

Reading Material

Mathematics

Unit 12

Indices

Indices

Miss. W. Chamodi Wijenayake

R/Emb/Chandrikawewa Jayanthi Maha Vidyalaya, Padalangala

Grade 9

By Learning this lesson you will be able to,

- identify the laws of indices on the product of powers, the quotient of powers and the power of a power
- simplify algebraic expressions using the above mentioned laws of indices
- identify the zero index and negative indices and simplify algebraic expressions containing these.

Introduction to power, base and index.

Let's write 8 as a product of prime numbers.

Write 81 as a product of prime numbers.

- i. Write the above product as a power.
- ii. Write is the base and the index. Index: Base:.....

Revision

- 1) Write the below given products in Index notation.
- i). $5 \times 5 \times 5 = 5^3$
- ii). $(-5) \times (-5) \times (-5) \times (-5) = \cdots$
- iii). $\frac{3}{4} \times \frac{3}{4} \times \frac{3}{4} \times \frac{3}{4} = \dots$
- iv). $x \times x \times x \times x \times x = \cdots$
- v). $pq \times pq \times pq \times pq = \dots$

- 2) Expand the below given and write as a product.
- i). $5^4 = 5 \times 5 \times 5 \times 5$
- ii). $(-2)^3 = \cdots \dots \dots$
- iii). $\left(\frac{5}{8}\right)^3 = \dots$
- iv). x^4 =
- v). $(3y)^3 = \dots$
- vi). (3*pq*)²=.....
- vi). $(-\frac{3}{4})^2 = \dots$

Power of a product and product of powers

Power of division and division of powers

3)

i. Expand the given power of a product and write it as a product of powers.

$$(xy)^{3}$$

= $xy \times xy \times xy$
= $x \times x \times x \times y \times y \times y$
= $x^{3} \times y^{3}$

ii. Write the power of a product given below as a product of powers without expanding.

$$\left(3pq\right)^2 = \dots$$

4)

i. Expand the product of power given below and write it as a power of a product.

 $4x^{2}$ $= 2 \times 2 \times x \times x$ $= 2 \times x \times 2 \times x$ $= (2 \times x) \times (2 \times x)$ $= (2 \times x)^{2}$

ii. Write the product of powers given below as a power of a product without expanding.

 $27x^3y^3 = \dots$

i. Expand the power of a division given below and write it as a division of powers.

$$\left(\frac{x}{y}\right)^{3} = \frac{x}{y} \times \frac{x}{y} \times \frac{x}{y}$$
$$= \frac{x \times x \times x}{y \times y \times y}$$
$$= \frac{x^{3}}{y^{3}}$$

ii. Expand the power of division given below and write it as a division of powers.

$$\left(\frac{a}{b}\right)^5 = \dots$$

- 6)
- i. Expand the division of powers given below and Write it as a power of division.
- $\frac{\frac{a^2}{b^2}}{=\frac{a \times a}{b \times b}}$ $=\frac{a}{b} \times \frac{a}{b}$ $=(\frac{a}{b})^2$
 - Products of powers with the same base.

Activity 1

Expand the powers given below and write them as a single power.

i.
$$2^{3} \times 2^{2}$$
$$= 2 \times 2 \times 2 \times 2 \times 2 = 2^{5}$$
ii.
$$p^{3} \times p^{5}$$
$$= p \times p = p^{8}$$

ii. Write the division of powers given below and write it as a power of division without expanding.

$$\frac{p^5}{q^5} = \dots$$

Simplify the expressions given below.

i). $3^2 \times 3^4 = 3^6$ ii). $9^5 \times 9^7 = \dots$ iii). $y^4 \times y^7 = \dots$ iv). $p^4 \times p^2 \times p = \dots$ v). $a^t \times a^t = \dots$ vi). $x^4 \times x^p = \dots$ vii). $b^p \times b^q = \dots$

Laws of Indices - 1

$a^m \times a^n = a^{m+n}$

When multiplying powers with the same base; the indices are added and the base does not change.

Find out all the possible positive integers for *m* and *n* in $a^m \times a^n = a^6$.

i.	m = 1	n= 5
ii.	m = 2	n=
iii.	m =	n= 3
iv.	m =	n=
v.	m =	n =

Simplify the expressions given below using the laws of indices.

Example 1	Example 2
$5a^4 \times 3a^7$	$4p^2 \times 3p^6 \times p$
$= 5 \times 3 \times a^4 \times a^7$	$= 4 \times 3 \times p^2 \times p^6 \times p$
$= 15 \times a^{4+7}$	$= 12 \times p^{2+6+1}$
$= 15a^{11}$	$= 12p^{9}$

Exercise 1

Simplify the expressions given below using the laws of indices.

i.
$$5^3 \times 5^7$$

ii. $7^2 \times 7^5 \times 7$
iii. $3x^4 \times 5x^2$

iv.
$$2y^2 \times 7y^4$$

v. $5p^6 \times p^4$
vi. $5a^4 \times 3a^2 \times 2a$
vii. $3a^2 \times b^5 \times 5a^4 \times b^2$
viii. $2x^4 \times 3y^2 \times 2x \times 5y^3$

• Quotients of powers with the same base.

Activity 2

Expand the expressions given below, simplify and write the answer in index notation.

i.
$$3^{5} \div 3^{2}$$

$$= \frac{3 \times 3 \times 3 \times 3}{3 \times 3}$$
ii.
$$y^{6} \div y^{2}$$

$$= \frac{y \times y \times y \times y \times y \times y}{y \times y}$$

$$= y \times y \times y \times y$$

$$= y^{4}$$

Simplify the expressions given below.

i. $5^7 \div 5^2 = 5^5$ ii. $11^9 \div 11^7 = \dots$ iii. $x^8 \div x^3 = \dots$ iv. $y^9 \div y^9 = \dots$ v. $p^5 \div p^{12} = \dots$ vi. $a^4 \div a^x = \dots$ vii. $b^y \div b^7 = \dots$ viii. $c^p \div c^q = \dots$

Laws of Indices - 2

$$a^m \div a^n = a^{m-n}.$$

When dividing powers with the same base; the indices get subtracted and the base does not change.

Find out all the possible positive integers which are less than 10 for m and n in $a^m \div a^n = a^6$.

i.	m = 9	n= 3
ii.	m =	n= 2
iii.	m = 7	n=

Simplify using the laws of indices.

$$(4a^{7} \times 3a) \div 6a^{3} \qquad \qquad \frac{3p^{6} \times 4p^{4} \times 2p}{6p^{2} \times p^{4}} \\ = \frac{12a^{8}}{6a^{3}} \\ = 2a^{5} \qquad \qquad = \frac{24p^{11}}{6p^{6}} \\ = 4p^{5}$$

Exercise 2

Simplify using the laws of indices.

ii. $\frac{10^7}{10^4}$ vii. $6y^5$ iii. $\frac{y^{12}}{y^7}$ viii. $\cdot \frac{a^4y}{a}$ iv. $\frac{a^6}{6}$ ix. $\frac{3y^5y}{y}$	$(\times x^7) \div x^5$	$(x^4 \times x^7)$. 7 ⁵	i.
$\begin{array}{cccc} & 10^4 \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	$\div 3y^2$	$6y^5 \div 3y^2$	<u>10⁷</u>	ii
$\frac{y^7}{iV.} = \frac{a^6}{a^6}$ iX. $\frac{3y^5}{y}$	$\frac{\times a^9}{a^5}$	$\frac{a^4 \times a^9}{a^5}$	$\frac{10^4}{y^{12}}$	iii
···	$\frac{\times 4y^2 \times y^3}{\sqrt{4 \times 6y}}$	$\frac{3y^5 \times 4y^2 \times y^2}{y^4 \times 6y}$	y^7 a^6	iv.
V. $\frac{y^5}{y^8}$ X. $\frac{3a^4}{a^3\times}$	$\frac{\times 4b^5}{\langle 6b^2}$	$\frac{3a^4 \times 4b^5}{a^3 \times 6b^2}$	$\frac{a^6}{\frac{y^5}{v^8}}$	v.

• Negative Indices

Activity 3

Simplify the following expressions using expansion and the use of the laws of indices.

$$7^{3} \div 7^{5}$$

$$= 7^{3-5}$$

$$= 7^{-2}$$

$$7^{3} \div 7^{5}$$

$$= \frac{7 \times 7 \times 7}{7 \times 7 \times 7 \times 7 \times 7}$$

$$= \frac{1}{7^{2}}$$

$$\therefore 7^{-2} = \frac{1}{7^{2}}$$

$$x^{4} \div x^{7}$$

$$= x^{4-7}$$

$$= x^{-3}$$

$$x^{4} \div x^{7}$$

$$= \frac{x^{4} \div x^{7}}{x \times x \times x \times x}$$

$$= \frac{1}{x \times x \times x}$$

$$= \frac{1}{x^{3}}$$

$$\therefore x^{-3} = \frac{1}{x^{3}}$$

Laws of Indices – 3

$$a^{-m} = \frac{1}{a^m} \quad \text{OR} \quad \frac{1}{a^{-m}} = a^m$$
AND
$$\frac{a^{-m}}{b^{-n}} = \frac{b^n}{a^m}$$

Denote the following expressions with positive indices.

i.
$$\frac{5^3}{2^{-5}} = 5^3 \times 2^5$$

ii. $\frac{3^{-2}}{2^3} = \dots$
iii. $\frac{(5x)^{-3}}{2^{-4}} = \dots$
iv. $\frac{3^{-4}}{(3y)^{-2}} = \dots$

• Zero Index

Activity 4

Simplify the expre	essions given below using	the laws of indices and by expan	nsion.
i. $5^3 \div 5^3$	$5^{3} \div 5^{3}$	ii. $p^2 \div p^2$	$p^2 \div p^2$
$= 5^{3-3}$	$=\frac{5\times5\times5}{5\times5\times5}$	$= p_{0}^{2-2}$	$\equiv \frac{p \times p}{p}$
$= 5^{0}$	= 1	$= p^{\circ}$	$p \times p$
0			= 1
: 5	$b^{0} = 1$	$\therefore p^0 = 1$	

 $a^0 = 1 \quad (a \neq 0)$

When the Index of a power where the base is any number except 0 is 0; the value of that power is equals to 1.

Find out the value of the following powers.

i. 5^{0} ii. 7^{0} iii. $(-4)^{0}$ iv. $(5^{2})^{0}$ v. 1^{0}

vi. $(2x)^0$

• Power of a power

Activity 5

Expand and simplify.

i.
$$(5^3)^2$$

= $5^3 \times 5^3$
= 5^6
ii $(x^2)^4$
= $x^2 \times x^2 \times x^2 \times x^2$
= x^8

Laws of Indices - 5

 $(a^m)^n = a^{m imes n}$ The two indices should be multiplied.

Write the following power of powers as single powers.

i) $(7^4)^2 = 7^8$ v). $(5^3)^x = \dots$ ii). $(11^3)^6 = \dots$ vi). $(7^y)^2 = \dots$ iii). $(a^4)^3 = \dots$ vii). $(x^5)^a = \dots$ iv). $(y^5)^6 = \dots$ viii. $(y^b)^4 = \dots$ ix). $(p^x)^y = \dots$

Simplify.

i. (3²)²=..... ii. $(2x^3)^4$ = iii. $(3^4y^2)^3$ = vi $(a^2b^6)^5 = a^{10}b^{30}$ v. $(5ax^3)^4$ =.....

Find out the answer with positive indices by using the laws of indices.

Example 1

Example 1	Example 1
$(a^{-3})^4 \times (a^2)^{-1}$	$\frac{(x^{-2})^2 \times (x^{-3})^{-3}}{(x^{-1})^{-3} \times x^7}$
$= a^{-12} \times a^{-2}$	$= \frac{x^{-4} \times x^9}{x^{-4} \times x^{-9}}$
$= a^{-1}$ $= \frac{1}{14}$	$\frac{x^3 \times x^7}{x^5}$
<i>a</i> ¹⁴	$=x^{x^{10}}_{-5}$
	$=\frac{1}{x^5}$

Exercise 1

Find out the answer with positive indices by using the laws of indices.

i.
$$a^4 \times (a^2)^3$$

ii.
$$(b^{-2})^3 \times b^4$$

iii.
$$(y^{-2})^3 \times (y^3)^{-1}$$

iv.
$$(x^{3})^{-4} \times (x^2)^{0}$$

V.
$$\frac{(p^{-2})^3 \times (p^4)^2}{(p^{-3})^{-1}}$$

Vi.
$$\frac{(q^3)^{-1} \times (q^2)^{-2}}{(q^4)^2 \times (q^{-3})^2}$$