Grade 9

Mathematics
lesson 14
Loci and

constructions

A.N.Nirosha Chandimali Abeysiri

R/Udagama Maha Vidyalaya,Pinnawala,Balangoda

By studying this lesson you will be able to,

- Identify four basic loci,
- Construct a line perpendicular to a given line,
- Costruct the perpendicular bisector of a straight-line segment,
- Construct and copy angles,
- Solve problems related to loci and constructions.

Following materials are needed for the activities,

- Mathematical instrument box.
- Colour pencils.
- A piece of twine rope with 1 m .
- Pieces of ekels.
- A graph paper.

Basic Loci

A set of points satisfying one or more conditions is known as a locus.
There are four basic loci.

1. The locus of points which are at a constant distance from a fixed point.

Identify the locus of points which are at a distance of 4 cm from the fixed point of 0 .

Step 1
Mark the points which are at a distance of 4 cm from the fixed point.

Step 2

Mark the points as much as possible as follow..

The set of points which are at a distance of 4 cm are lie on a circle.

The locus of a points on a plane which are at a constant distance from a fixed point is a circle.

Fixed point

The locus of points which are equidistant from two fixed points

Identify the locus of points which are equidistant from
two points A and B .

Step 1
Draw a line segment $A B$ as 10 cm .

Do the above by using some ekel pieces or any other thing. Mark the points equidistant form A and B.

AB straight line is bisected by the locus.

The locus is perpendicular to AB . The locus is the perpendicular bisector of AB .

The locus points which are equidistant from two given points is the perpendicular bisector of the line joining the two points.

3 .The locus of points which are at a constant distance from a fixed line.

Identify the locus of the
 points at a distance of 2 cm
 from the straight line of $A B$.

Step 1

Draw the line segment of Ab as shown below.

Step 2

Mark the points as much as possible such that points lie above and below to AB.

The locus of points which are at a constant distance from a straight
Line are the two straight lines parallel to it at the given constant distance from it,on either side of it
4. The locus of the points equidistant from two interseting straight line

Identify the locus of the points equidistant from two intersecting straight lines of $A B$ and $B C$.

The angle of $A B C$ divides in to two equal angles and that the distance from any two point on the line of bisector to the lines $A B$ and $B C$ are equal.

The locus of points equidistant from two intersecting straight lines is the angle bisector of the angles formed by the intersection of the two lines.

Constructing lines perpendicular to a given straight line.

1. Constructing a line perpendicular to a given line from an external point.

Construct a line perpendicular to $\mathbf{P Q}$ from the external point P.
L_{+}

Step 1

Draw a straight line segment in your exersice book and name it PQ.Mark a point external to PQ and name it L .

Step 2

Taking a length which is more than the distance from L to PQ as the radius and L as the centre,drawn arc such that it intersects the line PQ.Name points of intersection X and Y .

Step 4

Join the points L aand M and name the point at which LM intersects PQ as D. Measure and write the magnitude of $L \widehat{D} P$.

Step 3
Taking each of the points X and Y as the centre and using the same radius ,draw two arcs such that they intersect each other as shown in the figure name the point of intersection M.

2Constructing a line perpendicular to a given line through a point on the line.

Construct a line perpendicular to AB through the the point P on AB .

Step 1
Draw a straight line and name it Ab.Mark a point on it and name it P.

Step 2

Taking a length less than the length of PA as the radius, and taking P as the centre, draw two arcs using the pair of compasses such that they intersect the line segments $A B$ PB.Name the two points of intersection L and M .

Step 3

Taking a length greater than the one taken step 2 as the radius, and taking L and M as the centres, draw two arcs such that they intersect each other as shown in the figure.Name the point of intersection N .

Step 4
Join NP, measure the magnitude of the angle
$N \hat{P} A$ and write its value.

3Constructing a line perpendicular to a given straight line segment through an end point.

Costruct a line perpendicular to the line segment $X Y$ through the point X.

Draw a line perpendicular to the line segment XY through the point X .

Produce the line YX and do this construction using the method identified above.

4. Constructing the perpendicular bisector of a straight line segment.

Constuct the perpendicular bisector of AB line segments.

Step 1

Taking a length greater than half of XY as the radius, and without changing it,draw two arcs with X and Y as the centres, such that they intersect each other.Name the point of intersection P.

Step 2
As done above,taking X and Y as the centres, draw two other arcs such that they intersect each other on the side of XY opposite to the side on which P is located.Name the point of intersection Q .

It is not necessary to use the same radius in the above two steps.

Step 3
Join PQ and name the point at which PQ intersects XY as M.Measure XM and My and magnitude of XMP angle.

Constructions related to angles.

1. Constructing the angle bisector

Step 1
Draw an arc with O as the centre such that it intersects the arms OA and OB.Name the points of intersection X and Y .

Step 2

Using a pair of compasses and taking a suitable radius, construct two arcs with X and Y as the centres such that they intersect each other as shown in the figure.Name the point of intersection P.

Step 3

Join OP.Measure $A \widehat{O} P$ and $B \widehat{O} P$ and check whether they are equal.

Step 1
Name a straight line segment in your exercise book and name it OA.

Step 2
Taking O as the centre,construct an arc such that it intersects $O A$ as shown in the figure.Name the point of intersection X .

Step 3

Without changing the length of the radius , and taking X as the centre,draw another arc using the pair of compasses ,such that it intersects the first arc.Name the point of intersection Y.

3.Constructing angle of 120°

Step 2
Taking O as the centre, construct an arc such that it intersects OA as shown in the figure. Name the point of intersection P.

Step 3
Without changing the length of the radius, and taking P as the centre , draw a small arc using the pair of compasses, such that it intersects the first arc shown in the figure,and name that point of intersection Q.Now, without changing the radius, take Q as the centre and draw another small arc such that it too intersects the first arc and name that point of intersection R.

Step 4
Join QR and produce it as required.Measure and check the magnitude of $A \hat{O} R$.

4.Constructing angle of 30°

5.Constructing angle of 90°

Method 1

At O,construct a line perpendicular to the line segment /ao.Then $A \widehat{O} P=90^{\circ}$.
6.Constructing angle of 45°.

Construct an angle 60° and construct its bisector. Then $A \widehat{O} B=30^{\circ}$.

Method II

Construct an angle of 120° and bisect one 60° angle. Then $A \widehat{O} B=90^{\circ}$.

Construct an angle of 90° and bisect it.Then $A \hat{O} Q=45^{\circ}$.

6. Copying a given angle.

Step 1

Draw any angle and name it $A \widehat{O} B$. Draw the arm PQ on which $A \widehat{O} B$ needs to be copied.

Step 2
Taking O as the centre , draw an arc as shown in the figure such that it intersects the arms OA and $O B$, and name the points of intersection X and Y.Using the same radius and taking P as the centre, draw an arc longer than the previous arc such that it intersects PQ.

Step 3

Taking XY as the length of the radius and K as the centre, using the pair of compasses,construct a small arc such that intersects the initial arc and name the point of intersection L .

Step 4
Join PL and produce it as required.Using a protactor(or any other method), check whether $A \widehat{O} B$ and $Q \widehat{P} L$ are equal.

Topic: Loci and Constructions

Topic/Skill	Definition/Tips	Example
1. Parallel	Parallel lines never meet.	
2. Perpendicular	Perpendicular lines are at right angles. There is a 90° angle between them.	
3. Vertex	A corner or a point where two lines meet.	
4. Angle Bisector	Angle Bisector: Cuts the angle in half. 1. Place the sharp end of a pair of compasses on the vertex. 2. Draw an arc, marking a point on each line. 3. Without changing the compass put the compass on each point and mark a centre point where two arcs cross over. 4. Use a ruler to draw a line through the vertex and centre point.	

5. Perpendicular Bisector	Perpendicular Bisector: Cuts a line in half and at right angles. 1. Put the sharp point of a pair of compasses on A. 2. Open the compass over half way on the line. 3. Draw an arc above and below the line. 4. Without changing the compass, repeat from point B. 5. Draw a straight line through the two intersecting arcs.	
6. Perpendicular from an External Point	The a line is the shortest distance to that line. 1. Put the sharp point of a pair of compasses on the point. 2. Draw an arc that crosses the line twice. 3. Place the sharp point of the compass on one of these points, open over half way and draw an arc above and below the line. 4. Repeat from the other point on the line.	

	5. Draw a straight line through the two intersecting arcs.	
7. Perpendicular from a Point on a Line	Given line PQ and point R on the line: 1. Put the sharp point of a pair of compasses on point R. 2. Draw two arcs either side of the point of equal width (giving points S and T) 3. Place the compass on point S, open over halfway and draw an arc above the line. 4. Repeat from the other arc on the line (point T). 5. Draw a straight line from the intersecting arcs to the original point on the line.	
8. Constructing Triangles (Side, Side, Side)	1. Draw the base of the triangle using a ruler. 2. Open a pair of compasses to the width of one side of the triangle. 3. Place the point on one end of the line and draw an arc. 4. Repeat for the other side of the triangle at the other end of the line.	
5. Using a ruler, draw lines connecting the		
ends of the base of the triangle to the point		
where the arcs intersect.		

| 11. |
| :--- | :--- |
| Constructing |
| an Equilateral |
| Triangle (also |
| makes a 60° |
| angle) |\quad| 1. Draw the base of the triangle using a |
| :--- |
| ruler. |
| 2. Open the pair of compasses to the exact |
| length of the side of the triangle. |
| 3. Place the sharp point on one end of the |
| line and draw an arc. |
| 4. Repeat this from the other end of the |
| line. |
| 5. Using a ruler, draw lines connecting the |
| ends of the base of the triangle to the point |
| where the arcs intersect. |

