සියලූ ම නිම්කම් ඇව්රිණි / முழுப் பதிப்புரிமையுடையது / All Rights Reserved] രേഖാ മാത്ര പ്രോഗ്നാര്മാനുള്ള് പ്രേഖാ മാതര പ്രവാഹം മാത്ര പ്രോഗ്നാമായത്തും മാത്ര മോഗ്നാര്മാനുള്ള പ്രേഖാ മാത്ര എസ്ലോപ്പ്പി, എന്നും എത്തെക്കണ്ടെ இത്തെങ്കുന്നു. Department of Examinations, Sri Lanka Department of Examinations, Sri Lanka Department of Examinations, Sri Lanka ക്രമാ മാത്ര ഫോഗ്നാമാളിന്റെ എത്തെ മാത്ര Department of Examinations, Sri Lanka മാത്രം എത്തെ മാത്രം പ്രവാഹം പ്രവാഹം പ്രവാദം പ്രാഗ്നാളിന്റെ എത്തെ മാത്രം പ്ര අධ්නයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2018 15.08.2018 / 0830 - 1030 පැය දෙකයි රස න විදහාව Ι இரசாயனவியல் Ι இரண்டு மணித்தியாலம் Chemistry Two hours ł Instructions: * Periodic Table is provided This paper consists of 09 pages. ₩. * Answer all the questions Use of calculators is not allowed. * * Write your Index Number in the space provided in the answer sheet. * Follow the instructions given on the back of the answer sheet carefully. * In each of the questions 1 to 50, pick one of the alternatives from (1), (2), (3), (4), (5) which is correct or most appropriate and mark your response on the answer sheet with a cross (x) in accordance with the instructions given on the back of the answer sheet. Universal gas constant $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $N_{\rm A} = 6.022 \times 10^{23} \, {\rm mol}^{-1}$ Avogadro constant $h = 6.626 \times 10^{-34} \,\mathrm{Js}$ Planck's constant $c = 3 \times 10^8 \text{ m s}^{-1}$ Velocity of light 1. The number of unpaired electrons present in a gaseous Co3+ ion in its ground state is, (1) 1 (2) 2 (3) 3 (4) 4 (5) 5 2. Which quantum number(s) (n, l, m_p, m_s) is/are associated with the shape of an atomic orbital of an atom? (1) l(2) m_i (3) n and l(4) n and m_i (5) l and m_i 3 What is the IUPAC name of the compound shown below? CH₃CH₂CH—C=CHCO₂H NO. Br (1) 4-bromo-3-nitro-2-hexenoicacid (2) 4-bromo-3-nitro-2-hexenoic acid (3) 3-nitro-4-bromo-2-hexenoicacid (4) 3-nitro 4 bromo-2-hexenoic acid (5) 3-bromo-4-nitro-4-hexenoic acid 4. The correct answer when the molecules O_2 , H_2O_2 , H_2O_2 , OF_2 and O_2F_2 (structure similar to H_2O_2) are arranged in the decreasing order of the oxidation state of oxygen (O) is, (1) $O_2F_2 > OF_2 > O_2 > H_2O > H_2O_2$ (2) $H_2O > H_2O_2 > O_2 > O_2F_2 > OF_2$ (4) $OF_2 > O_2F_2 > O_2 > H_2O > H_2O_2$ (3) $H_2O_2 > O_2F_2 > O_2 > OF_2 > H_2O$ (5) $OF_2 > O_2F_2 > O_2 > H_2O_2 > H_2O_2$ 5. The most acceptable Lewis structure for the thiocyanate ion SCN⁻ is, (1) $\overset{\Theta}{:}\overset{\Theta}{:} - C \equiv \overset{\Theta}{N}$ (2) $\overset{\Theta}{:} = C = \overset{\Theta}{N}$: (3) $\overset{\Theta}{:} \equiv C = \overset{\Theta}{N}$: (4) $\overset{\Theta}{:} = \overset{\Theta}{C} \equiv N$: (5) $\overset{\Theta}{:} \overset{\Theta}{:} \equiv \overset{\Theta}{C} = \overset{\Theta}{N}$ 6. The molarity (mol dm⁻³) of a NaI solution which has a density of 1.03 g cm⁻³ and is 3% NaI by mass is, (Na = 23, I = 127)(1) 0.21 (2) 0.23 (3) 0.25 (4) 0.28 (5) 0.30

AL/2018/02/E-I

[See page two

5639

7.	Precipitates of AgI and AgBr were added to a small amount of distilled water. This mixture was
	allowed to reach equilibrium at 25 °C. It was observed that both the solids were present in the system at equilibrium. Which of the following relations is applicable to this solution?
	$(K_{\rm sp(AgL)} = 8.0 \times 10^{-17} \text{ mol}^2 \text{ dm}^{-6}, K_{\rm sp(AgBr)} = 5.0 \times 10^{-13} \text{ mol}^2 \text{ dm}^{-6} \text{ at } 25 \text{ °C})$
	(1) $[Br^{-}] = \sqrt{5.0 \times 10^{-13}} \mod dm^{-3}$ and $(1^{-}) = \sqrt{8.0 \times 10^{-17}} \mod dm^{-3}$
	(2) $[BT^{-}] I[T^{-}] = [Ag^{+}]^{2}$
	(3) $\left[Ag^{+} \right] = \left(\sqrt{5.0 \times 10^{-1.5} + \sqrt{8.0 \times 10^{-1.5}}} \right) \mod dm^{-5}$
	(4) $\frac{[Br]}{[r]} = \frac{5.0}{8.0} \times 10^4$
	(5) $[Ag^+] = [Br^-] = [I^-]$
8.	Which of the following statements is false?
	(1) Although the carbonates of all the group two metals in the Periodic Table are insoluble in water, their bicarbonates are soluble.
	(2) The hydroxides of all the group two metals in the Periodic Table are soluble in water.
	(3) The nitrates of all the group two metals in the Periodic Table are soluble in water.(4) The oxides and hydroxides of Na and Mg show basic properties whereas the oxide and
	hydroxide of AI show amphoteric properties. (5) The hydrides of Si and S show weakly acidic properties
9	In which list are the elements given in the order of increasing (left to right) atomic radii?
	(1) Li, Na, Mg, S(2) C, Si, S, Cl(3) B, C, N, P(4) Li, Na, K, Ca(5) B, Be, Na, K
10.	Liquids A and B form an ideal solution. Consider a mixture of liquids A and B in equilibrium
	with the vapour in a closed rigid container at constant temperature. P_A^o and P_B^o respectively are the saturated vapour pressures of A and B while P is the total pressure of the container and X_A^g is the mole fraction of A in the vapour phase. Which of the following is correct about this system?
	(1) $P = (P_A^o - P_B^o) X_A^g + P_B^o$ (2) $\frac{1}{P} = (\frac{1}{P_A^o} - \frac{1}{P_B^o}) X_A^g + \frac{1}{P_B^o}$
	(3) $\mathbf{P} = \left(\mathbf{P}_{A}^{o} + \mathbf{P}_{B}^{o}\right)\mathbf{X}_{A}^{g} - \mathbf{P}_{B}^{o}$ (4) $\frac{1}{\mathbf{P}} = \left(\frac{1}{\mathbf{P}_{0}^{o}} - \frac{1}{\mathbf{P}_{0}^{o}}\right)\frac{1}{\mathbf{X}_{A}^{g}}$
	(5) $\frac{1}{P} = \left(\frac{1}{P_{0}^{o}} - \frac{1}{P_{0}^{o}}\right) \frac{1}{X_{0}^{g}}$
11	The increasing order of boiling points of the following substances is,
	He, CH_4 , CCI_4 , CBr_4 , SiH_4
	(1) $CH_4 < He < SiH_4 < CCl_4 < CBr_4$ (2) $He < SiH_4 < CH_4 < CCl_4 < CBr_4$ (3) $He < CH < SiH_4 < CCl_4 < CBr_4$ (4) $CH < He < SiH_4 < CBr_4 < CCl_4 < CBr_4$
	(5) He < CH_4 < CCI_4 < CBI_4 < CBI_4 (4) CH_4 < He < OH_4 <
12	Identify the correct statement from the following
	(1) Among the electronic transitions $n=2 \rightarrow n=1$, $n=3 \rightarrow n=2$ and $n=4 \rightarrow n=3$ in a hydrogen atom most energy is released in $n=3 \rightarrow n=2$
	(2) Among the species OF_2 , OF_4 and SF_4 , the least stable is SF_4 .
	(3) Among the elements Li, C, N, Na and P, the least electronegative element is Li. (4) In the following pairs (Li & E) (Lit & E^{-}) (Lit & O^{2-}) and (O^{2-} & E^{-}) the difference
	(4) In the following pairs (L) $\propto 1^{-7}$, (L) $\propto 0^{-7}$ and (0) $\propto 1^{-7}$, the difference

(5) The only type of intermolecular force present in CH₂Cl₂ in the liquid phase is dipole-dipole forces.

- 13. Consider the reaction: $CH_4(g) \longrightarrow CH_3(g) + H(g)$
 - The standard change in enthalpy of the above reaction is,
 - (1) the standard enthalpy change for the dissociation of the first C-H bond in methane.
 - (2) the standard atomisation enthalpy change of methane.
 - (3) the standard first ionisation enthalpy change of methane.
 - (4) the standard bond dissociation enthalpy change of methane.
 - (5) the standard radical formation enthalpy change of methane.
- 14 The elementary reaction $2A(g) \longrightarrow B(g)$ occurs in a closed rigid container at a constant temperature. Initial pressure of the container is P_0 and the pressure when the rate of reaction is 50% of the initial

value is P_i . Which of the following gives the correct value for $\frac{P_i}{P}$?

(1)
$$\frac{P_t}{P_o} = \frac{1}{2}$$
 (2) $\frac{P_t}{P_o} = \frac{1}{\sqrt{2}}$ (3) $\frac{P_t}{P_o} = \frac{1+\sqrt{2}}{2\sqrt{2}}$ (4) $\frac{P_t}{P_o} = \frac{\sqrt{2}}{1+\sqrt{2}}$ (5) $\frac{P_t}{P_o} = \frac{\sqrt{2}-1}{1+\sqrt{2}}$

15 An equimolar aqueous solution of the weak acids HA and HB (1.0 mol dm⁻³ in each acid) with pK_a values 4.7 and 5.0 respectively is at equilibrium. The value of log $\begin{pmatrix} |A| \\ |B| \end{pmatrix}$ is approximately equal to,

- (1) 23 5 (2) -0.3 (3) 0 3 (4) 0.94 (5) 1 06
- 16. Which of the following statements about C_6H_5OH is false?
 - (1) Reacts with CH₃COCl to form a phenyl ester.
 - (2) Reacts with bromine water to give a white precipitate.
 - (3) Evolves CO, gas when treated with NaHCO₃.
 - (4) Gives a coloured compound when treated with C₆H₅N^{*}₂CΓ in the presence of NaOH.
 - (5) Gives a coloured (purplish) solution when treated with neutral $FeCl_3$
- 17. The half life of a reaction is,
 - (1) always independent of the initial concentration of reactants
 - (2) always dependent on the rate constant.
 - (3) always independent of the order of the reaction.
 - (4) always independent of temperature
 - (5) equal to twice the total reaction time \mathbf{e}
- 18. Electromotive force of an electrochemical cell does not depend on,
 - (1) the nature of the electrolytes.
 - (2) temperature.
 - (3) the concentrations of the electrolytes.
 - (4) the surface areas of the electrodes.
 - (5) the types of metals that form the electrodes.
- 19 IO_3^- (iodate ion) oxidizes the SO_3^{2-} ion to SO_4^{2-} in acidic medium. The mass of KIO₃ required to totally oxidize the amount of Na₂SO₃ present in 25.0 cm³ of a solution of Na₂SO₃ (0.50 mol dm⁻³) to Na₂SO₄ is 1.07 g. (O = 16, K = 39, I = 127)

The final oxidation state of iodine after the completion of the reaction is,

(1) -1 (2) 0 (3) +1 (4) +2 (5) +3

- 20 Which of the following statements is false with regard to the s-block elements in the Periodic Table? (1) All elements in group I react with water liberating H_2 gas.
 - (2) All elements in group I except Li react with N_2 gas.
 - (3) All elements in group II react with N_2 gas.
 - (4) Na reacts with excess O_2 to give Na_2O_2 whereas K gives KO_2 .
 - (5) All elements in the s-block are good reducing agents.

21. A system consisting of two rigid containers containing an ideal gas is shown in the diagram. The containers can be connected to each other by opening the tap. The system changes from configuration A to configuration B when the tap is opened. In general n, P, V and T represent number of moles, pressure, volume and temperature respectively. Р., P_iV Τ. Τ. n n T_{λ} T_{i} configuration B (tap opened) configuration A (tap closed) Which of the following relations is correct about this system? (2) $\frac{P_3T_1}{P_1} + \frac{P_3T_2}{P_2} = 2T_3$ (3) $\frac{T_1}{P_1} = \frac{T_2}{P_2}$ (1) $P_1V_1 = P_2V_2$ (4) $P_1T_1 = P_2T_2$ (5) $P_1V_1 + P_2V_2 = P_3(V_1 + V_2)$ 22. Which of the following statements is false with regard to 3d-elements of the Periodic Table? (1) Atomic radii are smaller than the atomic radii of the s-block elements in the same period. (2) Densities are higher than the densities of the s-block elements in the same period. (3) V₂O₅, CrO₃ and Mn₂O₇ are acidic oxides. (4) First ionization energies are less than the first ionization energies of the s-block elements in the same period. (5) The most common oxidation states of cobalt in cobalt compounds are +2 and +3. 23. Standard Gibbs energy changes for the reaction, MO(s) \rightarrow M(s) + $\frac{1}{2}O_2(g)$ at two different temperatures are given below. T/K ∆G°/kJ mol⁻ⁱ 1000 -100.22000 -148.6The standard entropy change of the reaction is, (3) $-48.4 \text{ J K}^{-1} \text{ mol}^{-1}$ (1) 248.8 J K⁻¹ mol⁻¹ (4) 348.4 J K⁻¹ mol⁻¹ 24. Which of the following represents a correct step in the mechanism of nitration of benzene with conc. $HNO_3 / conc. H_2SO_4$? NO₂ (2) HSO H.SO. (3)HSO₄

AL/2018/02/E-I

- (4) Zn deposits, Ag dissolves, AgCl(s) dissolves.
- (5) Chloride concentration in the solution decreases.

C):

AgCks

Ag'

28. In the reaction sequence given below, the structures of P and Q respectively are,

(5)
$$C_6H_5C=CH_2$$
, $C_6H_5CHCH_3$
| | |
OH OH

29, Which of the following statements is incorrect regarding polymers?

- (1) Bakelite is a thermosetting polymer.
- (2) Teflon is a thermoplastic polymer.
- (3) Nylon 6,6 is formed by addition polymerisation between 1,6-diaminohexane and hexanedioic acid.
- (4) Terelene is formed by condensation polymerisation between ethylene glycol and terephthalic acid
- (5) Natural rubber consists of cis-polyisoprene chains.

30. An experiment was carried out to find the order (m) with respect to $S_2O_3^{2-}$ of the reaction $S_2O_3^{2-}(aq) + 2H^+(aq) \longrightarrow H_2O(l) + SO_2(g) + S(s)$. Initial rate of the reaction (R) was measured by adding different volumes (v) of 0.01 mol dm⁻³ $S_2O_3^{2-}$ into a solution of an acid. The H⁺ concentration of the reaction mixture was kept constant, but the total volume (V) was allowed to vary. Which of the following relations regarding the initial rate of the reaction is correct?

(1)
$$\mathbf{R} \propto \left(\frac{\mathbf{v}}{\mathbf{V}}\right)^m$$
 (2) $\mathbf{R} \propto \mathbf{v}^m$ (3) $\mathbf{R} \propto \mathbf{v}^{\frac{1}{m}}$ (4) $\mathbf{R} \propto \left(\frac{\mathbf{v}}{\mathbf{V}}\right)^{\frac{1}{m}}$ (5) $\mathbf{R} \propto \mathbf{V}^m$

- For each of the questions 31 to 40, one or more responses out of the four responses (a), (b), (c) and (d) given is/are correct. Select the correct response/responses. In accordance with the instructions given on your answer sheet, mark
 - (1) if only (a) and (b) are correct.
 - (2) if only (b) and (c) are correct.
 - (3) if only (c) and (d) are correct.
 - (4) if only (d) and (a) are correct.
 - (5) if any other number or combination of responses is correct. Summary of above Instructions

(1)	(2)	(3)	(4)	(5)
Only (a) and (b) are correct	Only (b) and (c) are correct	Only (c) and (d) are correct	Only (d) and (a) are correct	Any other number or combination of responses is correct

- 31. Consider a titration between a weak acid (fixed volume) and a strong base. Which of the following is/are independent of the weak acid concentration?
 - (a) pH at the equivalence point.
 - (b) Volume of the strong base required to reach the end point
 - (c) Dissociation constant of the weak acid
 - (d) Value of $[H^+] \times [OH^-]$ of the solution in the titration flask

32. Which of the following statements is/are true regarding the molecule given below?

$$CH_{3} - C \equiv C - CHO$$

a b c d

- (a) All four carbon atoms lie in the same plane.
- (b) The angle between C_d -H and the C_d -C_c bonds is approximately 120°.
- (c) Between C_b and C_c , there are two σ -bonds and one π -bond.
- (d) Between C_b and C_c , there is one σ -bond and two π -bonds.

33. Which of the following statement/s is/are true with regard to the manufacture of Na₂CO₃?

- (a) CO_2 is one of the raw materials used.
- (b) The reaction between CO_2 and aqueous NaCl saturated with NH_3 is endothermic.
- (c) The manufacturing process involves five stages.
- (d) Most of the NH, used in the process can be recovered.
- 34. Temperature must be maintained at a constant value during the experimental determination of the order of an elementary reaction, because,
 - (a) the order of the reaction depends on temperature.
 - (b) the activation energy changes with temperature.
 - (c) the mechanism of the reaction changes with temperature.
 - (d) the rate constant changes with temperature.
- 35. Which of the following statement/s is/are true regarding ethene and ethyne?
 - (a) CaC_2 reacts with water to form ethyne.
 - (b) CaC_2 reacts with water to form ethene.
 - (c) Ethene reacts with ammoniacal AgNO₃ to give a precipitate
 - (d) Ethyne reacts with ammoniacal Cu_2Cl_2 to give a precipitate.
- 36. Which of the following statement/s is/are true with regard to halogens?
 - (a) The boiling points of halogens increase down the group.
 - (b) Unlike other halogens, fluorine always has an oxidation state of (-1) except in F₂.
 - (c) All halogens are good reducing agents.
 - (d) Although fluorine is the most reactive of all the elements in the Periodic Table, it does not react with inert gases.
- 37. For the reaction C(s) + CO₂(g) ⇒ 2 CO(g) occurring in a closed rigid container, percentage yields of CO(g) at 700 °C and 800 °C are 60% and 80% respectively. Which of the following statement/s is/are correct regarding the above reaction?
 - (a) The reaction is endothermic
 - (b) The reaction is exothermic.
 - (c) Reverse reaction is favoured by decreasing the temperature.
 - (d) Equilibrium can be shifted towards the reactants by removing C(s)

38. Cyclopropane \longrightarrow propene is an elementary reaction.

Which of the following statement/s is/are correct regarding the above reaction?

- (a) Half life of the reaction depends on cyclopropane concentration.
- (b) Rate of the reaction does not depend on propene concentration.
- (c) The fraction of cyclopropane molecules having energy greater than the activation energy increases with increasing temperature
- (d) Reaction occurs via a bimolecular collision (molecularity = 2).
- 39. Which of the following statement/s is/are true regarding 3-hexene?
 - (a) Does not show geometric isomerism
 - (b) Shows optical isomerism.
 - (c) The compound obtained when reacted with H_2/Pd does not show optical isomerism.
 - (d) The compound obtained when reacted with HBr shows optical isomerism.

- 40. Which of the following statements is/are correct with regard to the nitrogen cycle?
 - (a) N_2 in the atmosphere is fixed only by atmospheric and industrial fixation.
 - (b) N_2 is reduced during atmospheric fixation.
 - (c) N_2^{-} is oxidized during industrial fixation.
 - (d) Nitrates and nitrites formed during atmospheric fixation are utilized by plants to make proteins when the rainfall deposit them on the ground

• In question Nos. 41 to 50, two statements are given in respect of each question. From the Table given below, select the response out of the responses (1), (2), (3), (4) and (5) that best fits the two statements and mark appropriately on your answer sheet.

Response	First Statement	Second Statement
(1)	True	True, and correctly explains the first statement
(2)	True	True, but does not explain the first statement correctly
(3)	True	False
(4)	False	True
(5)	False	False

	First Statement	Second statement
41.	$BaCO_3$ is more thermally stable than $MgCO_3$.	Polarizing power of group two cations decreases down the group.
42.	The lone pair of electrons on nitrogen in an amine has a lower tendency to form a bond with H^+ , than the lone pair of electrons on oxygen in an alcohol.	Nitrogen is less electronegative than oxygen.
43	A reaction at equilibrium can be driven forward (i.e. shift of equilibrium point to the right) by adding a catalyst	The catalyst provides a pathway with a low activation energy only to the forward reaction.
44	CO_3^{2-} and SO_3^{2-} ions have similar shapes.	Central atoms of both CO_3^{2-} and SO_3^{2-} have lone pairs of electrons.
45	The boiling point of $CH_3CH_2CH_2OH$ is higher than the boiling points of CH_3CH_2CHO and CH_3COCH_3 .	The carbon oxygen double bond is stronger than the carbon oxygen single bond.
46	A reaction occurring spontaneously in an isolated system always has a negative Gibbs energy change.	A process in an isolated system cannot be changed from outside.
47	Commonly used soap contain the sodium or potassium salts of fatty acids formed by the reaction of NaOH or KOH with oils and fats.	The reaction of an ester with aqueous NaOH or KOH gives the sodium or potassium salt of the carboxylic acid and the alcohol.
48.	C_6H_5Br does not react easily with NaOH to form C_6H_5OH .	The phenyl carbocation is very stable.
49	When an aqueous solution of a weak acid is diluted, both the fraction of dissociated acid molecules and pH of the medium are increased.	Dissociation of weak acid molecules occur in such a way that the acid dissociation constant K_a remains constant
50.	In the presence of sunlight CO_2 is fixed in green plants.	Increase of CO ₂ level in the atmosphere cannot be controlled by green plants

The Periodic Table

		ŧ																
	1																	2
1	H	-																He
	3	4											5	6	7	8	9	10
2	Li	Be											В	C	N	0	F	Ne
	11	12											13	14	15	16	17	18
3	Na	Mg											AI	Si	Р	S	CI	Аг
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hſ	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
-	87	88	Ac-	104	105	106	107	108	109	110	111	112	113		1			
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut					

	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Cd	65 Th	66 Dw	67	68 E-	69 T-	70 Vh	71 •
ļ	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Į	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

AL/2018/02-E-II(A) கீகழ இ இதுகு எற்றது / முற்று பதிப்புரிமையுடையது /All Rights Reserved] தேனை மேரை சேலைக்களம் கேன்ற இல்லக்களம் Department of Examinations, Sri Lanka திலைக்களை இல்லாக்களம் இல்லாக்களம் திலைக்களை අධාරයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 தகஸ்ர் General Certificate of Education (Adv. Level) Examination, August 2018 රසායන විදුහාව Π இரசாயவனியல் Е Η 17.08.2018 / 0830 - 1140 Chemistry Π පැය තූනයි අමතර කියවීම් කාලය - මිනිත්තු 10 යි மூன்று மணித்தியாலம் மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Three hours

Use additional reading time to go through the question paper, select the questions and decide on the questions that you give priority in answering.

Additional Reading Time - 10 minutes

Index No.:

- * A Periodic Table is provided on page 16.
- * Use of calculators is not allowed.
- * Universal gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$
- * Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$
- * In answering this paper, you may represent alkyl groups in a condensed manner.

Example: H--C \dot{C} group may be shown as CH_3CH_2 -

□ PART A - Structured Essay (pages 2 - 8)

* Answer all the questions on the question paper itself.

* Write your answer in the space provided for each question. Please note that the space provided is sufficient for the answer and that extensive answers are not expected.

□ PART B and PART C - Essay (pages 9 - 15)

- * Answer four questions selecting two questions from each part. Use the papers supplied for this purpose.
- * At the end of the time allotted for this paper, tie the answers to the three Parts A, B and C together so that Part A is on top and hand them over to the Supervisor.
- * You are permitted to remove only Parts B and C of the question paper from the Examination Hall.

Part	Question No.	Marks	
	1		
Α	2		Final Mark
	3		In Numbers
	4		In Letters
	5		Code Numbers
B	6		Marking Examiner 1
	7		Marking Examiner 2
	8		Checked by
C	9		
	10		Supervised by :
otal			
ercentag	<u>ge</u>		

	ANU AT		
	PART A	- STRUCTURED ESSAY	varries 10 marks)
(a) State v	whether the following stateme	ents are true or false. (Reason	arries to marks.)
(i) Th	e polarizability of halide ion	s increases with increasing size	e
		NO 's sender they they they all N	0-
(II) III	e U-N-O bond angle of r	NO_2 is greater than that of N	0 ₂ . =
(iii) Lo: the	ndon dispersion forces amon London dispersion forces an	ng CCl_4 molecules are smalle mong SO_3 molecules.	t than
(iv) The	e shape of the HSO_4^- ion is	s trigonal bipyramidal.	
(v) All nu	$3d$ atomic orbitals of an mbers (n, l, m_l) 3, 2, 1.	atom are represented by qu	antum
(vi) The exc enc	e addition of an electron to othermic process whereas for lothermic.	a gaseous phosphorus atom or a gaseous nitrogen atom	is an it is (2.4 marks)
(b) (i) Dra	aw the most acceptable Lews	is structure for the molecule	SF ₃ N.
be (N	low. Draw another two Lewi ote: Marks will not be award Ö=C=C=C=Ö	is structures (resonance structu ded for Lewis structures drawn	res) for this molecule. with octet rule violated.)
(iii) Ba P	sed on the Lewis structure g atoms given in the table below	given below, state the following	g regarding the C, N and
(iii) Ba P : I.	sed on the Lewis structure g atoms given in the table belo VSEPR pairs around the at	iven below, state the followin, ow. tom II. electron pair ge	g regarding the C, N and cometry around the atom
(iii) Ba P I. III.	sed on the Lewis structure g atoms given in the table bel- VSEPR pairs around the at shape around the atom	iven below, state the following ow. tom II. electron pair ge IV. hybridization of	g regarding the C, N and ometry around the atom the atom
(iii) Ba P I. III.	sed on the Lewis structure g atoms given in the table bel- VSEPR pairs around the at shape around the atom	given below, state the following ow. tom II. electron pair ge IV. hybridization of The atoms are num	g regarding the C, N and ometry around the atom the atom bered as follows:
(iii) Ba P I. III.	sed on the Lewis structure g atoms given in the table bel- VSEPR pairs around the at shape around the atom	given below, state the following ow. tom II. electron pair ge IV. hybridization of The atoms are num Q	g regarding the C, N and ometry around the atom the atom bered as follows: Cl
(iii) Ba P I. III.	sed on the Lewis structure g atoms given in the table bel- VSEPR pairs around the at shape around the atom $:\vec{E} - \vec{C} - \vec{N} = C = \vec{P} - \vec{C}I:$	given below, state the following ow. tom II. electron pair generation of IV. hybridization of The atoms are num $F - C^1 - N^2$	g regarding the C, N and ometry around the atom the atom bered as follows: Cl $-C^3 - P^4 - Cl$
(iii) Ba P I. III.	sed on the Lewis structure g atoms given in the table bel. VSEPR pairs around the at shape around the atom $:\vec{C}::\vec{C}$	given below, state the following ow. tom II. electron pair generation of IV. hybridization of The atoms are num $F - C^1 - N^2$	g regarding the C, N and ometry around the atom the atom bered as follows: $Cl = C^{3} - P^{4} - Cl$
(iii) Ba P I. III.	sed on the Lewis structure g atoms given in the table bel VSEPR pairs around the at shape around the atom ::::::::::::::::::::::::::::::::::::	given below, state the following ow. tom II. electron pair generation of IV. hybridization of The atoms are num $F = C^1 = N^2$.	g regarding the C, N and ometry around the atom the atom bered as follows: $Cl = C^{3} - P^{4} - Cl$ $Cl = Cl$
(iii) Ba P I. III.	sed on the Lewis structure g atoms given in the table bel VSEPR pairs around the at shape around the atom $\vec{F} = \vec{C} = \vec{N} = \vec{C} = \vec{P} = \vec{C} = \vec{C}$ $\vec{C} = \vec{C} = \vec{C} = \vec{C}$	given below, state the following ow. tom II. electron pair generation of The atoms are num $F = C^1 = N^2$.	g regarding the C, N and ometry around the atom the atom bered as follows: $-C^{3} - P^{4} - Cl$ Cl Cl Cl Cl
(iii) Ва Р І. ШІ. Ш	sed on the Lewis structure g atoms given in the table bel VSEPR pairs around the at shape around the atom $:\vec{F} - \vec{C} - \vec{N} = \vec{C} = \vec{P} - \vec{C}I:$ $:\vec{C}I:$	given below, state the following ow. tom II. electron pair ge IV. hybridization of The atoms are num $F = C^1 = N^2$.	g regarding the C, N and ometry around the atom the atom bered as follows: $-C^{3} - P^{4} - Cl$ Cl Cl Cl
(iii) Ba P I. III. III. III II II	sed on the Lewis structure g atoms given in the table bel VSEPR pairs around the at shape around the atom ::E-C-N=C=P-CI: :CI: VSEPR pairs electron pair geometry shape	given below, state the following ow. tom II. electron pair ge IV. hybridization of The atoms are num $F = C^1 = N^2$.	g regarding the C, N and ometry around the atom the atom bered as follows: $-C^{3} - P^{4} - Cl$ Cl Cl Cl Cl

[see page three

AL/2018/02-E-II(A)

5639

(in	 /) Iden the 	tify the atom Lewis struct	ic/hybrid orbita are given in p	als involved in th art (iii) above. (i	e formation of the follow Numbering of atoms is as	ing σ bonds in s in part (iii).)	Do not write in this
	I.	$F \rightarrow C^1$	F		C ¹		column.
	II.	$C^1 - N^2$	C ¹	·····	N ²		
	ш.	$N^2 - C^3$	N ²		C ³	0200	
	IV.	C3-P4	C ³		P ⁴		
	V.	P4-Cl	P ⁴		Cl		
.0) Iden Lew	tify the aton is structure y	tic orbitals inv given in part (olved in the for iii) above. (Num	mation of the following a bering of atoms is as in	7 bonds in the part (iii).)	
	L	N ² -C ³	N ²		C ³		
	П.	C ³ —P ⁴	C ³		P ⁴	(5.2 marks)	
(c) A (R ()	rrange easons) B, N	the followin are not req la, P, Be, N	ng in the inci uired.) (first ionizatio	reasing order of m energy)	the property indicated	in parenthesis.	
		<	<	<	<		
(ii) NH,	NOCI, NO	Cl. NH [*] ₁ , F ₁ C	-NC (electrone	gativity of nitrogen)		
			<	<	<		
Giii) Ouar	tum number	s of electrons	in an atom (n.	<i>m m</i>)		\sim
1.00	1	447	317		and the second	10.415	()
	(3, 1)	$,0,-\frac{1}{2},[3,0]$	$(2, 0, +\frac{1}{2}) \cdot (2, 0, -\frac{1}{2}) \cdot (2, 0, -1$	$(0, +\frac{1}{2}), (2, 1, +)$	$(+\frac{1}{2})\cdot(3,2,-1,+\frac{1}{2})$ (ener	rgy of electron)	100
	******	<	<	<	<	(2.4 marks)	100
2, (a) X wi in an (is a p de ran water d a ba) Iden	-block elem ge of oxidat to give a ba se. The diate tify X and X	ent in the Perion states, Y is a solution, Y is a solution, Y is a solution, Y is a solution, Y is a solution of X is a solution.	riodic Table. It is the most com acts as an oxi is used in the	exists as a diatomic gas, mon hydride of X. Y dis dizing agent, a reducing manufacture of Y.	X exhibits a ssolves readily agent, an acid	
	X	(=		Y =			
Gi) The	diatomic gas	of X is gene	rally considered	as inert. Briefly explain.		
			****			MERINGER COLOR	
	0.001		0.0000000000000000000000000000000000000				
(111)	Write X in	the chemica each compo	al formulae of und.	three oxides of	X, and indicate the oxid	fation state of	
			++++(+++++)))))))))))))))))))))))))))))				
		************	******				
(iv) In ea	ich of the fo	ollowing instar	ices, give a bala	nced chemical equation t	o indicate the	
	1. 3	as an oxid	izing agent				
	H. Y	as a reduc	ng agent				
_	0077.0						

[see page four

 (v) Consider the hydrides of the elements in the group to which X belongs, which are analogous to Y. Sketch the variation in boiling points of these hydrides (including Y) in the graph below. In your sketch indicate the hydrides using their chemical formulae. (Note: Values of boiling points are not required.) 	Do not write in this column
Boiling point	
Hydride	
(vi) Give reasons for the variation in boiling points in part (v) above.	
(vii) I Write what you would choose when an excess of an aqueous solution of V is	
(vii) 1. Write what you would observe when an excess of an aqueous solution of $Al_2(SO_4)_3$.	
II. Write the chemical formula of the species that gives rise to your observation in part I above.	
(viii) Give one chemical test to identify \mathbf{V}	
Toot	
Observation :	
(1x) \mathbf{Z} is an oxo-acid of \mathbf{X} and a strong oxidizing agent.	
1. Identify Z.	
II. State the products obtained when hot concentrated Z reacts with sulphur	
(60 morte)	
(b) A and B are compounds of two p-block elements that belong to the same group in the Periodic Table. A exists as a colourless, odourless liquid at room temperature and atmospheric pressure. It is also found in the gaseous and solid states. The solid state of A is less dense than its liquid state. Ionic and polar compounds are readily soluble in A.	
B is a colourless gas at room temperature and atmospheric pressure. A filter paper moistened with lead acetate turns black on treatment with B .	
(i) Identify A and B.	
$\mathbf{A} = \dots $	
(ii) Sketch the shapes of A and B showing lone pairs of electrons where necessary.	
[see p	age five

(111) Giving rea	sons, state whether A			

(iv) In each of action of A	the following instance.	ces, give a balar	nced chemical equation to indica	ate the
I. A as a	n acid:			
II. A as a	base :	{		
(v) Write the b	balanced chemical equ	uation for the rea	action of B with aqueous lead a	cetate.
(vi) I. Write v solution	what you would obser 1 of BiCl ₃ .	ve when A and 2	B are added separately to an ac	dified
with A	(excess):		with B:	
II. Write t	valanced chemical equ	nations for your	observations in part I above.	
				Sinni
=1 - 1	***********************	000000000000000000000000000000000000000	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	marke
reaction $\mathbf{A} + \mathbf{B} =$ tion mixture was		in both directions 0.10 mol of A an	s) was carried out at 25 °C. Initial d 0 10 mol of B in distilled water	lly, the
reaction $\mathbf{A} + \mathbf{B} =$ tion mixture was time 100.00 cm ³) th.	⇒ 2C + D (elementary s made by dissolving (). Variation in the cond ration (mol dm ⁻³)	in both directions 0.10 mol of A and centration of A in	s) was carried out at 25 °C. Initial d 0 10 mol of B in distilled water a this solution with time is shown	(total in the
reaction $\mathbf{A} + \mathbf{B} =$ tion mixture was time 100.00 cm ³ th.	$\stackrel{=}{=} 2\mathbf{C} + \mathbf{D} \text{ (elementary s made by dissolving ())}$). Variation in the concentration (mol dm ⁻¹) 1.0	in both directions 0.10 mol of A an centration of A in	s) was carried out at 25 °C. Initial d 0 10 mol of B in distilled water a this solution with time is shown	in the
reaction $\mathbf{A} + \mathbf{B} =$ stion mixture was time 100.00 cm ³ ; th, concent	= 2C + D (elementary) s made by dissolving (). Variation in the cond ration (mol dm ⁻³) 1.0	in both directions 0.10 mol of A an centration of A in	s) was carried out at 25 °C. Initial d 0.10 mol of B in distilled water this solution with time is shown \mathbf{A}	in the
reaction $\mathbf{A} + \mathbf{B} =$ tion mixture was time 100.00 cm ³ th, concent	= 2C + D (elementary s made by dissolving ()). Variation in the concentration (mol dm-3)	in both directions 0.10 mol of A and centration of A in	s) was carried out at 25 °C. Initial d 0.10 mol of B in distilled water a this solution with time is shown	in the
reaction $\mathbf{A} + \mathbf{B} =$ tion mixture was time 100.00 cm ³ th. concent	$\Rightarrow 2\mathbf{C} + \mathbf{D} (elementary s made by dissolving ()). Variation in the concentration (mol dm-3)1.00.5$	in both directions 0.10 mol of A and centration of A in	s) was carried out at 25 °C. Initial d 0.10 mol of B in distilled water a this solution with time is shown	(total in the
reaction A + B = tion mixture was time 100.00 cm ³) th. concent	$\Rightarrow 2C + D (elementary s made by dissolving ()). Variation in the condition (mol dm-3)$	in both directions 0.10 mol of A and centration of A in	s) was carried out at 25 °C. Initial d 0.10 mol of B in distilled water a this solution with time is shown	in the
reaction A + B = tion mixture was time 100.00 cm ³) th. concent	$\Rightarrow 2\mathbf{C} + \mathbf{D} (elementary s made by dissolving ()). Variation in the condition (mol dm-3)$	in both directions 0.10 mol of A and centration of A in	s) was carried out at 25 °C. Initial d 0.10 mol of B in distilled water a this solution with time is shown	in the
reaction A + B = tion mixture was time 100.00 cm ³ ; th, concent	$\Rightarrow 2C + D (elementarys made by dissolving (). Variation in the condration (mol dm-3)1.00.50.0$	in both directions 0.10 mol of A an centration of A in	s) was carried out at 25 °C. Initial d 0 10 mol of B in distilled water a this solution with time is shown	in the
reaction A + B = tion mixture was time 100.00 cm ³ ; th. concent	$\Rightarrow 2C + D (elementary s made by dissolving ()). Variation in the concentration (mol dm-3)1.00.00.02.0$	in both directions 0.10 mol of A and centration of A in 4.0 6.0 8.0	s) was carried out at 25 °C. Initial d 0.10 mol of B in distilled water a this solution with time is shown	in the
reaction A + B = tion mixture was ume 100.00 cm ³ ; th. concent	$\Rightarrow 2C + D (elementarys made by dissolving (). Variation in the condration (mol dm-3)1.00.00.02.0nount of A (in moles$	in both directions 0.10 mol of A and centration of A in 4.0 6.0 8.0 central during	(4.0 s) was carried out at 25 °C. Initial d 0.10 mol of B in distilled water a this solution with time is shown (A)	nutros) Ily, the (total in the
reaction $\mathbf{A} + \mathbf{B} =$ tion mixture was ume 100.00 cm ³ ; oh. concent	$\Rightarrow 2C + D (elementarys made by dissolving (). Variation in the condration (mol dm-1)1.00.00.00.02.0hount of A (in moles$	in both directions 0.10 mol of A and centration of A in 4.0 6.0 8.0 (c) reacted during	s) was carried out at 25 °C. Initial d 0.10 mol of B in distilled water a this solution with time is shown (A)	action.
reaction A + B = tion mixture was ume 100.00 cm ³ , th. concent	$\Rightarrow 2C + D (elementarys made by dissolving (). Variation in the concration (mol dm-3)1.00.00.02.0nount of A (in moles$	in both directions 0.10 mol of A and centration of A in 4.0 6.0 8.0 c) reacted during	(4.0 s) was carried out at 25 °C. Initial d 0.10 mol of B in distilled water a this solution with time is shown A A A A A A A A A A	action.
reaction A + B = tion mixture was ume 100.00 cm ³ , th. concent	$\Rightarrow 2C + D (elementary s made by dissolving ()). Variation in the concentration (mol dm-3) 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0$	in both directions 0.10 mol of A and centration of A in 4.0 6.0 8.0 c) reacted during	s) was carried out at 25 °C. Initial d 0.10 mol of B in distilled water a this solution with time is shown 10.0^{-1} time (min.) time (min.) the first 4.0 minutes of the real	action.
reaction A + B = tion mixture was ume 100.00 cm ³ , th. concent Calculate the an Would the rate 4.0 minutes? Ex	$\Rightarrow 2C + D (elementary s made by dissolving ()). Variation in the concrition (mol dm-3) 1.0 0.0 0.0 0.0 2.0 nount of A (in moles) of the forward reaction plain your answer.$	in both directions 0.10 mol of A and centration of A in 4.0 6.0 8.0 c) reacted during on be less than	(4.0 s) was carried out at 25 °C. Initial d 0.10 mol of B in distilled water a this solution with time is shown (A)	action.
reaction A + B = tion mixture was ume 100.00 cm ³ / th. concent Calculate the an Would the rate 1.0 minutes? Ex	$\Rightarrow 2C + D (elementary s made by dissolving ()). Variation in the concurst of the forward reaction (mol dm-3) 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0$	in both directions 0.10 mol of A and centration of A in 4.0 6.0 8.0 c) reacted during on be less than	(4.0 s) was carried out at 25 °C. Initial d 0.10 mol of B in distilled water a this solution with time is shown 10.0^{-1} time (min.) time (min.) the first 4.0 minutes of the real the rate of the reverse reaction	action.

[see page six

(iii)) Given that the rate constant of the forward reaction (k_{forward}) is 18.57 mol ⁻¹ dm ³ min ⁻¹ , calculate the initial rate of the forward reaction.	Do not write in this column.
(i v)	Calculate the concentrations of C and D at equilibrium. Draw the relevant curves showing the variation of the concentrations of C and D with time in the above graph and label them.	

(v)	Write the expression for the equilibrium constant K_c of the above reaction and calculate its value.	
(vi)	Calculate the value of the rate constant $(k_{reverse})$ of the reverse reaction.	
(vii)	After reaching equilibrium, the volume of the solution was doubled by adding 100.00 cm^3 of distilled water. Predict the direction of the net reaction soon after doubling the volume of the solution, by means of a suitable calculation.	

[see page eight

(i) C ₆ H ₆	H ₂ /Raney Ni 150 °C		
(ii) $C_6H_5-NH_2$	Br ₂ water		
(iii) CH ₃ CHO	(1) aqueous NaOH(2) dehydration		
(iv) $C_6H_5 - N_2CI^{\oplus}CI^{\oplus}$	H ₃ PO ₂ Δ		
(v) C ₂ H ₅ CONH ₂	aqueous NaOH		
vi) CH ₃ CH=CH ₂	conc. H ₂ SO ₄		
vii) CH ₃ COCl	NH ₃		
iii) C ₂ H ₅ CO ₂ H	PCl		
x) C ₂ H ₅ OH	H ⁺ /KMnO ₄		
x) C ₂ H ₅ COCH ₃	HCN		
One of the products he steps of the me novement of electro	in the reaction of Cl ₂ with chanism of the reaction w ns using curved arrows / c	(3.5 mark) CH_4 in the presence of light is CH_3CI . Which shows how CH_3CI is formed. Indurved half arrows (γ/γ) .	s) Write licate

AL/2018/02-E-II(B, C)

- 9 -

S setu bisu oppičanijstaji potrama ulterar potrači Osperandi of Examination S setu bicu oppičanijačani potrama ulterar potračila	Luna Persona Basa Luna Persona Basa Luna Persona Depa	இஞ்சு சிலை ஜேல் கேக்கிறை ககைப்படிடனாத் தணைக்களம் riment of Examinations, Sri Lanka
ສພິສ	යන පොදු සහති	ික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු
່ມສ່ວລ Gene	ப் பொதுத் தராத al Certificate of 1	ஏப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஒக்ஸ்ற் Education (Adv. Level) Examination, August 2018
්ස්මා Gene රිසායන විදහාව	ப் பொதுத் தராத al Certificate of 1 Π	ஏப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஒக்ஸ்ர் Education (Adv. Level) Examination, August 2018
්ෂ්ණය Gene රිසායන විදාහව இரசாபனவியல்	hi பொதுத் தராத al Certificate of i II II	ஞப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஒக்ஸ்ர் Education (Adv. Level) Examination, August 2018 02) (E) (II)

* Avogadro constant $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Answer two questions only. (Each question carries 15 marks.)

5. (a) Consider the following reactions.

$$\begin{split} & \mathsf{M}(\mathrm{CO}_3)_2 \cdot \mathsf{n}\mathrm{H}_2\mathrm{O}(s) \to \mathsf{M}(\mathrm{CO}_3)_2(s) \ + \ \mathsf{n}\mathrm{H}_2\mathrm{O}(g) \\ & \mathsf{M}(\mathrm{CO}_3)_2(s) \rightleftharpoons \mathrm{MO}_2(s) \ + \ 2\mathrm{CO}_2(g) \end{split}$$

A small amount (0.10 mol) of $M(CO_3)_2 \cdot nH_2O(s)$ is present in an evacuated rigid container of volume 0.08314 m³. The temperature of the container was raised to 400 K. The metal carbonate, $M(CO_3)_2$ does not decompose at this temperature but the crystalline water evaporates completely. The pressure of the container was measured to be 1.60×10^4 Pa. Volume occupied by the solids is negligible.

Determine the value of 'n' in the formula $M(CO_3)_2 \cdot nH_2O(s)_+$

(2.0 marks)

- (b) The temperature of the above system was then increased to 800 K. It was observed that some amount of the solid metal carbonate is decomposed and is in equilibrium with the gas phase. The pressure of the container was measured to be 4.20×10^4 Pa.
 - (i) Calculate the partial pressure of water vapour in the container at 800 K.
 - (ii) Calculate the partial pressure of CO_2 in the container at 800 K.
 - (iii) Write an expression for the pressure equilibrium constant, K_p for the decomposition of $M(CO_y)_2(s)$. Calculate K_p at 800 K.
 - (iv) Calculate the molar percentage of the metal carbonate decomposed at 800 K
 - (v) Enthalpy change (Δ H) for the decomposition of the metal carbonate under the above conditions is 40.0 kJ mol⁻¹. Calculate the corresponding entropy change (Δ S).
 - (vi) Suggest two ways to drive the decomposition reaction of $M(CO_3)_2(s)$ in the forward direction.

(6.5 marks)

(c) With the aid of thermochemical cycles and the data given in the table, answer the following questions.

Species	Standard enthalpy of formation $(\Delta H_f^{\circ})(kJ \text{ mol}^{-1})$
M(s)	0.0
M(g)	800.0
O ₂ (g)	0.0
O(g)	249+2
$MO_2(g)$	- 400.0

[see page ten

- (i) Given that MO(g) + $\frac{1}{2}$ O₂(g) \rightarrow MO₂(g) $\Delta H^{\circ} = -50.0$ kJ mol⁻¹, calculate the standard enthalpy of formation of MO(g).
- (ii) Calculate M-O bond dissociation enthalpy in MO(g).
- (iii) Calculate M–O bond dissociation enthalpy in $MO_2(g)$.
- (iv) By means of a suitable calculation, predict whether the reaction, $MO_2(g) \rightarrow MO(g) + \frac{1}{2} O_2(g)$ is spontaneous under standard conditions and 2000 K. Standard entropy change of this reaction is $30.0 \text{ J K}^{-1} \text{ mol}^{-1}$.

(6.5 marks)

6 (a) An experiment was carried out to determine the partition coefficient of iodine (I_2) between water (A) and an organic solvent (B) which form an immiscible liquid system

20.00 cm³ of **B** containing 'n' moles of I_2 is mixed with 20.00 cm³ of **A** and allowed to reach equilibrium at room temperature.

The concentration of I_2 in phase A is determined by titrating a 500 cm³ sample drawn from phase A with a 0.005 mol dm⁻³ solution of Na₂S₂O₃. The volume of Na₂S₂O₃ required to reach the end point was 22.00 cm³. The concentration of I_2 in phase B was determined to be 0.040 mol dm⁻³.

(i) Write the balanced chemical equation for the reaction between
$$Na_2S_2O_3$$
 and I_2 .

(ii) Calculate the concentration of I_2 in phase A.

(iii) Calculate the value of the partition coefficient, K_D where $K_D = \frac{\lfloor I_2 \rfloor_B}{\lfloor I_2 \rfloor_A}$.

(iv) Calculate the total number of moles of I_2 in the two phases A and B.

(4.5 marks)

- (b) The above experiment was repeated under the same conditions, that is, at the same temperature, using the same amount of I₂ and the same volumes, but with the addition of I⁻ ions to phase A. The system was then thoroughly shaken and allowed to reach equilibrium. The volume of 0.005 mol dm⁻³ Na₂S₂O₃ solution required to utrate the I₂ in a 5.00 cm³ sample of phase A was 41.00 cm³. The concentration of I₂ in phase B was then determined to be 0.030 mol dm⁻³.
 - (i) Calculate the amount of I_2 (moles) expected in 5.00 cm³ of phase A, based on the partition coefficient for the distribution of I_2 between the phases A and B.
 - (ii) Calculate the amount (moles) of L₂ reacted with $Na_2S_2O_3$ in the above titration.
 - (iii) Considering the different iodine species present in phase A, explain why the answers obtained in parts (b)(i) and (b)(ii) above are different.

(3.5 marks)

(c) Liquids X and Y form an ideal solution obeying Raoult's law.

[see page eleven

Maintaining the liquid level at l, the system was allowed to reach equilibrium at 400 K. The pressure of the container was measured to be 3.00×10^4 Pa. The volume of the vapour phase when the liquid level is at l was 4.157 dm³. Then liquid Y was introduced in to the container, mixed with liquid X and the system was allowed to reach equilibrium at 400 K. The liquid level was maintained at l. The molar ratio of X:Y in the liquid phase was found to be 1:3. The pressure of the container was measured to be 5.00×10^4 Pa.

- (i) What is the saturated vapour pressure of X at 400 K?
- (ii) Calculate the mole fractions of X and Y in the liquid phase at equilibrium.
- (iii) Calculate the partial pressure of X at equilibrium after the addition of Y.
- (iv) Calculate the partial pressure of Y at equilibrium.
- (v) Calculate the saturated vapour pressure of Y.
- (vi) Calculate the amounts (in moles) of X and Y in the vapour phase.
- (vii) When a mixture of the liquids X and Y is subjected to fractional distillation, state which compound would distill out first from the fractional distillation column. Give reason/s for your answer.

(7.0 marks)

7. (a) Using only the chemicals given in the list, show how you would carry out the following conversion.

$$C_2H_5CH_2CHO \longrightarrow C_2H_5COCH_3$$

List of chemicals aqueous NaOH, HBr, alcoholic KOH, NaBH₄, H⁺/KMnO₄

Your conversion should not exceed 7 steps.

(6.0 marks)

(b) Identify $\mathbf{R}_1 - \mathbf{R}_4$ and $\mathbf{X}_1 - \mathbf{X}_4$ and \mathbf{Y}_1 , \mathbf{Y}_2 in order to complete the following reaction scheme.

[see page twelve

(c) (i) Give the mechanism of the following reaction

 $C_2H_5OH + HBr \longrightarrow C_2H_5Br + H_2O$

- (ii) State whether the above reaction is a nucleophilic substitution reaction or an electrophilic substitution reaction. Identify the nucleophile or electrophile as appropriate.
- (iii) State giving reasons which of the two compounds, phenol (C_6H_5OH) or ethanol (C_2H_5OH) is more acidic

(3.0 marks)

PART C – ESSAY

Answer two questions only (Each question carries 15 marks.)

8. (a) An aqueous solution P contains two cations and two anions. The following experiments were carried out to identify these cations and anions.

Cations

	Experiment	Observation
0	\mathbf{P} was acidified with dilute HCl and H_2S was bubbled through the solution.	A clear solution was obtained
0	The above solution was boiled till all the H_2S was removed. A few drops of conc. HNO ₃ were added and the solution was heated further. The resulting solution was cooled and NH ₄ Cl/NH ₄ OH was added.	A brown precipitate (Q) was formed.
3	${\bf Q}$ was removed by filtration and ${\bf H}_2{\bf S}$ was bubbled through the filtrate.	A pale pink precipitate (R) was formed.
4	R was removed by filtration and the filtrate was boiled till all the H_2S was removed. $(NH_4)_2CO_3$ was added to the solution.	A clear solution was obtained.
6	Dilute NaOH was added to a fresh portion of P.	A dirty-green precipitate and a while precipitate were formed

Experiments for precipitates Q and R:

	Experiment	Observation						
6	${\bf Q}$ was dissolved in dil ${\rm HNO}_3$ and a salicylic acid solution was added	A light purple solution was obtained.						
Ø	${\bf R}$ was dissolved in dilute acid and dil. NaOH was added to the solution.	A white precipitate was formed. It turned brown on standing.						

Anions

1		Test	Observation						
8	I,	BaCl ₂ solution was added to P.	A white precipitate was formed.						
	II.	The white precipitate was separated by filtration and dil. HCl was added to the precipitate.	The white precipitate was not dissolved						
9		Cl_2 water and chloroform were added to a portion of the filtrate from \textcircled{B} II, and the mixture was throughly shaken.	Chloroform layer turned yellowish-brown						

- (i) Identify the two cations and the two anions in solution P. (Reasons are not required.)
- (ii) Write the chemical formulae of the precipitates Q and R.
- (iii) Give reasons for the following:
 - I. Removal of H₂S in experiment ② for cations.
 - II. Heating with conc. HNO₃ in experiment ② for cations.

(7.5 marks)

(b) The sample X contains lead, copper and an inert material. The following procedure was carried out to analyse lead and copper in X.

Procedure:

A mass of 0.285 g of X was dissolved in a slight excess of dil. HNO_3 A clear solution was obtained. A NaCl solution was added to the resulting clear solution. A white precipitate (Y) was formed. The precipitate was separated by filtration and the precipitate (Y) and filtrate (Z) were analysed separately.

Precipitate (Y)

The precipitate was dissolved in hot water A solution of K_2CrO_4 was added in excess A yellow precipitate was formed. The precipitate was separated by filtration and dissolved in dil. HNO₃ An orange coloured solution was obtained. Excess KI was added to this solution and the liberated I₂ was titrated with 0.100 mol dm⁻³ Na₂S₂O₃, with starch as the indicator. The volume of Na₂S₂O₃ required to reach the end point was 27.00 cm³

(Assume that the NO_3^- ions do **not** interfere with the titration.)

Filtrate (Z)

The filtrate was neutralized and excess KI was added to it. The liberated I_2 was titrated with 0.100 mol dm⁻³ Na₂S₂O₃, with starch as the indicator. The volume of Na₂S₂O₃ required to reach the end point was 15.00 cm³.

(Note: Assume that the inert material was soluble in dil. HNO₃ and did not interfere with the experiment.)

- (i) Calculate the mass percentages of lead and copper in X. Write balanced chemical equations where relevant.
- (ii) What is the colour change at the end point in the titration carried out in the analysis of precipitate Y?

(Cu = 63.5, Pb = 207)

(7.5 marks)

- 9. (a) The following questions are based on the environment and related issues.
 - (i) Identify three greenhouse gases that contribute to global warming. State two consequences of global warming
 - (ii) Global environmental issues caused by coal power plants are well known. Identify one such issue that contributes significantly to change in certain water quality parameters in rivers and lakes.
 - (iii) Name the chemical species responsible for the environmental issue identified in (ii) above and state **three** water quality parameters that are likely to be affected by this issue.
 - (iv) Identify two environmental issues that change (increase or decrease) the ozone level in the atmosphere and explain briefly how these changes take place with the aid of balanced chemical equations.
 - (v) I. "Most of the harmful gases in vehicle exhausts are converted to relatively harmless gases by catalytic converters." Briefly explain this statement.
 - II. Name the harmful gas (except CO_2) that is not converted to a less harmful gas by the catalytic converter. State briefly how this harmful gas is formed in the vehicle engine

(7.5 marks)

AL/2018/02-E-II(B, C)

(b) The flow chart given below shows the production of two important compounds P_1 and P_2 and three other important compounds P_3 , P_4 and P_5 derived from them. P_1 is used as a raw material in the manufacture of Na₂CO₃. P_3 can be manufactured by the reaction between P_1 and P_2 . P_3 is used as a fertilizer and as an explosive. P_1 is also used in the manufacture of P_4 which is a widely used fertilizer. P_4 is used to synthesize an important thermosetting polymer P_5 .

Answer the following questions based on the above flow chart

- (i) Identify P_1 , P_2 , P_3 , P_4 and P_5
- (ii) Identify \mathbf{R}_1 , \mathbf{R}_2 and \mathbf{R}_3
- (iii) Identify X_1, X_2 and X_3
- (iv) Identify S.
- (v) Briefly state the processes taking place in PC_1 and PC_2 giving balanced chemical equations where applicable.
- (vi) Identify manufacturing processes M_1 , M_2 and M_3 (e.g. contact process or manufacture of H_2SO_4 .)
- (vii) Give balanced chemical equations with appropriate conditions, for reactions taking place in M_1 , M_2 and M_3 .
- (viii) I Give one use of each compound P_1 and P_2 other than those mentioned above II. Give one use of R_1 in the manufacturing process P_1 other than being used as a raw material. (7.5 marks)

see page fifteen

- 10. (a) A and B are complex ions, (i.e metal ion and ligands coordinated to it) with an octahedral geometry. They have the same atomic composition of $MnC_5H_3N_6$. In each complex ion, two types of ligands are coordinated to the metal ion. When an aqueous solution containing A is treated with a potassium salt, the coordination compound C is formed. C gives four ions in aqueous solution. When an aqueous solution containing B is treated with a potassium salt the coordination containing B is treated with a potassium salt the coordination containing B is treated with a potassium salt the coordination compound D is formed. D gives three ions in aqueous solution. Both C and D have an octahedral geometry.
 - (Note: The oxidation states of manganese in A and B do not change on treatment with the potassium salt).
 - (i) Identify the ligands coordinated to manganese in A and B.
 - (ii) Give the structures of A, B, C and D.
 - (iii) Write the electronic configurations of the manganese ions in A and B.
 - (iv) Write the IUPAC names of C and D.

(7.5 marks)

- (b) (i) I. Write the reduction half reaction corresponding to the electrode, Ag(s) | AgCl(s) | Cl⁻(aq)
 - II. State whether the electrode potential of $Ag(s) | AgCl(s) | Cl^{-}(aq)$ depends on the Ag^{+} concentration in the solution. Explain your answer.
 - (ii) Consider the following reaction.

 $Fe(s) + 2H^{+}(aq) + \frac{1}{2}O_{2}(g) \longrightarrow Fe^{2+}(aq) + H_{2}O(l)$

- I. Write the oxidation and reduction half reactions relevant to the above reaction.
- II Given that the above reaction is the cell reaction of an electrochemical cell, determine the standard electromotive force of the cell

$$E_{Fe^{2+}(aq)/Fc(s)}^{o} = -0.44 \text{ V}$$
 $E_{II^{+}(aq)/O_{2}(g)/H_{2}O(I)}^{o} = 1.23 \text{ V}$

(iii) A constant current of 100 mA was passed through 100 00 cm³ of a 0.10 mol dm⁻³ aqueous CaBr₂ solution as shown in the diagram. The temperature of the system was maintained at 25 °C.

- I. Write the oxidation and reduction reactions that take place at the electrodes.
- II. Calculate the time taken for the commencement of precipitation of $Ca(OH)_2(s)$. Solubility product of $Ca(OH)_2$ at 25 °C is 1.0×10^{-5} mol³ dm⁻⁹. Neglect the ionization of water Assume that the volume of the aqueous phase remains constant.

(7.5 marks)

- 16 -

	1	1																2
1	H																	He
	3	4											5	6	7	8	9	10
2	Li	Be											B	С	N	0	F	Ne
	11	12	Ī										13	14	15	16	17	18
3	Na	Mg											AI	Si	Р	S	Cl	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	К	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pđ	Ag	Cd	In	Sn	Sb	Те	1	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113					
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Unu	Uub	Uut	1445				

Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
80	90	91	92	03	94	95	96	07	08	00	100	101	102	103
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Đу	Но	Er	Tm	Yb	Lu
57	58	59	60	61	62	63	64	65	66	67	68	69	70	71