A/L ICT Marking Scheme
 2016 - November 2017 (Gr.13) Batch

Field Work Center (FWC) Thondaimanaru

Part I - Answers

(1)	1	(11)	4	(21)	5	(31)	5	(41)	5
(2)	2	(12)	2	(22)	4	(32)	5	(42)	5
(3)	3	(13)	2	(23)	3	(33)	4	(43)	4
(4)	2	(14)	5	(24)	1	(34)	4	(44)	5
(5)	2	(15)	5	(25)	2	(35)	4	(45)	3
(6)	1	(16)	5	(26)	4	(36)	3	(46)	1
(7)	3	(17)	2	(27)	2	(37)	1	(47)	5
(8)	3	(18)	4	(28)	5	(38)	5	(48)	5
(9)	1	(19)	1	(29)	2	(39)	4	(49)	1
(10)	5	(20)	5	(30)	3	(40)	4	(50)	1

Part - II A Answers

Note:- * Any other relevant answers.

Question No.	Suggested answers	Marks
(1) (a)(i)	$A \cdot(B+\bar{C})+B .(C+\bar{D})+B \cdot D$	2 marks
(1) (a)(ii)	$\begin{array}{ll} A .(B+\bar{C})+B .(C+\bar{D})+B . D & \\ =A B+A \bar{C}+B C+B \bar{D}+B D & \text { [Distributive Law] } \\ =A B+A \bar{C}+B C+B(\bar{D}+D) & \\ =A B+A \bar{C}+B C+B .1 & {[\text { Inverse Law] }} \\ =A B+A \bar{C}+B C+B & \text { [Identity Law] } \\ =B(A+C+1)+A \bar{C} & \\ =B \cdot 1+A \bar{C} & \\ =B+A \bar{C} & \end{array}$	3 marks
(1) (b)		2 marks
(1) (c)	B2C - Business to Consumer Bank provides services to the customers through its website/Internet. C2B - Consumer to Business Customers obtain services such as knowing account balance, and transactions through banking website/Internet.	3 marks

	B2E - Business to Employee Bank provides services to its employees (payments, transfer details) through its website/Internet.	
(2) (a)	(i) <hr>-Horizontal rule : separates contents / indicates thematic changes in the contents. (ii) -Line Break: Inserts a single line break.	4 marks
(2) (b)	```<dl> <dt> Java </dt> <dd> Object-oriented programming </dd> <dt> Pascal </dt> <dd> Procedural programming </dd> </dl>```	3 marks
(2) (c)	Marks Subjects Marks Physics 89	3 marks
(3) (a)	(i) $\mathbf{1} \mathbf{N F}$ - Table contains no repeating groups / should have atomic values. (ii) $\mathbf{2} \mathbf{N F}$ - Table does not contain any partial dependencies. (iii) 3 NF - Table does not contain transitive dependency / every determinant is key.	3 marks
(3) (b)	(i) No, Yes (ii) High, Low (iii) High, Low (iv) Low, High	4 marks
(3) (c)	Magnetic storage : Hard disk, or any suitable example Optical storage : CD, or any suitable example Solid-state storage : Flash drive, or any suitable example	3 marks
(4) (a)	(i) $\mathrm{n}<=5 \quad$ (ii) \# pro.py \quad (iii) cal()\quad (iv) n , sum	4 marks

(4) (b)	$\begin{array}{lllll}1 & 3 & 6 & 10 & 15\end{array}$	3 marks
(4) (c)	Width of the address bus $=32$ - bits No. of unique addresses $=2^{32}$ $\begin{aligned} \text { Max. usable size of memory } & =2^{32} \text { bytes } \\ & =2^{22} \mathrm{~KB} \end{aligned}$	3 marks

Part -II B Answers

Question No.	Suggested Answers								Marks									
(1) (a)	$P T+\bar{W} \bar{T}$								2 marks									
(1) (b)									6 marks									
	0	0	0	1	1	0	1	1										
	0	0	1	0	1	0	0	0										
	0	1	0	1	0	0	0	0										
	0	1	1	0	0	0	0	0										
	1	0	0	1	1	0	1	1										
	1	0	1	0	1	0	0	0										
	1	1	0	1	0	1	0	1										
	1	1	1	0	0	1	0	1										
(1) (c) 4 marks																		
(1) (d)	$\bar{P} \bar{T}$	$\bar{W}+$	$P \bar{T}$	\bar{W}	P'	\bar{W}	PTW		3 marks									
(2) (a)	Attendances of each student could be easily managed / up-to-date. The Internet usage of students could be controlled with limit. Academic details of each student could be easily managed / up-to-date. *																	
									4 marks									

(2) (b)	Data privacy / Security issues.	3 marks
(2) (c)	Using of data encryption / password. *	2 marks
(2) (d)	The academic / examination results details of students should be able to store in this card. The Internet usage details of students should be able to store in this card. The card shall be able to read by card readers. *	6 marks
(3) (a)		4 marks
(3) (b)	Improved Security / privacy / Confidentiality. Authentication / Integrity.	4 marks
(3) (c)	Optical fiber cable Co-axial cable Cost High Low Made of Glass tube / fiber glass Copper Data rate High Low Immunity High Low	4 marks
(3) (d)	IP address Subnet mask Default gateway *	3 marks
(4) (a)	Compiler is a translator program which converts entire source code written in a programming language into object code / machine code at a time. Interpreter is a translator program which converts source code written in a programming language into object code / machine code a line at a time.	4 marks (2×2)

