## Grade 9

Mathematics

## Unit 20 Graphs

## READING MATERIAL


L.K. AMARAKOON

R/SIVALI CENTRAL COLLEGE

## By studying this lesson you will be able to...

identify functions
draw graphs of functions of the form $y=m x, y=m x+c$ and identify their characteristics.
identify the gradient and intercept of a straight line graphs,
plot straight line graphs of equations of the form $a x+b y=c$
8. identify the relationship between the gradients of straight lines which are parallel to each other.

## Straight line graphs

Let's draw a coordinate plane with x and y axes and mark following points. Then join those points and obtain a straight line.
i) $(-2,3),(0,3),(2,3),(5,3)$

Equation of the straight line $y=\mathbf{3}$
ii) $(4,-4),(4,0),(4,2)$,
$(4,5)$
Equation of the straight linex $=\mathbf{4}$


## Functions



Price of 1 m of wire is Rs. 5.00

| Number of <br> meters of wire | Price <br> Rs. |
| :---: | :---: |
| 1 | $1 \times 5=5$ |
| 2 | $2 \times 5=10$ |
| 3 | $3 \times 5=15$ |
| 4 | $4 \times 5=20$ |

Lets us take the number of meters of wire as ' $x$ ' and the corresponding price as Rs. $y$,

## Functions

2. Let's consider above type of functions,

$$
\text { Ex:- - i) } y=5 x \quad \text { Index of } x \text { is one. There fore those types of }
$$ ii) $y=2 x+3>$ functions called as linear functions.

2. In grade 10 we will discuss about quadratic functions.

Ex:- - i) $y=2 x^{2}$
ii) $y=2 x^{2}+3$

## Graph of function of the form $\boldsymbol{y}=\boldsymbol{m x}$

Draw the graph of function $\boldsymbol{y}=2 \boldsymbol{x}$ using suitable table of values.

| $x$ | $2 x$ | $y$ | $(x, y)$ |
| :---: | :--- | :---: | :---: |
| -1 | $2 \times(-1)$ | -2 | $(-1,-2)$ |
| 0 | $2 \times 0$ | 0 | $(0,0)$ |
| 1 | $2 \times 1$ | 2 | $(1,2)$ |
| 2 | $2 \times 2$ | 4 | $(2,4)$ |




This constant value is equal to the coefficient $(m)$ of a function of the form $y=m x$
This constant value is called the gradient of the graph

- $\boldsymbol{y}=2 \boldsymbol{x}$; Gradient of the function, $m=2$ gradient (coeffient of $x$ )

Ex: $-i$ ) Gradient of the graph of the function $y=-3 x$
ii) Gradient of the graph of function $\boldsymbol{y}=\boldsymbol{x} ; m=1$
iii) Gradient of the graph of function $y=\frac{2}{3} x ; m=\frac{2}{3}$

## Graph of functions of the form $\boldsymbol{y}=\boldsymbol{m x}+\boldsymbol{c}$

1 Draw the graph of the function $y=2 x+3$ using suitable table of values.

| $x$ | $2 x+3$ | $y$ | $(x, y)$ |
| :---: | :--- | ---: | ---: |
| -2 | $2 \times(-2)+3$ | -1 | $(-2,-1)$ |
| -1 | $2 \times(-1)+3$ | 1 | $(-1,1)$ |
| $\mathbf{0}$ | $2 \times 0+3$ | 3 | $(0,3)$ |
| 1 | $2 \times 1+3$ | 5 | $(1,5)$ |



In the graph of the function of $\boldsymbol{y}=\mathbf{2 x}+3$
$i)$ gradient $(m)=2$
ii) intercept $(c)=3$

According in the graph $\boldsymbol{y}=\boldsymbol{m x}+\boldsymbol{c}$ of the function of,


## Graph of functions of the form $\boldsymbol{y}=\boldsymbol{m x}+\boldsymbol{c}$

Draw the graph of the function $y$
$=-2 x+1$ using suitable table of values.

| $\boldsymbol{x}$ | $-2 \boldsymbol{x}+1$ | $y$ | $(x, y)$ |
| :---: | :--- | ---: | :--- |
| $-\mathbf{1}$ | $-2 \times(-1)+1$ | 3 | $(-1,3)$ |
| $\mathbf{0}$ | $-2 \times 0+1$ | 1 | $(0,1)$ |
| $\mathbf{1}$ | $-2 \times 1+1$ | -1 | $(1,-1)$ |
| $\mathbf{2}$ | $-2 \times 2+1$ | -3 | $(2,-3)$ |



Let's observe graphs of the functions $y=2 x$ and $y=2 x+3$

23 Straight lines of the graphs $\boldsymbol{y}=\mathbf{2 x}$ and $y=2 x+3$ are parallel to each other

Gradients of parallel lines equals to each other.


Let's observe graphs of the functions $y=2 x$ and $y=-2 x+1$
2. If gradient of a straight line.

- will be a positive (+) value it makes acute angle counter clockwise with the positive direction of the $\mathrm{x}-\mathrm{axis}$.
- will be a negative (-) value it makes acute angle counter clockwise with the positive direction of the $\mathrm{x}-$ axis.



## Graphs of functions of the form $\boldsymbol{a} \boldsymbol{x}+\boldsymbol{b} \boldsymbol{y}=\boldsymbol{c}$

It is better to change the given equation to the form of $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{c}$

Ex;- : Express $4 \boldsymbol{x}+\mathbf{2 y}=\mathbf{6}$ equation as the form of $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{c}$

$$
\begin{aligned}
4 x+2 y & =6 \\
2 y & =-4 x+6 \\
\frac{2 y}{2} & =\frac{-4 x}{2}+\frac{6}{2} \\
y & =-2 x+3
\end{aligned}
$$

1 For each of the functions given by the following equations, write the gradient and intercept without drawing the corresponding graphs and write whether the graph makes an acute or obtuse angle counterclockwise with the positive direction of $x$ axis.
i) $y=5 x$
ii) $y=2 x+5$
iii) $y=-5 x-4$
iii) $y=-x+2$

$$
\begin{array}{ll}
\text { iv) } 2 y=-4 x+2 & \text { v) } 3 y-4 x=2
\end{array}
$$

2 By selecting suitable values for $x$, construct a table of values and draw the graphs of the following functions on the same coordinate plane.
i) $y=x$
ii) $y=-2 x-3$
iii) $y=\frac{1}{2} x+1$
iv) $y=-\frac{1}{2} x-3$

## Mathematics

## Unit 20

