of the metal carbonate decomposed at 800 K ,
(v) Enthalpy change $(\Delta \mathrm{H})$ for the decomposition of the metal carbonate under the above conditions is $400 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Calculate the corresponding entropy change (ΔS).
(vi) Suggest two ways to drive the decomposition reaction of $\mathrm{M}\left(\mathrm{CO}_{3}\right)_{2}(s)$ in the forward direction.
(6.5 marks)
(c) With the aid of thermochemical cycles and the data given in the table, answer the following questions.

Species	Standard enthalpy of formation $\left(\Delta H_{f}^{\circ}\right)\left(\mathrm{kJ} \mathrm{mol}^{-\mathrm{l}}\right)$
$\mathrm{M}(\mathrm{s})$	0.0
$\mathrm{M}(\mathrm{g})$	800.0
$\mathrm{O}_{2}(\mathrm{~g})$	0.0
$\mathrm{O}(\mathrm{g})$	249.2
$\mathrm{MO}_{2}(\mathrm{~g})$	-400.0

(i) Given that $\mathrm{MO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{MO}_{2}(\mathrm{~g}) \Delta \mathrm{H}^{\circ}=-50,0 \mathrm{~kJ} \mathrm{~mol}^{-1}$, calculate the standard enthalpy of formation of $\mathrm{MO}(\mathrm{g})$.
(ii) Calculate $\mathrm{M}-\mathrm{O}$ bond dissociation enthalpy in $\mathrm{MO}(\mathrm{g})$.
(iii) Calculate $\mathrm{M}-\mathrm{O}$ bond dissociation enthalpy in $\mathrm{MO}_{2}(\mathrm{~g})$.
(iv) By means of a suitable calculation, predict whether the reaction, $\mathrm{MO}_{2}(\mathrm{~g}) \rightarrow \mathrm{MO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$ is spontaneous under standard conditions and 2000 K . Standard entropy change of this reaction is $30.0 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$.
(6.5 marks)
6. (a) An experiment was carried out to determine the partition coefficient of iodine (I_{2}) between water (A) and an organic solvent (B) which form an immiscible liquid system
$20.00 \mathrm{~cm}^{3}$ of B containing ' n ' moles of I_{2} is mixed with $20.00 \mathrm{~cm}^{3}$ of \mathbf{A} and allowed to reach equilibrium at room temperature.
The concentration of I_{2} in phase \mathbf{A} is determined by titrating a $5.00 \mathrm{~cm}^{3}$ sample drawn from phase A with a $0.005 \mathrm{moldm}^{-3}$ solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The volume of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ required to reach the end point was $22.00 \mathrm{~cm}^{3}$. The concentration of I_{2} in phase \mathbf{B} was determined to be $0.040 \mathrm{~mol} \mathrm{dm}^{-3}$.
(i) Write the balanced chemical equation for the reaction between $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and I_{2}
(ii) Calculate the concentration of I_{2} in phase \mathbf{A}.
(iii) Calculate the value of the partition coefficient, K_{D} where $K_{D}=\frac{\left[\mathrm{I}_{2}\right]_{\mathrm{B}}}{\left[\mathrm{I}_{2}\right]_{\mathrm{A}}}$.
(iv) Calculate the total number of moles of \mathbf{I}_{2} in the two phases \mathbf{A} and \mathbf{B}.
(4.5 marks)
(b) The above experiment was repeated under the same conditions, that is, at the same temperature, using the same amount of I_{2} and the same volumes, but with the addition of Γ^{-}ions to phase A. The system was then thoroughly shaken and allowed to reach equilibrium. The volume of $0.005 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution required to titrate the L_{2} in a $.5 .00 \mathrm{~cm}^{7}$ sample of phase A was $41.00 \mathrm{~cm}^{3}$. The concentration of I_{3} in phase \mathbf{B} was then determined to be $0.030 \mathrm{~mol} \mathrm{dm}^{-3}$.
(i) Calculate the amount of I_{2} (moles) expected in $5.00 \mathrm{~cm}^{3}$ of phase \mathbf{A}, based on the partition coefficient for the distribution of I_{2} between the phases \mathbf{A} and \mathbf{B}.
(ii) Calculate the amount (moles) of I_{2} reacted with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ in the above titration,
(iii) Considering the different iodine species present in phase \mathbf{A}, explain why the answers obtained in parts (b)(i) and (b)(ii) above are different.
(35 marks)
(c) Liquids \mathbf{X} and \mathbf{Y} form an ideal solution obeying Raoult's law.

Initially only liquid \mathbf{X} was introduced in to an evacuated rigid container as shown in the figure.

Maintaining the liquid level at l, the system was allowed to reach equilibrium at 400 K . The pressure of the container was measured to be $3.00 \times 10^{4} \mathrm{~Pa}$. The volume of the vapour phase when the Iiquid level is at l was $4.157 \mathrm{dm}^{3}$. Then liquid \mathbf{Y} was introduced in to the container, mixed with liquid \mathbf{X} and the system was allowed to reach equilibrium at 400 K . The liquid level was maintained at l. The molar ratio of $\mathbf{X}: \mathbf{Y}$ in the liquid phase was found to be $1: 3$. The pressure of the container was measured to be $5.00 \times 10^{4} \mathrm{~Pa}$.
(i) What is the saturated vapour pressure of X at 400 K ?
(ii) Calculate the mole fractions of \mathbf{X} and \mathbf{Y} in the liquid phase at equilibrium.
(iii) Calculate the partial pressure of \mathbf{X} at equilibrium after the addition of \mathbf{Y}.
(iv) Calculate the partial pressure of \mathbf{Y} at equilibrium.
(v) Calculate the saturated vapour pressure of \mathbf{Y}.
(vi) Calculate the amounts (in moles) of \mathbf{X} and \mathbf{Y} in the vapour phase.
(vii) When a mixture of the liquids \mathbf{X} and \mathbf{Y} is subjected to fractional distillation, state which compound would distill out first from the fractional distillation column. Give reason/s for your answer.
(7.0 marks)
7. (a) Using only the chemicals given in the list, show how you would carry out the following conversion.

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CHO} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COCH}_{3}
$$

List of chemicals
aqueous $\mathrm{NaOH}, \mathrm{HBr}$, alcoholic $\mathrm{KOH}, \mathrm{NaBH}_{4}, \mathrm{H}^{+} / \mathrm{KMnO}_{4}$
Your conversion should not exceed 7 steps.
(6.0 marks)
(b) Identify $\mathbf{R}_{1}-\mathbf{R}_{4}$ and $\mathbf{X}_{1}-\mathbf{X}_{4}$ and $\mathbf{Y}_{1}, \mathbf{Y}_{2}$ in order to complete the following reaction scheme.

(1) NaOH
(2) H^{+}

(6.0 marks)
(c) (i) Give the mechanism of the following reaction.

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{HBr} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}+\mathrm{H}_{2} \mathrm{O}
$$

(ii) State whether the above reaction is a nucleophilic substitution reaction or an electrophilic substitution reaction. Identify the nucleophile or electrophile as appropriate.
(iii) State giving reasons which of the two compounds, phenol $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}\right)$ or ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ is more acidic.
(3.0 marks)

PART C - ESSAY
Answer two questions only (Each question carries 15 marks.)
8. (a) An aqueous solution \mathbf{P} contains two cations and two anions. The following experiments were carried out to identify these cations and anions.

Cations

Experiment	Observation
\mathbf{P} was acidified with dilute HCl and $\mathrm{H}_{2} \mathrm{~S}$ was bubbled through the solution.	A clear solution was obtained,
The above solution was boiled till all the $\mathrm{H}_{2} \mathrm{~S}$ was removed. A few drops of conc. HNO_{3} were added and the solution was heated further. The resulting solution was cooled and $\mathrm{NH}_{4} \mathrm{Cl} / \mathrm{NH}_{4} \mathrm{OH}$ was added.	A brown precipitate (Q) was formed.
Q was removed by filtration and $\mathrm{H}_{2} \mathrm{~S}$ was bubbled through the filtrate.	A pale pink precipitate (R) was formed.
\mathbf{R} was removed by filtration and the filtrate was boiled till all the $\mathrm{H}_{2} \mathrm{~S}$ was removed. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ was added to the solution.	A clear solution was obtained.
Dilute NaOH was added to a fresh portion of \mathbf{P}.	A dirty-green precipitate and a while precipitate were fomed,

Experiments for precipitates \mathbf{Q} and \mathbf{R}.

Experiment	Observation
Q was dissolved in dil. HNO_{3} and a salicylic acid solution	
was added.	A light purple solution was obtained.
\mathbf{R} was dissolved in dilute acid and dil NaOH was added	
to the solution.	A white precipitate was formed, It tumed brown on standing.

Anions

(B)		Test	Observation
	I.	BaCl_{2} solution was added to \mathbf{P}.	A white precipitate was formed.
	II,	The white precipitate was separated by filtration and dil. HCl was added to the precipitate.	The white precipitate was not dissolved.
(9)		Cl_{2} water and chloroform were added to a portion of the filtrate from (8) II, and the mixture was throughly shaken.	Chloroform layer turned yellowish-brown.

(i) Identify the two cations and the two anions in solution \mathbf{P}. (Reasons are not required,
(ii) Write the chemical formulae of the precipitates \mathbf{Q} and \mathbf{R}.
(iii) Give reasons for the following:
I. Removal of $\mathrm{H}_{2} \mathrm{~S}$ in experiment (2) for cations.

II, Heating with conc, HNO_{3} in experiment (2) for cations.
(7.5 marks)
(b) The sample \mathbf{X} contains lead, copper and an inert material. The following procedure was caried out to analyse lead and copper in \mathbf{X}.

Procedure:

A mass of 0.285 g of \mathbf{X} was dissolved in a slight excess of dil. HNO_{3}. A clear solution was obtained. A NaCl solution was added to the resulting clear solution, A white precipitate (\mathbf{Y}) was formed. The precipitate was separated by filtration and the precipitate (\mathbf{Y}) and filtrate (Z) were analysed separately.

Precipitate (Y)

The precipitate was dissolved in hot water A solution of $\mathrm{K}_{2} \mathrm{CrO}_{4}$ was added in excess A yellow precipitate was formed. The precipitate was separated by ifltration and dissolved in dil. HNO_{3}. An orange coloured solution was obtained. Excess KI was added to this solution and the liberated I_{2} was titrated with $0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, with starch as the indicator. The volume of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ required to reach the end point was $27,00 \mathrm{~cm}^{3}$. (Assume that the NO_{3}^{-}ions do not interfere with the titration.)
Filtrate (Z)
The filtrate was neutralized and excess KI was added to it. The liberated I_{2} was titrated with $0,100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{2}$, with starch as the indicator. The volume of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ required to reach the end point was $15.00 \mathrm{~cm}^{3}$.
(Note: Assume that the inert material was soluble in dil. HNO_{3} and did not interfere with the experiment.)
(i) Calculate the mass percentages of lead and copper in \mathbf{X}. Write balanced chemical equations where relevant.
(ii) What is the colour change at the end point in the titration carried out in the analysis of precipitate \mathbf{Y} ?
$(\mathrm{Cu}=63.5, \mathrm{~Pb}=207)$
(75 marks)
9. (a) The following questions are based on the environment and related issues.
(i) Identify three greenhouse gases that contribute to global warming. State two consequences of global warming.
(ii) Global environmental issues caused by coal power plants are well known Identify one such issue that contributes significantly to change in certain water quality parameters in rivers and lakes.
(iii) Name the chemical species responsible for the environmental issue identified in (ii) above and state three water quality parameters that are likely to be affected by this issue.
(iv) Identify two environmental issues that change (increase or decrease) the ozone level in the atmosphere and explain briefly how these changes take place with the aid of balanced chemical equations.
(v) I. "Most of the harmful gases in vehicle exhausts are converted to relatively harmless gases by catalytic converters." Briefly explain this statement.
II. Name the harmful gas (except CO_{2}) that is not converted to a less harmful gas by the catalytic converter. State briefly how this harmful gas is formed in the vehicle engine.
(7.5 marks)
(b) The flow chart given below shows the production of two important compounds \mathbf{P}_{1} and \mathbf{P}_{2} and three other important compounds $\mathbf{P}_{3}, \mathbf{P}_{4}$ and \mathbf{P}_{5} derived from them, \mathbf{P}_{1} is used as a raw material in the manufacture of $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathbf{P}_{3}$ can be manufactured by the reaction between \mathbf{P}_{1} and \mathbf{P}_{2}. $\mathbf{P}_{\mathfrak{y}}$ is used as a fertilizer and as an explosive. \mathbf{P}_{1} is also used in the manufacture of \mathbf{P}_{4} which is a widely used fertilizer. \mathbf{P}_{4} is used to synthesize an important thermosetting polymer $\mathbf{P}_{\mathbf{5}}$.
$\overline{\mathbf{M}}$ Manufacturing process

PC. Physicalichemical process to
obtain raw material

(S) Source of raw material
(X) Unieacted raw material(s) / substance discharged to the atmosphere during physsical and/or chemical process

Answer the following questions based on the above flow chart,
(i) Identify $\mathbf{P}_{1}, \mathbf{P}_{2}, \mathrm{P}_{\mathbf{3}}, \mathbf{P}_{4}$ and \mathbf{P}_{5}
(ii) Identify $\mathbf{R}_{\mathbf{1}}, \mathbf{R}_{\mathbf{2}}$ and $\mathbf{R}_{\mathbf{3}}$
(iii) Identify $\mathbf{X}_{1}, \mathbf{X}_{2}$ and \mathbf{X}_{3}
(iv) Identify S .
(v) Briefly state the processes taking place in $\mathbf{P C}$, and $\mathbf{P C}_{2}$ giving balanced chemical equations where applicable.
(vi) Identify manufacturing processes $\mathbf{M}_{1}, \mathbf{M}_{2}$ and \mathbf{M}_{3} (e.g. contact process or manufacture of $\mathrm{H}_{2} \mathrm{SO}_{4}$.)
(vii) Give balanced chemical equations with appropriate conditions, for reactions taking place in $\mathbf{M}_{1}, \mathbf{M}_{2}$ and \mathbf{M}_{3}.
(viii) I. Give one use of each compound $\mathbf{P}_{\mathbf{1}}$ and $\mathbf{P}_{\mathbf{2}}$ other than those mentioned above,
II. Give one use of \mathbf{R}_{1} in the manufacturing process \mathbf{P}_{1} other than being used as a raw material.
(75 marks)

10．（a）A and \mathbf{B} are complex ions，（i．e metal ion and ligands coordinated to it）with an octahedral geometry．They have the same atomic composition of $\mathrm{MnC}_{5} \mathrm{H}_{3} \mathrm{~N}_{6}$ ．In each complex ion，two types of ligands are coordinated to the metal ion，When an aqueous solution containing \mathbf{A} is treated with a potassium salt，the coordination compound \mathbf{C} is formed． C gives four ions in aqueous solution，When an aqueous solution containing B is treated with a potassium salt the coordination compound \mathbf{D} is formed． \mathbf{D} gives three ions in aqueous solution． Both C and D have an octahedral geometry．
（Note：The oxidation states of manganese in \mathbf{A} and \mathbf{B} do not change on treatment with the potassium salt）．
（i）Identify the ligands coordinated to manganese in \mathbf{A} and \mathbf{B} ．
（ii）Give the structures of $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} ．
（iii）Write the electronic configurations of the manganese ions in \mathbf{A} and \mathbf{B} ．
（iv）Write the IUPAC names of \mathbf{C} and \mathbf{D} ．
（7．5 marks）
（b）（i）I．Write the reduction half reaction corresponding to the electrode， $\mathrm{Ag}(\mathrm{s})|\mathrm{AgCl}(\mathrm{s})| \mathrm{Cl}^{-}(\mathrm{aq})$ ．
II．State whether the electrode potential of $\mathrm{Ag}(\mathrm{s})|\mathrm{AgCl}(\mathrm{s})| \mathrm{Cl}^{-}(\mathrm{aq})$ depends on the Ag^{+} concentration in the solution．Explain your answer．
（ii）Consider the following reaction．

$$
\mathrm{Fe}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

1．Write the oxidation and reduction half reactions relevant to the above reaction．
II，Given that the above reaction is the cell reaction of an electrochernical cell，determine the standard electromotive force of the cell

$$
\mathrm{E}_{\mathrm{Fe}^{2+}(\mathrm{aq}) / \mathrm{cc}(\mathrm{~s})}^{0}=-0.44 \mathrm{~V} \quad \mathrm{E}_{\mathrm{H}^{+}(\mathrm{qq}) / \mathrm{o}_{2}(\mathrm{~g}) / \mathrm{H}_{2} \mathrm{O}(\mathrm{l})}^{\mathrm{e}}=1.23 \mathrm{~V}
$$

（iii）A constant current of 100 mA was passed through $100.00 \mathrm{~cm}^{3}$ of a $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous CaBr_{2} solution as shown in the diagram．The temperature of the system was maintained at $25^{\circ} \mathrm{C}$ ．

I．Write the oxidation and reduction reactions that take place at the electrodes，
II．Calculate the time taken for the commencement of precipitation of $\mathrm{Ca}(\mathrm{OH})_{2}$（ s ）．Solubility product of $\mathrm{Ca}(\mathrm{OH})_{2}$ at $25^{\circ} \mathrm{C}$ is $1.0 \times 10^{-5} \mathrm{~mol}^{3} \mathrm{dm}^{-9}$ ．Neglect the ionization of water Assume that the volume of the aqueous phase remains constant．
（7．5 marks）

The Periodic Table

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
$\mathbf{L a}$	$\mathbf{C e}$	$\mathbf{P r}$	$\mathbf{N d}$	$\mathbf{P m}$	$\mathbf{S m}$	$\mathbf{E u}$	$\mathbf{G d}$	$\mathbf{T b}$	$\mathbf{D y}$	$\mathbf{H o}$	$\mathbf{E r}$	$\mathbf{T m}$	$\mathbf{Y b}$	$\mathbf{L u}$
89	90	91	$\mathbf{9 2}$	93	94	95	96	97	98	99	100	101	$\mathbf{1 0 2}$	$\mathbf{1 0 3}$
$\mathbf{A c}$	$\mathbf{T h}$	$\mathbf{P a}$	\mathbf{U}	$\mathbf{N p}$	$\mathbf{P u}$	$\mathbf{A m}$	$\mathbf{C m}$	$\mathbf{B k}$	$\mathbf{C f}$	$\mathbf{E s}$	$\mathbf{F m}$	$\mathbf{M d}$	$\mathbf{N o}$	$\mathbf{L r}$

[^0]: 41. BaCO_{3} is more themally stable than MgCO_{3}.

 Polarizing power of group two cations decreases down the group.
 42. The lone pair of electrons on nitrogen in an

 Second statement

 Nitrogen is less electronegative than oxygen.

