Grade 9

Reading Material

Unit 12

Indices

Indices

Miss. W. Chamodi Wijenayake
R/Emb/Chandrikawewa Jayanthi Maha Vidyalaya, Padalangala

By Learning this lesson you will be able to,

- identify the laws of indices on the product of powers, the quotient of powers and the power of a power
- simplify algebraic expressions using the above mentioned laws of indices
- identify the zero index and negative indices and simplify algebraic expressions containing these.

Introduction to power, base and index.

Let's write 8 as a product of prime numbers.

1

Write 81 as a product of prime numbers.
i. Write the above product as a power.
ii. Write is the base and the index.

Index: \qquad Base:

Revision

1) Write the below given products in Index notation.
i). $5 \times 5 \times 5=5^{3}$
i). $5^{4}=5 \times 5 \times 5 \times 5$
ii). $(-5) \times(-5) \times(-5) \times(-5)=\cdots$
ii). $(-2)^{3}=\ldots \ldots \ldots \ldots$.
iii). $\frac{3}{4} \times \frac{3}{4} \times \frac{3}{4} \times \frac{3}{4}=$
iii). $\left(\frac{5}{8}\right)^{3}=$
iv). $x \times x \times x \times x \times x=\cdots$
iv). $x^{4}=$.................
v). $p q \times p q \times p q \times p q=\ldots . .$.
v). $(3 y)^{3}=$
vi). $(3 p q)^{2}=$ \qquad
vi). $\left(-\frac{3}{4}\right)^{2}=$

Power of a product and product of powers

$$
\begin{array}{ll}
(x \times y)^{5} & \longleftarrow \\
x^{5} \times y^{5} & \text { Power of a product } \\
\text { product of powers }
\end{array}
$$

Power of division and division of powers

3)
i. Expand the given power of a product and write it as a product of powers.

$$
\begin{aligned}
& (x y)^{3} \\
= & x y \times x y \times x y \\
= & x \times x \times x \times y \times y \times y \\
= & x^{3} \times y^{3}
\end{aligned}
$$

ii. Write the power of a product given below as a product of powers without expanding.

$$
(3 p q)^{2}=
$$

4)

i. Expand the product of power given below and write it as a power of a product.

$$
\begin{aligned}
& 4 x^{2} \\
= & 2 \times 2 \times x \times x \\
= & 2 \times x \times 2 \times x \\
= & (2 \times x) \times(2 \times x) \\
= & (2 \times x)^{2}
\end{aligned}
$$

ii. Write the product of powers given below as a power of a product without expanding.
$27 x^{3} y^{3}=$
i. Expand the power of a division given below and write it as a division of powers.
$\left(\frac{x}{y}\right)^{3}$
$=\frac{x}{y} \times \frac{x}{y} \times \frac{x}{y}$
$=\frac{x \times x \times x}{y \times y \times y}$
$=\frac{x^{3}}{y^{3}}$
6)
i. Expand the division of powers given below and Write it as a power of division.

$$
\begin{aligned}
& \frac{a^{2}}{b^{2}} \\
= & \frac{a \times a}{b \times b} \\
= & \frac{a}{b} \times \frac{a}{b} \\
= & \left(\frac{a}{b}\right)^{2}
\end{aligned}
$$

- Products of powers with the same base.

Activity 1

ii. Expand the power of division given below and write it as a division of powers.
$\left(\frac{a}{b}\right)^{5}=\ldots \ldots$
ii. Write the division of powers given below and write it as a power of division without expanding.

$$
\frac{p^{5}}{q^{5}}=\ldots . . .
$$

Expand the powers given below and write them as a single power.
i. $\quad 2^{3} \times 2^{2}$

$$
=2 \times 2 \times 2 \times 2 \times 2=2^{5}
$$

ii. $\quad p^{3} \times p^{5}$

$$
=p \times p \times p \times p \times p \times p \times p \times p=p^{8}
$$

Simplify the expressions given below.
i). $3^{2} \times 3^{4}=3^{6}$
ii). $9^{5} \times 9^{7}=$..
iii). $y^{4} \times y^{7}=$.....
iv). $p^{4} \times p^{2} \times p=\ldots$.
v). $a^{t} \times a^{t}=$.
vi). $x^{4} \times x^{p}=$
vii). $b^{p} \times b^{q}=$ \qquad

Laws of Indices - 1

$$
a^{m} \times a^{n}=a^{m+n}
$$

When multiplying powers with the same base; the indices are added and the base does not change.

Find out all the possible positive integers for m and n in $a^{m} \times a^{n}=a^{6}$.
i. $m=1 \quad n=5$
ii. $\mathrm{m}=2 \quad \mathrm{n}=\ldots$
iii. $m=\ldots n=3$
iv. $m=\ldots \quad n=\ldots$
v. $\mathrm{m}=\ldots \quad \mathrm{n}=\ldots$

Simplify the expressions given below using the laws of indices.

Example 1

Example 2

$$
\begin{aligned}
& 5 a^{4} \times 3 a^{7} \\
& =5 \times 3 \times a^{4} \times a^{7} \\
& =15 \times a^{4+7} \\
& =15 a^{11}
\end{aligned}
$$

$$
4 p^{2} \times 3 p^{6} \times p
$$

$$
=4 \times 3 \times p^{2} \times p^{6} \times p
$$

$$
=12 \times p^{2+6+1}
$$

$$
=12 p^{9}
$$

Exercise 1

Simplify the expressions given below using the laws of indices.
i. $\quad 5^{3} \times 5^{7}$
ii. $\quad 7^{2} \times 7^{5} \times 7$
iii. $\quad 3 x^{4} \times 5 x^{2}$
iv. $2 y^{2} \times 7 y^{4}$
v. $\quad 5 p^{6} \times p^{4}$
vi. $\quad 5 a^{4} \times 3 a^{2} \times 2 a$
vii. $\quad 3 a^{2} \times b^{5} \times 5 a^{4} \times b^{2}$
viii. $\quad 2 x^{4} \times 3 y^{2} \times 2 x \times 5 y^{3}$

- Quotients of powers with the same base.

Activity 2

Expand the expressions given below, simplify and write the answer in index notation.

$$
\text { i. } \quad \begin{aligned}
& 3^{5} \div 3^{2} \\
& \quad=\frac{3 \times 3 \times 3 \times 3 \times 3}{3 \times 3} \\
& = \\
& =3 \times 3 \times 3 \\
& =3^{3}
\end{aligned}
$$

$$
\text { ii. } \begin{aligned}
& \begin{array}{l}
6 \\
\\
=
\end{array} \frac{y \times y \times y \times y \times y \times y}{y \times y} \\
= & y \times y \times y \times y \\
= & y^{4}
\end{aligned}
$$

Simplify the expressions given below.
i. $\quad 5^{7} \div 5^{2}=5^{5}$
ii. $\quad 11^{9} \div 11^{7}=\ldots$.
iii. $\quad x^{8} \div x^{3}=\ldots$
iv. $y^{9} \div y^{9}=\ldots$
v. $p^{5} \div p^{12}=\ldots$
vi. $\quad a^{4} \div a^{x}=\ldots$.
vii. $\quad b^{y} \div b^{7}=\ldots$
viii. $\quad c^{p} \div c^{q}=\ldots$.

Laws of Indices - 2

$$
a^{m} \div a^{n}=a^{m-n} .
$$

When dividing powers with the same base; the indices get subtracted and the base does not change.

Find out all the possible positive integers which are less than 10 for m and n in $a^{m} \div a^{n}=a^{6}$.
i. $\mathrm{m}=9$
$\mathrm{n}=3$
ii. $\quad \mathrm{m}=\ldots$
$\mathrm{n}=2$
iii. $\quad \mathrm{m}=7$
$\mathrm{n}=\ldots$...

Simplify using the laws of indices.

$$
\begin{array}{ll}
\left(4 a^{7} \times 3 a\right) \div 6 a^{3} & \frac{3 p^{6} \times 4 p^{4} \times 2 \mathrm{p}}{6 p^{2} \times p^{4}} \\
=\frac{12 a^{8}}{6 a^{3}} & =\frac{24 p^{11}}{6 p^{6}} \\
=2 a^{5} & =4 p^{5}
\end{array}
$$

Exercise 2

Simplify using the laws of indices.
i. $\quad \mathbf{7}^{\mathbf{5}} \div \mathbf{7}^{\mathbf{4}}$
vi. $\quad\left(x^{4} \times x^{7}\right) \div x^{5}$
ii. $\frac{\mathbf{1 0}^{7}}{10^{4}}$
vii. $\quad 6 y^{5} \div 3 y^{2}$
iii. $\frac{y^{12}}{y^{7}}$
iv. $\frac{a^{6}}{a^{6}}$
viii. $\quad \frac{a^{4} \times a^{9}}{a^{5}}$
v. $\frac{y^{5}}{y^{8}}$
ix. $\frac{3 y^{5} \times 4 y^{2} \times y^{3}}{y^{4} \times 6 y}$
X. $\frac{3 a^{4} \times 4 b^{5}}{a^{3} \times 6 b^{2}}$

- Negative Indices

Activity 3

Simplify the following expressions using expansion and the use of the laws of indices.

$$
\begin{array}{lr}
7^{3} \div 7^{5} & 7^{3} \div 7^{5} \\
=7^{3-5} & =\frac{7 \times 7 \times 7}{7 \times 7 \times 7 \times 7 \times 7} \\
=7^{-2} & =\frac{1}{7 \times 7} \\
& =\frac{1}{7^{2}}
\end{array}
$$

$$
\therefore 7^{-2}=\frac{1}{7^{2}}
$$

$$
\begin{aligned}
x^{4} \div x^{7} & \\
=x^{4-7} & =\frac{x^{4} \div x^{7}}{x \times x \times x \times x \times x \times x \times x \times x} \\
=x^{-3} & \\
& =\frac{1}{x \times x \times x} \\
& =\frac{1}{x^{3}}
\end{aligned}
$$

$$
\therefore x^{-3}=\frac{1}{x^{3}}
$$

Laws of Indices - 3

$$
\begin{aligned}
& a^{-m}=\frac{1}{a^{m}} \quad \text { OR } \quad \frac{1}{a^{-m}}=a^{m} \\
& \text { AND } \\
& \frac{a^{-m}}{b^{-n}}= \frac{b^{n}}{a^{m}}
\end{aligned}
$$

Denote the following expressions with positive indices.
i. $\frac{5^{3}}{2^{-5}}=5^{3} \times 2^{5}$
ii. $\frac{3^{-2}}{2^{3}}=\ldots$.
ii. $\frac{(5 x)^{-3}}{2^{-4}}=\ldots .$.
iv. $\frac{3^{-4}}{(3 y)^{-2}}=$

- Zero Index

Activity 4

Simplify the expressions given below using the laws of indices and by expansion.

$$
\begin{array}{ll}
\text { i. } \quad 5^{3} \div 5^{3} & 5^{3} \div 5^{3} \\
=5^{3-3} & =\frac{-5 \times 5 \times 5}{5 \times 5 \times 5} \\
=5^{0} & =1
\end{array}
$$

$$
\therefore 5^{0}=1
$$

ii. $p^{2} \div p^{2} \quad p^{2} \div p^{2}$
$=p^{2-2}$
$=p^{0}$
$\equiv \frac{\overline{p \times p}}{\overline{p \times p}}$

$$
=1
$$

$\therefore p^{0}=1$

Laws of Indices - 4

$$
a^{0}=1 \quad(a \neq 0)
$$

When the Index of a power where the base is any number except 0 is 0 ; the value of that power is equals to 1.

Find out the value of the following powers.
i. $\quad 5^{0}$
ii. $\quad 7^{0}$
iii. $\quad(-4)^{0}$
iv. $\left(5^{2}\right)^{0}$
v. $\quad 1^{0}$
vi. $\quad(2 x)^{0}$

- Power of a power

Activity 5

Expand and simplify.

$$
\text { i. } \begin{aligned}
& \left(5^{3}\right)^{2} \\
= & 5^{3} \times 5^{3} \\
= & 5^{6}
\end{aligned}
$$

ii $\left(x^{2}\right)^{4}$

$$
=x^{2} \times x^{2} \times x^{2} \times x^{2}
$$

$$
=x^{8}
$$

Laws of Indices - 5

$$
\left(a^{m}\right)^{n}=a^{m \times n}
$$

The two indices should be multiplied.

Write the following power of powers as single powers.
i) $\cdot\left(7^{4}\right)^{2}=7^{8}$
v). $\left(5^{3}\right)^{x}=$
vi). $\left(7^{y}\right)^{2}=\ldots$.
ii). $\left(11^{3}\right)^{6}=\ldots$.
iii). $\left(a^{4}\right)^{3}=\ldots \ldots$
vii). $\left(x^{5}\right)^{a}=\ldots$.
iv). $\left(y^{5}\right)^{6}=\ldots .$.
viii. $\left(y^{b}\right)^{4}=\ldots . .$.
ix). $\left(p^{x}\right)^{y}=$

Simplify.
i. $\left(3^{2}\right)^{2}=\ldots \ldots$.
ii. $\left(2 x^{3}\right)^{4}=\ldots .$.
iii. $\left(3^{4} y^{2}\right)^{3}=\ldots \ldots$.
vi $\left(a^{2} b^{6}\right)^{5}=a^{10} b^{30}$
v. $\left(5 a x^{3}\right)^{4}=$

Find out the answer with positive indices by using the laws of indices.

Example 1

$$
\begin{aligned}
& \left(a^{-3}\right)^{4} \times\left(a^{2}\right)^{-1} \\
& =a^{-12} \times a^{-2} \\
& =a^{-14} \\
& =\frac{1}{a^{14}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Example } 1 \\
& \frac{\left(x^{-2}\right)^{2} \times\left(x^{-3}\right)^{-3}}{\left(x^{-1}\right)^{-3} \times x^{7}} \\
& =\frac{x^{-4} \times x^{9}}{x^{3} \times x^{7}} \\
& \frac{x^{5}}{x^{10}} \\
& =x^{-5} \\
& =\frac{1}{x^{5}}
\end{aligned}
$$

Exercise 1

Find out the answer with positive indices by using the laws of indices.
i. $\quad a^{4} \times\left(a^{2}\right)^{3}$
ii. $\quad\left(b^{-2}\right)^{3} \times b^{4}$
iii. $\quad\left(y^{-2}\right)^{3} \times\left(y^{3}\right)^{-1}$
iv. $\left(x^{3}\right)^{-4} \times\left(x^{2}\right)^{0}$
v. $\frac{\left(p^{-2}\right)^{3} \times\left(p^{4}\right)^{2}}{\left(p^{-3}\right)^{-1}}$
vi. $\frac{\left(q^{3}\right)^{-1} \times\left(q^{2}\right)^{-2}}{\left(q^{4}\right)^{2} \times\left(q^{-3}\right)^{2}}$

