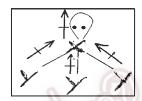


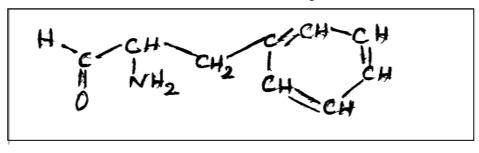
G.C.E. A/L Examination March - 2017

Conducted by Field Work Centre, Thondaimanaru In Collaboration with

Provincial Department of Education, Northern Province.


Grade :- 12 (2018) CHEMISTRY Time :- Three hours

Part- I


> Answer the all questions.

 $N_A = 6.022 x \ 10^{23} \ mol^{\text{--}1}$, $R = 8.314 J mol^{\text{--}1} K^{\text{--}1}$

- 1) How many electrons can have l=2 for n=3
 - (1) 5
- (2) 2
- (3) 12
- (4) 10
- (5) 14
- 2) XY₃ is the molecule produced by the elements X and Y. Which is false statement in the following on the basis of the structure given below.

- (1) Electro negativity of X is greater than Y
- (2) The resultant dispole moment is not zero.
- (3) Electron geometry and shape are tetrahedral and trigonal pyramid respectively.
- (4) X and Y are non metal
- (5) Element X is in group VI.
- 3) $C^aH_2 = C^b = C^cH C^dH_3$ Which is thee correct order of electrone gativity of C in the molecule.
 - (1) c > d > b > a
- 2) b > c > d > a
- 3) b > c > a > d
- 4) c > a > b > d
- 5) a > d > b > c
- 4) Which is not the oxidation number of *C* atoms in the following molecule.

- (1) -1
- (2) 0
- (3) +1
- (4) -2
- (5) +2
- 5) Composition of Fe ²⁺ in an aqueous solution is 14ppm. What is the concentration of Fe ²⁺ in the solution in mmoldm⁻³?
 - (1) 2.5
- (2) 0.25
- (3) 0.025
- (4) 0.50
- (5) 1.00

6)	Standard enthalpy of combustion of $Al_{(s)}$, $S_{(s)}$ and $SO_{2(g)}$ are a,b and c kjmol ⁻¹ standard enthalpy
	of formation of $Al_2(SO_4)_3$ is $d kJmol^{-1}$
	$Al_2O_{3(s)} + 3SO_{3(s)}$ \longrightarrow $Al_2 (SO_4)_{3(s)}$
	Enthalpy change of the above reaction is
	1. $d-2a-3b-3c$
	2. $2a + 3b + 3c - d$
	3. $a-2b+c+d$

7) Which of the following statement is false?

5. No suitable answer.,

4. d-a-b-c

(1) The highest first ionization element is He

(2) Elements in period 4 and 6 consist of elements in three physical states.

(3) $CO_{2(s)}$ is non polar molecular lattice

(4) Non - polar covalent bond exist is in liquid of Argon.

(5) H_2O_2 function as oxidizing agents and disinfectant.

KHC₂O₄ . H₂C₂O₄ reacts with KMnO₄ in acidic medium and forms Mn²⁺, K⁺, CO₂ , and H₂O as the products stocniometric radio between and KMnO₄ and KHC₂O₄. H₂C₂O₄

(1) 4:5

(2) 8:5

(3) 5:4

(4) 4:10

(5) 1: 5

9) Number of atoms of oxygen in a drop of water coming from burette.

1) $\frac{1}{18}$ x 6.022x10²³ 2) $\frac{1}{18}$ x 6.022x10²² 3) $\frac{5}{18}$ x 6.022x10²¹ 4) $\frac{5}{18}$ x 6.022x10²³ 5) $\frac{1}{18}$ x 6.022x10²¹

10) Which of the following equations is not redox reaction.

1) $3\text{CuO} + 2\text{NH}_3 \rightarrow 3\text{Cu} + \text{N}_2 + 3\text{H}_2\text{O}$

2) $Na_2S_2O_8 + 2NaI \rightarrow I_2 + 2Na_2SO_4$

3) $Mg + ZnSO_4 \rightarrow MgSO_4 + Zn$

4) $2Pb(NO_3)_2 \rightarrow 2PbO + 4NO_2 + O_2$

5) $K_2CO_3 + 2HCl \rightarrow 2KCl + H_2O + CO_2$

11) $CH_3OH_{(2)} \rightleftharpoons CH_3OH_{(g)} \Delta H = +35.3 \text{kJmol}^{-1}$

The equation represents the equilibrium between liquid methanol and methanol vapour of 338K given the $\Delta H = +35.3$ kJmol⁻¹ enthropy change when methanol is vaporized is,

1) - 104.4 JK⁻¹mo⁻¹

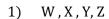
2) $+ 104.4 \text{ [K}^{-1}\text{mo}^{-1}$ 3) $+ 208.8 \text{ [K}^{-1}\text{mo}^{-1}$

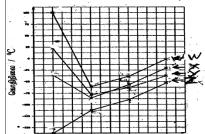
4) +52.2 JK-1mo-1

5)208.8 JK⁻¹mo⁻¹

12) 0.025mol of a metal sulphate has a mass of 4.60 g. Identify the metal ion in the sample.

(1) Ca^{2+}


(2) Be^{2+}


 $(3) Sr^{2+}$

(4) Ba^{2+}

(5) Mg²⁺

- 13) Which of the following statements is false?
 - 1. No exchange of energy, matter or work in an isolated systems.
 - 2. Gases show ideal behaviour at high temperatures and low pressure.
 - 3. Ionic compounds do not conduct electricity in solid state.
 - 4. Heat capacity is an intensive property.
 - 5. Standard enthalpy of $Ca_{(s)}$ is zero.
- 14) Boiling points of hydrides of P block elements in groups 14, 15,16 and 17 are indicated by the graphs W,X,Y and Z the correct order of the groups 14,15,16 and 17 respectively.

15) 5.20 g sample of Cu - Zn alloys reacts with HCl and to produce hydrogen gas If the hydrogen gas has a volume $0.50 \, \text{dm}^3$ at 27°C and $1 \times 105 \, \text{Nm}^{-2}$. What is the percentage of Zn in the alloy (C u does not react with HCl) (Zn = 65)

❖ For each the questions 16 to 20 follow this instructions

(1)	(2)	(3)	(4)	(5)
Only	Only	Only	Only	Any other number
(a) & (b)	(b) & (c)	(c) & (d)	(d) & (a)	or combination of
are correct	are correct	are correct	are correct	response is correct

- 16) Which of the following statements indicating the increasing order of the properties is or are true.
 - (a) C O bond length $CO < CO_2 < CO_3^{2-}$
 - (b) Electro negativity of N atom $NH_3 < NO_3^- < NO_2^-$
 - (c) Bond angle $S_1Cl_4 < ICl_4 < NCl_3$
 - (d) Melting points KCl< NaCl < LiCl
- 17) Which of the following statement regarding to NO_2^+ ion is or are true?
 - (a) ,It has two N = O bond.
 - (b) NO₂⁺ and H₂S have the same shape
 - (c) N_2O_5 (s) contains NO_2^+ and NO_3^- ions.
 - (d) N has no lone pair electrons.
- 18) Which of the following ions has three unpaired electrons.
 - (a) Cr^{3+}
- (b) Co^{2+}
- (c) Fe^{3+}
- (d) Ni²⁺

- 19) Secondary forces that found in CH₃CH₂Cl
 - (a) Hydrogen bond
 - (b) London force
 - (c) Dipole dipole interaction
 - (d) convalent bond
- 20) Which of the following reaction releases energy.
 - (a) $CaC_2O_{4(s)} \rightarrow CaCO_3 + CO_{(S)}$
 - (b) $N_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$
 - (c) $CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(l)}$
 - (d) $Ba(OH)_2 + H_2SO_{4(m)} \rightarrow BaSO_{4(s)} + 2H_2O_{(l)}$
- **❖** In question number 21 to 25 two statements are given in respect of each questions.

Response	First statement	Second statement
(1)	True	True and correctly explains the first statement
(2)	True	True, but does not explain the first statement
(3)	True	False
(4)	False	True
(5)	False	False

	First statement	Second statements
21)	Na(s) forms Na ₃ N(s) when heated with N ₂ (g)	N≡N bond energy is high.
22)	I ₂ (s) is more soluble in KI(aq)	I ₃ is stable.
23)	Boiling point of Xe is higher than CH ₄	Molarmass of Xe is greater than CH ₄
24)	Reactions that have negative free energy change ($\Delta G < 0$) are spontaneous.	ΔG of a reaction that has negative values of ΔH and ΔS is always negative
25)	BeO reacts with strong acid and strong base	BeO is amphoteric

G.C.E. A/L Examination March - 2017

Conducted by Field Work Centre, Thondaimanaru In Collaboration with

Northern Provincial Department of Education

Grade :- 12 (2018)	CHEMISTRY	Time :- 3 hours.
•		

Grade :	12 (2018	7			Спг	AVIISTKI	Time :- 3 nours.
					PAR'	Г - II А	-
Answer all	four que	stions	s on t	his pa	aper.		
01.(a) You	are prov	vided	with	the fo	llowii	ng list of some elem	ents in the periodic table.
Li	Be	В	С	N	0	F	
Na	Mg	Al	Si	P	S	Cl	
From tl	ne list						
(i) Ide	entify the	e elem	nent t	hat h	as the	highest ionization	energy
(ii) Ide	entify the	e elem	nent t	hat ex	xhibits	s highest oridation	state
							oatomic covalent Lattice of high
ha	rdness	6		06		1 for the	
(;··) 11				1. 121	S	Englorian)	
(17) 100	entiry the	e eiem	ient v	vnicn	iorms	s the largest anion -	
(v) Ide	entify the	e elem	nent t	hat a	P - bla	ack metal	
(vi) Ide	entify the	e elem	ient t	hat h	as the	highest melting po	int
(b) The	e followi	ng pai	rts (i)	to (v	i) are	based on the molec	cule HNCO (isocyanic acid)
It has t	he follow	ving s	kelet	on.			
Н —	N - C	- 0					
(i) Dr	aw the n	nost a	ccept	able l	Lewis	structure for this id	on

(iii)	State the following given in	the table below (around the	atoms N and C)					
		N atom	C atom					
ı II	Electron pair geometry							
'' 	Shape	A The Garage						
	hybriclization	Portal						
	E TO THE STATE OF	of Selections						
	The Moor	npolar ?						
(v)	Identify the atomic / hybrid orbitals involved in the formation of the follow							
	bonds in the Lewis structure drawn in part (i) above.							
	I) H and N							
	II) N and C							
	II) Nana C							
(vi)	III) C and O							
(vi)	III) C and O Sketch the shape of the	Lewis structure drawn in						
(vi)	III) C and O	Lewis structure drawn in	part (i) above indica					

02. (a) On treatment with cold water an element (A) reacted quietly, Liberating a colourless, odourless gas (B), a solution (C). Element (A) reacted with (B) yielding a solid product (D) which reacted with water to give basic solution (C). When carbondioxide was bubbled through solution (C) initially a white precipitate (E) is formed, but this redissolved forming solution (F) when more CO ₂ was added. Precipitale (E) effervesced when moistened with concentrated hydrochloric acid and gave a brick red colouration to the burner flame. When (E) was heated at
1000°C a white compound (G) was formed. which when heated carbon at 2000°C
gave a solid (H) of some commercial importance.
(i) Identify A, B, C, D, E, F, G and H
(A) (C)
(D) (E) (F)
(G) (H)
(ii) Give balanced chemical equations for the reaction described above.
- Edite
ather the
(b) (i) Describe a test which would distingues sodium chloride from potassium chloride.

(ii) Write balanced equation for the following thermal decomposition reactions.

- $\begin{array}{ccc} NaNO_3 & \longrightarrow \\ Mg(NO_3)_2 & \longrightarrow \end{array}$ (I)
- (II)
- (III)
- (IV) LiOH →
- NaHCO₃ ——— (V)

(iii) Write balanced equations for the following reactions.

- $Sr_{(s)} + O_{2(g)} \longrightarrow$ (I)
- $Mg(s) + H_2O(g) \longrightarrow$ (II)
- $Li_{(s)} + N_{2(g)}$ (III)

03.(a) (i) State Dalton's Law of partialpressure.
(ii)	At 300K and at $4.0\times10^5~Nm^{-2}$ He gas exists in a vessel with a volume $3.0m^3$. At 300K and at $8.0\times10^5Nm^{-2}$ Ne gas exsits in a vessel with a volume $7.0m^3$. The vessels are connected allowing the two gases to mix completely. Assuming the ideal gas behaviour calculate the following.
(I)	The total pressure in the connected vessels.
	won.
(II)	The molefraction of the gas He in the mixture.
(III)	The partial pressure of the gas in the connected vessels when the temperature of the gas mixture is increased to 400K maintaining the total volume of the two vessels the same.

compressibilityfoctor	Fruction of molecules	
Pr	essure	Speed (ms ⁻¹)
		KOV
04.Consider the chemical reaction	1.	
$CaCO_{3(s)} \rightarrow CaO_{(s)} + CO_{2(g)}$		
		$S^{\theta}JK^{-1} \ mol^{-1})$
$CaCO_{3(s)} \rightarrow CaO_{(s)} + CO_{2(g)}$ and the thermochemical data §	given below (at 25°C)	$\frac{S^{\theta}JK^{-1} \ mol^{-1})}{93}$
$CaCO_{3(s)} \rightarrow CaO_{(s)} + CO_{2(g)}$ and the thermochemical data g Chemical species	given below (at 25°C) $\Delta H f^{\theta}(KTmol^{-1})$,

(ii) Calcute ΔS^{θ} for the above reaction at 25°C

(iii)	Write an expression to relate ΔG of a chemical reaction to its ΔH and ΔS .
(iv)	Calculate ΔG for the above reaction at 500°C and state whether the reaction is spontaneous or non- spontaneous.
(b) (i	i) What does the term entropy mean?
II IV (c)	State whether the entropy change decrease or increase of the following changes. I $H_2O_{(s)} \to H_2O_{(l)}$
(ii)	standard enthalpy of formation of MgBr _{2(s)}
(iii)	standard First electron gain enthalpy of orygen.
(iv)	standard bond dissouiation enthalpy of bromine.

G.C.E. A/L Examination March - 2017

Conducted by Field Work Centre, Thondaimanaru In Collaboration with

Provinial Department of Education Northern Province.

Grade: - 12 (2018)

CHEMISTRY

PART - II B. Essay Questions.

Answer any two questions from this part.

- (01) (a) (i) What do you mean by disproportionation reaction?
 - (ii) The manganate (VI) ion in acid solution a disproportion reaction as follow.

$$3MnO_4^{2-}_{(aq)} + 4H^+_{(aq)} \longrightarrow 2MnO_4^{-}_{(aq)} + MnO_{2(s)} + 2H_2O_{(l)}$$

Write the half ion equation for oxidation and reduction of the above reaction

(iii) Give two disproportionation reactions with the balanced chemical equation.

(b)

- (i) Write the balanced chemical equation of H₂S with the following reagents
- (I) K_2CrO_4 (II) $FeCl_3$ (III) $KMnO_4$ From that calculate the number of the moles of each reagents that concert 1mol of H_2S to sulphur.
- (ii) When a tablet weighing 0.940g was dissolved in dilute sulphuric acid and the resulting solution titrated with 0.016moldm^{-3} $K_2 \text{Cr}_2 \text{O}_7$ exactly 32.50cm^3 of the $K_2 \text{Cr}_2 \text{O}_7$ solution were required to reach the end point. Calculate the percentage by mass of Fe^{2+} in the tablet. (Fe = 56)
- (c) (i) Sodium carbonale crystals (27.80g) were dissolved in water made up to 1.0dm³ 25.0cm³ of the solution were neutralized by 48.80cm³ of hydrochlonic acid of concentration 0.10moldm⁻³ Find x in the formula Na₂CO_{3.} xH₂O.

$$(Na = 23, C=12, H=1, O=16)$$
 (150 Marks)

(02) (a)

- (i) Write molecular Kinetic equation of gases and indicate all terms in the equation.
- (ii) Derive $\sqrt{C^2} = \sqrt{\frac{3RT}{M}}$ from equations for ideal gas.
- (iii) Calculate root mean square speed of He gas at 27°C. (He=4)
- (iv) Write four factors that influence diffusion rate of gases.

(b)

- (i) State Hess's Law.
- (ii) Find the standard enthalpy change for the reaction.

$$CO_{(g)} + 2H_{2(g)} \longrightarrow CH_3OH_{(l)}$$
Use the datas
$$CO_{(g)} + \frac{1}{2}O_{2(g)} \longrightarrow CO_{2(g)} \cdot \Delta H^{\emptyset} = -283KJmol^{-1}$$

$$H_{2(g)} + \frac{1}{2}O_{2(g)} \longrightarrow H_2O_{(l)} \Delta H^{\emptyset} = -286KJmol^{-1}$$

$$CH_3OH_{(l)} + \frac{3}{2}O_{2(g)} \longrightarrow CO_{2(g)} + 2H_2O_{(l)} \Delta H^{\emptyset} = -715KJmol^{-1}$$

(iii) Constuct a Born – Haber cycle for the formation of solid potassium chloride from its elements in their standard states use the data below and Calculate the standard enthalpy of formation of KCl_(s)

$$K_{(g)} \longrightarrow K_{(g)} \qquad \Delta H^{\emptyset} = 90 \text{KJmol}^{-1}$$

$$K_{(g)} \longrightarrow K^{+}_{(g)} + e \qquad \Delta H^{\emptyset} = 418 \text{KJmol}^{-1}$$

$${}^{1}\!\!\!/_{2} \text{Cl}_{2(g)} \longrightarrow \text{Cl}_{(g)} \qquad \Delta H^{\emptyset} = 122 \text{KJmol}^{-1}$$

$$\text{Cl}_{(g)} + e \qquad \longrightarrow \text{Cl}_{(g)} \qquad \Delta H^{\emptyset} = -348 \text{KJmol}^{-1}$$

$$\text{Cl}_{(g)} + K^{+}_{(g)} \longrightarrow \text{KCl}_{(s)} \qquad \Delta H^{\emptyset} = -718 \text{KJmol}^{-1}$$

$$(150 \text{ Marks})$$

- (03) (a) The first three ionization energy of an element M are 738, 1449, 7728 kJmol⁻¹ respectively. The halide of M give colourless flame Bunsen flame the solution of nitrate of M gives white precipitate with NaOH_{(aq).} This precipitate will not dissolve in excess of NaOH_{(aq).} M liberate NO₂ with Concentrated HNO₃
 - (i) Identify the element M.
 - (ii) Write the electronic configuration of M.
 - (iii) Write the balanced chemical equations of M when it is heated with air.
 - (iv) When we add water to the products obtained in a(iii) release a gas Identify the gas.
 - (v) Write the balanced chemical equation between M and HNO₃.
 - (vi) Write two uses of M.
 - (b) (i) Explain why both group 1 and 2 elements have melting points for metals and why group 1 melting points are Cower that those of group 2.
 - (ii) Which is the only group 2 metal not to from more ionic compounds.
 - (iii) State which of each pair of compounds is more soluble.
 - 1. Maganesium hydroxide and barium hydroxide.
 - 2. Calciumsulphate and strontium sulphate (Sr SO₄)
 - (iv) Give two reactions as to why rubidium nitrate is more thermally stable than maganesium nitrate.
 - (c) (i) Write the molecular formula of hydroxide of elements in period 3 indicate acid, base and amphoteric nature of their hydroxides.
 - (ii) Write the balanced chemical equation of amphoteric hydroxide obtained above with HCl and NaOH. (150 Marks)