	tar	Jan Sarah	14 5 5 3	. >≎
,		***		-
	£**********			
	1 7 25		4 11	
•	1 193		∵ {1	
•	4-3.	1,150) H	
•			. 11	
5	1381,444	1 65 1 1 27	> 11	
. :	L	فيقن فالتسارين	والسيثه	
Ę				
. :	I A		71	
~	1 1 1		- !:	
	ΛM		es 11.	ख 🐼
(C)			خ کر قراق	ን ወ
40.			110	
		~	//X7	15.54
		ومترجعه المسار	·**	البهراء
100	4 Tan	~~~		3
		1 Oct 18	* #1 (C)	65
· `	17.1	11.34		٠,
- b	4. 7 00 m			J. 3
	100	بالمراكب براح	Charles (27.

The state of the s

තුන්වන වාර පරිකෂණය - 2016 ජූලි

සංයුක්ත ගණිතය I

12 ශේණය

87C3 2 1/2

නම :	නම :	••••••••••••••••••
------	------	--------------------

උපදෙස් :

- *• මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ. **A කොටස** (පුශ්න 1 8) සහ **B කොටස** (පුශ්න 09 13)
- **★** A කොටස

සියලුම පුශ්න වලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා නම් ඔබට අමතර ලියන කඩදාසි භාවිතා කළ හැකිය.

- * B කොටස පුශ්න 4කට පිළිතුරු සපයන්න. පිළිතුරු ඔබේ කඩදාසි වල ලියන්න.
- \star නියමිත-කාලය අවසන් වූ පසු A කොටස, B කොටස උඩින් සිටින සේ අමුණා පිළිතුරු පතු භාර දෙන්න,
- \star පුශ්න පතුයෙහි B කොටස පමණක් ඔබ ළඟ තබාගත හැකිය.

පරීක්ෂකගේ පුයෝජනය සඳහා පමණි.

	සංයුක්ත ගණිතය I	
කොටස	පුශ්න අංකය	ලැඩූ ලකුණු
•	01	
	02	B
A .	03	
* A.	04	- y
	05	
	06	
	07	
	08	
	09	
	10	
В	11 :	
	12	
	13	
	චිකතුව	
	පුතිශතය	

අවසාන ලකුණු

ඉලක්කමින්	
අකුරෙන්	

Δ	_	කොටස
\mathbf{A}		(Pa):1(Ca)

01.	$k(y) = y^4 + \lambda y^3 - y^2 + \mu y + 2$ යැයි සලකමු. λ, μ තාත්වික වේ. $(y-1)$ හා $(y+2)$ යනු $k(y)$ හි සාධක නම් λ හා μ හි අගුයන් සොයන්න.
•	•

	z.
	•••••••••••••••••••••••••••••••••••••••

	•
	<u></u>

	•••••••••••••••••••••••••••••••••••••••
02.	$\log_a b imes \log_b a = 1$ නම්, $4\log_{16} x - 1 = \log_x 4$ හි තාත්වික විසඳුම් සොයන්න.

->

	සියළු තාත්වික x සඳහා $\mathbf{f}(\mathbf{x}) = \frac{x^2-1}{x^2+1}$ හි අවම අගය සොයන්න.
	*
•	•
	•••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••

	•••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••
	······································

	•••••••••••••••••••••••••••••••••••••
	•
	······································
	······································
•	***************************************
	•••••••••••••••••••••••••••••••••••••••
	•
0.4	$\lim_{x \to \infty} x^{\frac{1}{3}} - 4$
04.	$x \xrightarrow{m} 64 \xrightarrow{\frac{1}{2}}$ මසායන්න. $x^{\frac{1}{2}} - 8$
	•••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••

(2,2)	AB මට්බාවට සිමාන්තිටව. U ලිසිමුපියි හිටහා යන මට්බාමව සිම්කිරණය මසායනන.
	AB රේඛාවට සමාන්තරව, C ලඎය හරහා යන රේඛාවේ සමීකරණය සොයන්න.
• • • • • • • • • • • • • • • • • • • •	
* • • • • • • • • • • • • • • • • • • •	
	•
• • • • • • • • • • • • • • • • •	***************************************
• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	
	3 .
•••••••	**************************************
•••••••	***************************************
•••••••	
* • • • • • • • • • • • • • • • • • • •	······································
•	
•••••	**************************************
• • • • • • • • • • • • • • • •	***************************************
<u>,</u>	•••••••••••••••••••••••••••••••••••••••
• • • • • • • • • • • • • • • • • • • •	
••••••	
$ 5x+1 < x^2 +$	5 වීජිය ලෙස විසඳන්න.
• • • • • • • • • • • • • • • • • • • •	······································
•	
• • • • • • • • • • • • • • • • • • • •	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	······································
• • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • •	
* * * * * * * * * * * * * * * * * * * *	
	······································

* >

*

07.	. $3\ \mathrm{cosec}^2\theta=2\mathrm{sec} heta$ සමීකරණය තෘප්ත කරන පරිදි $ heta$ සඳහා ගත හැකි සුළු කෝණී විසදුම සොයන්න.
•	•
	•••••••••••••••••••••••••••••••••••••••
	•
	•
	•••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••
	•
08.	$\tan^{-1}\left(\frac{x-1}{x-2}\right) + \tan^{-1}\left(\frac{x+1}{x+2}\right) = \pi/4$ විසඳන්න.

	•••••••••••••••••••••••••••••••••••••••
	*
	····› ·····› ·····› ·····› ·····› ·····› ·····› ·····› ······

	•••••••••••••••••••••••••••••••••••••••

B - කොටස

- $09.\ f(x)\equiv x^2-2(1+\lambda)\,x+4\lambda+3$ ලෙස දී ඇත. මෙහි $\lambda\in R$ වේ. $(i)\quad \dot{f}(x)=0\ \delta \ \text{මූල ලකුණින් පුතිවිරුද්ධ වීම සඳහා }\lambda<-\ \frac{3}{4}\ \$ විය යුතු බව පෙන්වන්න.
 - (ii) λ හි සියළු අගයයන් සඳහා f(x)=3 සමීකරණයෙහි මූල තාත්වික වන බව පෙන්වන්න.
 - (iii) λ_1 හා λ_2 යනු f(x)=0 හි මූල සමපාත වන පරිදි λ හි අගයයන් දෙකක් වන්නේ නම්, $|\lambda_1-\lambda_2|=2\sqrt{3}$ බව පෙන්වන්න.
 - (iv) $f(x) \equiv (x a)^2 + b$ වන පරිදි a හා b යන්න λ හි පුකාශන ඇසුරෙන් ලබාගන්න.

x = (-2) දි f(x) ශිතයට අවමයක් පවතින පරිදි λ හි අගය සොයන්න.

 λ මෙම අගය ගන්නා වීව f(x) හි අවම අගයද සොයන්න.

- 10. (a) $f(x) \equiv x^3 3x^2 18x + 40$
 - එනයින් $\mathbf{f}(\mathbf{x})$ යන්න රේඛීය සාධක තුනක ගුණිතයක් ලෙසින් පුකාශ කරන්න. ූ f(2) හි අගය සොයන්න.

 $\frac{9x-72}{f(x)}$ භින්න භාග ඇසුරෙන් පුකාශ කරන්න.

(b) $3x^3 - 2x^2 + x + 7$ ්බහු පදය $x^2 - 2x + 5$ මගින් බෙදීමෙන් ලැබෙන ලබ්ධිය හා ශේෂය සොයන්න.

එනයින් x^2-2x+5 බහු පදය $3x^3-2x^2+ax+b$ හි සාධකයක් වීම සඳහා a සහ b අගයන් මසායන්න.

- $(c) \frac{x(x-3)}{x-2} \ge 2$, $x \ne 2$, අසමානතාව තෘප්ත කරන x හි අගය කුලකය ලබාගන්න.
- (d) f(x) = | x-2 | හි අර්ථ දක්වීම ලියන්න.

 $y= \mid x-2\mid +1$ හා y=x හි පුස්ථාර එකම සටහනක ඇඳ දක්වන්න.

එනයින් $\mid 2-x\mid >x-1$ අසමානතාව තෘප්ත කරන x හි අගය කුලකය සොයන්න.

- 11. (a) OABC ්යනු $O\equiv (0,0)$ හා $A\equiv (4,3)$ වන රොම්බසයකි. OB විකර්ණය 7x y 2 = 0 රේඛාවට සමාන්තර වන අතර OB හා ACවිකර්ණ E හිදී ඡේදනය වේ.
 - (i) OB හා AC හි සමීකරණ සොයා එනයින් $E \equiv \left(\frac{1}{2}, \frac{7}{2}\right)$ බව ලබා ගන්න.
 - (ii) C හා B ශීර්ෂ වල ඛණ්ඩාංක සොයන්න.
 - 🔭 (iii) AC හා EB ජේඛාවල දිග සොයා. එනයින් OABC රොම්බසයේ වර්ගඵලය වර්ග ඒකක 12.5 ක් වන බව පෙන්වන්න.
 - $(b)\ OXY$ කාටීසියානු තලයට අනුබද්ධයෙන් OAB තිකෝණයෙහි O යනු මූල ලඎයයයි. A හා B පිළිවෙලින් පළමු හා හතරවන වෘත්ත පාද වල පිහිටා ඇත. OA සහ OB ලම්භක වන අතර OB පාදය 2x+y=0 මත වේ. OB හා AB පාද වල දිග පිළිවෙලින් ඒකක $2\sqrt{5}$ සහ 10 වේ.
 - (i) A සහ B හි ඛණ්ඩාංක සොයන්න.
 - (ii) AB හි සමීකරණය සොයන්න.

3-	
----	--

(186) (1 (1)		a Property	Mark St.
Ç.)
		ా క్రేశ్) 🧎
j.		d Batha	1 ;
1.88	// (<u>/</u>		1880
			\$ <i>}</i>
1	1 30	137 G	
17.16			15
	් කමාර	3500	وري

හි. එස්. සේනානායක විදහලය.. කොළම 07..

තෙවන වාර පරිකෂණය - 2016 ජූලි

සංයුක්ත ගණිතය II

12 ලේණය

පැය 2 1/2

නම :	

උපදෙස් :

- ★ මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ.
 - ${f A}$ කොටස (පුශ්න 1 08) සහ ${f B}$ කොටස (පුශ්න 09 13)
- **★** A කොටස

සියලුම පුශ්න වලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශෳ නම් ඔබට අමතර ලියන කඩදාසි භාවිතා කළ හැකිය.

- **★** B කොටස
 - පුශ්න 4කට පමණක් පිළිතුරු සපයන්න. පිළිතුරු ඔබේ කඩදාසි වල ලියන්න.
- \star නියමිත කාලය අවසන් වූ පසු A කොටස , B කොටස උඩින් සිටින සේ අමුණා පිළිතුරු පතු භාර දෙන්නූ.
- igstar පුශ්න පතුයෙහි ${f B}$ කොටස පමණක් ඔබ ළඟ තබාගත හැකිය.

පරික්ෂකගේ පුයෝජනය සඳහා පමණි.

	සංයුක්ත ගණිත	ය
කොටස	පුශ්න අංකය	ලැඩූ ලකුණු
	01	
	02	
	03	
A	04	
	05	
	06	
	07	
D	08	
\mathbf{B}	09	
	10	
	11:	
	12	
	13	
	එකතුව	
	පුතිශතය	

අවසාන ලකුණු

ඉලක්කමින්	
අකුරෙන්	

සංකේත අංක

උත්තර පතු පරීඤාක	
	1.
ලකුණු පරීකෂා කලළ්	2.
අධීක්ෂණය	

1	A - කොටස				
Ί.	නිශ්චලතාවයෙන් ගමන් ආරම්භකල වාහනයක් ගමනක මුල් කොටස ඒකාකාර ත්වරණයෙන්ද, ඉන් පසු නියත $oldsymbol{u}$				
	පුවේගයෙන්ද අවසන් කොටස ඒකාකාර මන්දනයකින්ද ගමන් කර නිශ්චලතාවයට පැමිනීමට ගත කල මුළු කාලය T වේ.				
,	ගමනේ මධාක පුවේගය $\frac{5}{8}u$ වේ නම් වාහනයේ චලිතය සඳහා පුවේග කාල පුස්ථාරය ඇඳීමෙන් ඒකාකාර පුවේගයෙන				
	ගමන් කල කාලය සොයන්න.				
	······································				
	•				
	ار • • • • • • • • • • • • • • • • • • •				
2.	. අංශුවක් සිරස්ව ඉහලට පුක්ශේපනය කර තත්පර t_1 හා t_2 කාලයකට පසු $(t_1 eq t_2)$ පොලොවේ සිට h උසින් පවතී න				
2.	ෑ අංශුවක් සිරස්ව ඉහලට පුක්ශේපනය කර තත්පර t_1 හා t_2 කාලයකට පසු $(t_1 \neq t_2)$ පොලොවේ සිට h උසින් පවතී න t_1 න t_2 බව පෙන්වන්න.				
2.	අංශුවක් සිරස්ව ඉහලට පුක්ශේපනය කර තත්පර t_1 හා t_2 කාලයකට පසු $(t_1 \neq t_2)$ පොලොවේ සිට h උසින් පවතී න t_1 න t_2 බව පෙන්වන්න.				
2.	අංශුවක් සිරස්ව ඉහලට පුක්ශේපනය කර තත්පර t_1 හා t_2 කාලයකට පසු $(t_1 eq t_2)$ පොලොවේ සිට t_2 සිට t_2 බව පෙන්වන්න.				
2.	$h=rac{1}{2}gt_1t_2$ බව පෙන්වන්න.				
2.	$h=rac{1}{2} g t_1 t_2$ බව පෙන්වන්න.				
2.	$h=rac{1}{2}gt_1t_2$ බව පෙන්වන්න.				
2.	$h=rac{1}{2}m{\sigma}t_1t_2$ බව පෙන්වන්න.				
2.	$h=rac{1}{2}gt_1t_2$ බව පෙන්වන්න.				
2.	$h=rac{1}{2}gt_1t_2$ බව පෙන්වන්න.				
2.	$h=rac{1}{2}gt_1t_2$ බව පෙන්වන්න.				
2.	$h=rac{1}{2}gt_1t_2$ බව පෙන්වන්න.				
2.	$h=rac{1}{2} g t_1 t_2$ බව පෙන්වන්න.				
2.	$h=rac{1}{2}gt_1t_2$ බව පෙන්වන්න.				
2.	$h=rac{1}{2} g t_1 t_2$ බව පෙන්වන්න.				
2.	$h=rac{1}{2}gt_1t_2$ බව පෙන්වන්න.				

12

......

03.	අංශුවක් තිරසට $ heta$ ආනතව u පුවේගයෙන් පුක්ෂේපනය කරනු ලැබේ. අංශුව එහි උපරිම සිරස් උස ${ m H}$ වෙත ලගා වන
	තෙක් අංශුවේ සිරස් චලිතය සඳහා පුවේග කාල පුස්ථාරය ඇඳ දක්වන්න. එම පුස්ථාර ඇසුරෙන් $H=rac{u^2}{2g}\sin^2 heta$ බව
•	ං පෙන්වන්න. එනයින් θ හි ඕනම අගයක් සඳහා අංශුවකට එලඹිය හැකි උපරිම උසෙහි වැඩිතම අගය සොයන්න.

	······································

	•
	······································
	•••••••••••••••••••••••••••••••••••••••
	······································
	······································
4	
04.	${}^{f v}$ අරය ${f r}$ වූ සුමට වෘත්තාකාර කම්බියක බර ${f w}$ වූ පබලුවකට චලනය විය හැක. ${f l}$ දිග සැහැල්ලු අවිතනා තන්තුවකට මෙම
	පබලුව ගැටගසා එහි අනෙක් කෙලවර වෘත්තාකාර කම්බි රාමුවෙහි ඉහලතම ලඤාගයෙහි ගැට ගසා සිරස් තලයක
	සමතුලිතව තබා ඇත. මෙම අවස්ථාවේදී තන්තුවෙහි ආතතිය $\dfrac{wl}{r}$ බව පෙන්වන්න.
	······································
	······································
	• • • • • • • • • • • • • • • • • • •
	······································
ŧ	
	-~
	••
	······································

×.>

07	. ABCD තිපීසියමෙහි A(1,1) C(5,8) හා D (1,5) වේ. AB හා DC වන අතර AB හි දිග DC මෙන් දෙගුණයකි.
	\overrightarrow{DC} ලෛශිකය $\overrightarrow{\mathbf{i}}$ $\overrightarrow{\mathbf{j}}$ ඒක ලෛශික ඇසුරෙන් සොයන්න.
	$ec{ii}$) තවද \overrightarrow{OB} සොයා එනයින් $\mathbf B$ හි ඛණ්ඩාංකය ලබා ගන්න.
•	

	•••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••

	······································
	•

	• * * * * * * * * * * * * * * * * * * *
	• • • • • • • • • • • • • • • • • • • •

	•••••••••••••••••••••••••••••••••••••••
	······································
	•••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••
08	. $P,Q,\ R$ යන බල අංශුවක් මත කිුයා කරයි. අංශුව සමතුලිතව පවතිුනුයේ P හා Q අතර කෝණය P හා R අතර කෝණය
	මෙන් දෙගුණයක් වූ විටය. $\mathrm{R}^2 = \mathrm{Q}(\mathrm{Q} - \mathrm{P})$ බව පෙන්වන්න.
	e.
	•••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••

	•••••••••••••••••••••••••••••••••••••••
	, ••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••
	······································
	; ************************************
	· • •

	"♥ ••••••••••••••••••••••••••••••••••••
	: ••••••••••••••••••••••••••••••••••••

*>

B - කොටස

- 09. බස් රථයක් නිශ්චලතාවයේ සිට ගමන් අරඹා f ඒකාකාර ත්වරණයෙන් චලනය වී v උපරිම පුවේගයක් ලබාගනී. ඊට පසු එම පුවේගයෙන්ම චලනය වෙයි. බස් රථය ගමන් අරඹන මොහොතේ දී එයට b දුරක් පිටුපසින් ඇති මෝටර් රථයක් u ඒකාකාර පුවේගයෙන් බස් රථය චලනය වන දිශාවට චලනය වෙමින් පවතී. එකම සටහනක බස් රථයේ හා මෝටර් රථයේ චලනය සඳහා පුවේග කාල වකු අඳින්න. බස් රථය ගමන් අරඹා t කාලයකට පසු මෝටර් රථය බස් රථයට a දුරක් පිටුපසින් පිහිටයි.
 - a) පුවේග කාල වකු උපයෝගී කරගනිමින් ,

٠,

i)
$$0 < t < \frac{v}{f}$$
 ීවන විට $a = b + \frac{1}{2}ft^2 - ut$ බවද

$$ii)$$
 $0 < t < \frac{v}{f}$ වන විට $a = b + \frac{1}{2}ft^2 - ut$ බවද පෙන්වන්න.

- ් b.) $0 < t < \frac{v}{f}$ නම් , මෝටර් රථය විසින් බස් රථය පසු කිරීමට $u^2 \ge 2fb$ විය යුතු බව අපෝහනය කරන්න .
- c.) $u^2 < 2fb$ හා u < v නම්, මෝටර් රථය හා බස් රථය අතර දුර $b \frac{u^2}{2f}$, බව පෙන්වන්න. ඒ සඳහා ගතවන කාලයද සොයන්න.
- $10.\ a.)\ O$ යනු තිරස් තලයක් මත පිහිටි ලඤාපයක් වන අතර OA=h වන ලෙස O ට සිරස් ලෙස ඉහලින් A ලඤාපය පිහිටා තිබේ. අංශුවක් තිරසට α ආනතව V පුවේගයෙන් A සිට පුක්ෂේපණය කරනු ලැබේ. OXY කාටිසියානු තලය අනුබද්ධයෙන් අංශුව පථයේ p(x,y) හරහා යන විට,

$$y = h - \frac{gx^2}{2v^2} + x \tan \alpha - \frac{gx^2}{2v^2} \tan^2 \alpha$$
 බව පෙන්වන්න.

අංශුව $\mathbf{B} \equiv (\mathbf{d,o})$ ලඤාගයේදී තිරස් පොලව මතට වැටේ.

$$v^2=gh$$
 වන විට $d^2 an^2lpha-2dh anlpha+d^2-2h^2=0$ බව පෙන්වන්න.

අංශුව මේ අයුරින් බිම පතිත වීමට $d \le \sqrt{3} \ h$ බව අපෝහනය කරන්න.

, ඉහත පුක්ශිප්තයේ පුක්ෂේපණ කෝණය 30^0 නම්, අංශුවේ තිරස් පරාසය $\sqrt{3}\,\mathrm{h}$ බවද අපෝහනය කරන්න.

b.) පොලොව මත වූ A ලඎයක සිට u පුවේගයෙන් අංශුවක් සිරස්ව ඉහිළට පුක්ෂේපණය කරනු ලබන මොහොතේම, A සිට h සිරස් උසකින් ඇති ස්ථානයක සිට තවත් අංශුවක් සීරුවෙන් මුදා හරිනු ලැබේ. චලිතය අතරතුරදී මෙම අංශුන් දෙක ගැටෙන අතර එම මොහොතේදී ඒවායේ පුවේග අතර අනුපාතය 2:1 නම්,

පුක්ෂේපණ පුවේගය $u^2=rac{9\,gh}{5}$ වන බව පෙන්වන්න.

- 11. a.) A යනු OP රේඛාවේ මධා ලඤායද, OAB යනු තිකෝණයක්ද වේ. AB හා BO පාද මත පිලිවෙලින් Q හා R ලඤාය $AQ:QB=\lambda:1$ හා $BR:RO=\mu:1$ වන ලෙස පිහිටා ඇත. $\overrightarrow{OA}=\underline{a}$ සහ $\overrightarrow{OB}=\underline{b}$ ලෙසද ගෙන Q හා R ලඤාා වල පිහිටුම් දෛශික $\underline{a},\underline{b},\lambda$ μ ඇසුරෙන් පුකාශ කරන්න.

 P, Q හා R ලඤාපය ඒක රේඛය නම් 2 λ $\mu=1$ බව පෙන්වන්න.

 තවද RQ:QP=1:4 වීම සඳහා λ හා μ අගයයන් ලබා ගන්න.
 - b.) ABC තිකෝණයේ B යනු සෘජුකෝණයකි. AD හා BE මධාසේථ ලම්භක වේ. $\overrightarrow{BA} = \underline{a} \quad \text{සහ} \quad \overrightarrow{BC} = \underline{c} \quad \text{ලෙස ගෙන} \quad \overrightarrow{AC}, \ \overrightarrow{BE} \quad \text{සහ} \quad \overrightarrow{AD} \quad \underline{a} \;, \underline{c} \; \text{ඇසුරෙන් සොයන්න}.$ එනයින් $A\hat{C}B \Rightarrow \tan^{-1}\left(\frac{1}{\sqrt{2}}\right)$ බව පෙන්වන්න.
- ් 12. OXY අසාගය පද්ධතියට අනුබද්ධයෙන් OABCD යනු පංචාශුයක් වන අතර $A\equiv (3,0)$ $B\equiv (4,\sqrt{3})$ $C\equiv (3,3)$ හා $D\equiv (0,3)$ වේ. \overrightarrow{OA} , \overrightarrow{AB} , \overrightarrow{CA} , \overrightarrow{CO} , \overrightarrow{DC} සහ \overrightarrow{OD} දිගේ ap, $4a^2$ p, $2\sqrt{3}$ a^2 p, $2\sqrt{2}$ p, p හා 4ap බල කියා කරයි. මෙහි a යනු තාත්වික නියතයකි.
 - a.) මෙම බල පද්ධතිය යුග්මයකට ඌනනය වෙයි නම් a හි අගය සොයා යුග්මයේ සූර්ණය විශාලත්වය හා අත දක්වන්න. $ar{a}$
 - b.) i). a=2 ලෙස ගෙන සම්පුයුක්තයේ විශාලත්වය සහ එය x අකුෂායේ ධන දිශාව සමග සාදන කෝණය සොයන්න.
 - ulletii). සම්පුයුක්තයේ කිුයා රේඛාව $oldsymbol{x}$ අසාය $(\lambda,0)$ ලසායයේදී ඡේදනය කරයි නම් λ හි අගය සොයන්න. එනයින් සම්පුයුක්තයේ කිුයා රේඛාවේ සමීකරණය $3oldsymbol{y}$ $2oldsymbol{x}$ = 1 බව පෙන්වන්න.
 - iii). දැන් මෙම සම්පුයුක්තය A ශීර්ෂය හරහා යන පරිදි පද්ධතියට G යුග්මයක් එක් කලේ නම් එහි විශාලත්වය සොයා එහි අත දක්වන්න.
- $13.\ a.\)\ ABCD$ යනු සැහැල්ලු අවිතනා තන්තුවකි. මෙහි A හා D දෙකෙලවර තිරස් අසෂායකට සවිකර w හා kw බර අංශුන් දෙකක් B හා C හිදී තන්තුවට ඇඳා ඇත.

AB හා CD තන්තු කොටස් ති්රසට lpha හා heta ආනත වන අතර BC අංශුව ති්රසට eta ආනත වේ. පද්ධතිය සමතුලිත වීම සඳහා

$$K = \frac{\cos \alpha \sin (\beta + \theta)}{\sin(\alpha - \beta)\cos \theta}$$
 බව පෙන්වන්න.

b.) තිරසට α කෝණයක් ආනත සුමට තලයක් මත ඇති W බර අංශුවක් සමතුලිතව තැබීමට තලයට සමාන්තරව P බලයක් එම අංශුව මත යෙදිය යුතු අතර තලයේ ආනතිය දෙගුණයක් වූ විට අංශුව සමතුලිතව තැබීම සඳහා $2\sqrt{3}\ P$ බලයක් තිරස් ලෙස අංශුව මත යෙදිය යුතුය. $\alpha=30^{\circ}$.බව පෙන්වා මෙම එක් එක් අවස්ථාවේදී අංශුව මත තලයෙන් ඇති වන පුතිකිුයාවේ විශාලත්වය සොයන්න.