FWC

G.C.E. A/L Examination November - 2015
 Conducted by Field Work Centre, Thondaimanaru In Collaboration with Zonal Department of Education Jaffna.

Grade :- 13 (2016)
Physics - I
Time :- Two hours

1. Dimension of heat conductivity is
(1) $M L T^{-2} \theta^{-1}$
(2) $M L T^{-3} \theta^{-2}$
(3) $M L T^{-1} \theta^{-1}$
(4) $M L T^{-3} \theta^{-1}$
(5) $M L T^{-2} \theta^{-2}$
2. The physical quantities related to ampere hour and kilowatt hour are respectively
(1) current, power
(2) electric field strength, energy
(3) electric charge, energy
(4) electric charge, power
(4) voltage, energy
3. Wrong statement in the following statements about laser
(1) have same wavelength
(2) these are high intense rays
(3) they travel as a narrow beam
(4) they are reflective, refractive, diffractive
(5) each single wave have different phase
4. A stretched string vibrates in fourloops. What will be the number of loops when the vibrating frequency is increased to three times?
(1) 3
(2) 6
(3) 8
(4) 12
(5) 24
5. A beaker contains two immiscible liquids with the density of $900 \mathrm{kgm}^{-3}, 3400 \mathrm{kgm}^{-3}$. A solid metal ball is fully immersed into the beaker such that same amount of volume is immersed in each liquid. What is the density of the metal ball in kgm^{-3} ?
(1) 1100
(2) 1800
(3) 2500
(4) 2150
(5) 4300
6. In a measuring instrument ($n-1$) main scale divisions is divided into n mail scale divisions. Find the least count of the instrument.
(1) 1
(2) $\frac{1}{n}$
(3) $\frac{n}{n-1}$
(4) $\frac{n-1}{n}$
(5) $\frac{1}{n-1}$
7. The difference between the distances travelled by a free falling body in t_{2} and t_{1} is 55 m . $\mathrm{t}_{1}: \mathrm{t}_{2}=5: 6$ Find the distance travelled by the body in t_{2} second.
(1) 125 m
(2) 180 m
(3) 720 m
(4) 1125 m
(5) 1620 m
8. An astronomical telescope have a convex lens of focal length 6 cm . Separation between two lens in normal adjustment is 102 cm . Find the angular magnification of the telescope at this adjustment.
9. The lower fixed point and a upper fixed point of a false thermometer is marked as $-10^{\circ} \mathrm{C}$ and $90^{\circ} \mathrm{C}$ respectively. What will be the real temperature when this thermometer reads $40^{\circ} \mathrm{C}$
(1) $30^{\circ} \mathrm{C}$
(2) $40^{\circ} \mathrm{C}$
(3) $50^{\circ} \mathrm{C}$
(4) $55^{\circ} \mathrm{C}$
(5) $60^{\circ} \mathrm{C}$
10. To reverse the net electric flux through the closed surface S shown in the figure
(1) change charge $+q$ as charge $+3 q$
(2) change charge $+5 q$ as charge $+3 q$
(3) change charge $-3 q$ as charge $-5 q$
(4) change charge $-3 q$ as charge -q
(5) change charge $+q$ as charge $-5 q$

11. Which of the following graph correctly represents the variation of resistance R of a superconductor with temperature $\mathrm{T}(\mathrm{K})$
(1)

(2)

(3)

(4)

(5)

12. A horizontal force P is applied on a body on a rough surface. The figure shows the variation of frictionalforce F acting on the body with time. Out of the following statements which is / are true.
(A) initially a force P is applied to the bedy
(B) the kinetic frictional force acting between the body and surface is F_{k}

(C) the box doesn't move due to the force P
(1) A only
(2) B Only
(3) C only
(4) A, B only
(5) A, C only
13. A balloon is moving upwards with a constant speed of $30 \mathrm{~m} / \mathrm{s}$. An object is released from the balloon when the balloon is at a height of 800 m from ground. Find the time taken by the object to reach the ground. (neglect air resistance)
(1) $4 \sqrt{10} \mathrm{Sec}$
(2) 8 Sec
(3) 10 Sec
(4) 16 Sec
(5) 22 Sec
14. The distance between an eye lens and retina is 2 cm . The least distance of distinct vision of the eye is 25 cm . The maximum and the minimum power of the lens when the eye see objects from least distance of distinct vision upto infinity
(1) $+50 \mathrm{D},+46 \mathrm{D}$
(2) $-54 \mathrm{D},-50 \mathrm{D}$
(3) $+54 \mathrm{D},+50 \mathrm{D}$
(4) $+54 D, 25 D$
(5) $-27 \mathrm{D},-25 \mathrm{D}$
15. A laser ray shown in the figure emerges from a prism of prism angle A. which of the statement(s) is/ are true?
(A) at minimum deviation position ray will travel parallel to the base of the prism
(B) the value of d will pass through a minimum when incident angle i increases from zero
(C) when the light disperses red ray will deviate lesser

16. When a spring of spring constant k is loaded with a weight of 4 kg , it extends by 1 cm . now two springs with spring constant k is connected in series and a weight of 6 kg is loaded at the end of the combined string. What will be the extension?

(1) 1.5 cm
(2) 3 cm
(3) 4.5 cm
(4) 6 cm
(5) 7.5 cm
17. Which of the following statement(s) about absolute zero is / are true
(A) absolute zero temperature is $-273.15^{\circ} \mathrm{C}$
(B) at this temperature the molecules of substance doesn't vibrate
(C) at this temperature semi-conductors doesn't conduct electrictity
(1) A only
(2) C Only
(3) A, B only
(4) B, C only
(5) A, B, C all
18. Parallel plate capacitor in air has a capacitance of $1 \mathrm{X} 10^{-12} \mathrm{~F}$. when the separation between the plates is tripled, area of the plates is halved and a medium A is inserted, the capacitance doesn't change. Find the dielectric constant of A.
(1) 2
(2) 4
(4) 5
(5) 12
19. Charge +q is distributed uniformly on an insulator ring of radius R, a charge $-Q$ is placed at the centre of thering. Now as shown in figure a small charge Δq is remove from A and C. find the force acting on $-Q$ at the centre.

(1) 0
(2) Along $O A \frac{Q(q-2 \Delta q)}{4 \pi \varepsilon_{0} R^{2}}$
(3) Along $O C \frac{Q(q-2 \Delta q)}{4 \pi \varepsilon_{0} R^{2}}$
(4) Along $O A \frac{Q \cdot(2 \Delta q)}{4 \pi \varepsilon_{0} R^{2}}$
(5) Along $O C \frac{Q .(2 \Delta q)}{4 \pi \varepsilon_{0} R^{2}}$
20. Mass of A is three times that of B. specific heat capacity of A is two times that of B. two times of heat that is supplied to A is supplied to B. if the temperature change in A is Δt what will be the temperature change in B
(1) $\frac{\Delta T}{6}$
(2) $\frac{\Delta T}{12}$
(3) $6 \Delta T$
(4) $8 \Delta T$
(5) $12 \Delta T$
21. A rod of mass M and length L is drilled at one end and fixed to frictionless pin. Rod can rotate about 0 on the horizontal axis. The rod is held horizontally and released. What will be the velocity of point X when the rod comes to its lower position?
(1) $\sqrt{\frac{3 g}{L}}$
(2) $\frac{3 \sqrt{3 g L}}{4}$
(3) $\frac{\sqrt{3 g l}}{2}$
(4) $\frac{3 L}{4} \sqrt{\frac{L}{3 g}}$
(5) $\frac{L}{2} \sqrt{\frac{L}{3 g}}$

22. An object moves on the smooth inner surface of a cone shaped vessel as shown in the figure. The forces acting on the object according to a non-moving observer
(1) only its weight
(2) object's weight and centripetal force only
(3) reaction force acting normal to the surface and centripetal force only
(4) centripetal force only
(5) reaction force acting normal to the surface and the weight of the object only
23. The figure shows the variation of $1 / \mathrm{f}$ with length 1 for the resonance tube experiment of fundamental mode f is the frequency of resonance tube. Speed of sound in air and end correction are respectively.
(1) $330 \mathrm{~ms}^{-1}, 4 \mathrm{~cm}$
(2) $330 \mathrm{~ms}^{-1}, 0.3 \mathrm{~cm}$
(3) $300 \mathrm{~ms}^{-1}, 4 \mathrm{~cm}$
(4) $300 \mathrm{~ms}^{-1}, 0.2 \mathrm{~cm}$
(5) $300 \mathrm{~ms}^{-1}, 0.3 \mathrm{~cm}$
24. Correct relation between the refractive indices of the medium on the basis of the givendiagram is

(1) $\mu_{1}>\mu_{2}>\mu_{3}$
(2) $\mu_{1}<\mu_{2}<\mu_{3}$
(3) $\mu_{1}=\mu_{2}=\mu_{3}$
(4) $\mu_{1}=\mu_{2}<\mu_{3}$
(5) $\mu_{1}=\mu_{2}>\mu_{3}$
25. Consider the following statements about thermistor. Which of the following is / are correct
(A) thermistor is made out of the oxides of semiconductors
(B) resistance of thermistor reduces with the increase of temperature
(C) heat capacity of thermistor is very small
(1) A only
(2) B Only
(3) C only
(4) A, B only
(5) A, B, C all
26. Two rod of length L_{1}, L_{2} and coefficient linear expansion α_{1}, α_{2} are combined as shown in the figure. What will be the coefficient of linear expansion of the combined rod?

(1) $\frac{\alpha_{1}+\alpha_{2}}{2}$
(2) $\propto_{1}+\propto_{2}$
(3) $L_{1} \propto_{1}+L_{2} \propto_{2}$
(4) $\frac{L_{1} \alpha_{1}+L_{2} \alpha_{2}}{L_{1}+L_{2}}$
(5) $\frac{L_{2} \alpha_{1}+L_{1} \alpha_{2}}{L_{1}+L_{2}}$
27. Three spherical drops made out of same liquid have capacitance C_{1}, C_{2}, C_{3} respectively. If the three drops makes another drop by combining them into one, what will be the capacitance of the drop formed?
(1) $C_{1}+C_{2}+C_{3}$
(2) $\frac{C_{1} C_{2} C_{3}}{C_{1}+C_{2}+C_{3}}$
(3) $\left(C_{1}^{3}+C_{2}^{3}+C_{3}^{3}\right)^{1 / 3}$
(4) $\left(C_{1}^{2}+C_{2}^{2}+C_{3}^{2}\right)^{1 / 3}$
(5) $\left(C_{1} C_{2} C_{3}\right)^{1 / 3}$
28. The conducting sphere of mass m shown in the figure has a charge $-Q$. The sphere is hung between two plates with V voltage difference and at a separation d, by using an insulator string of length R. What is the period of oscillation of this S.H.M?
(1) $T=2 \pi \sqrt{\frac{\ell}{g}}$
(2) $T=2 \pi \sqrt{\frac{\ell}{g+\frac{v}{d}}}$
(3) $T=2 \pi \sqrt{\frac{\ell}{g+\frac{Q V}{d}}}$
(4) $T=2 \pi \sqrt{\frac{\ell}{g-\frac{Q V}{d}}}$
(5) $T=2 \pi \sqrt{\frac{\ell}{g+\frac{Q V}{m d}}}$

29. $300 \Omega, 400 \Omega$ resistance are connect in series to a cell of 60 V and negligible internal resistance. When voltmeter connect across 400Ω resistance as shown in figure, the voltmeter reads30V. Find the resistance of voltmeter.
(1) 300Ω
(2) 400Ω
(4) 1200Ω
(5) 2400Ω
(3) 600Ω

30. Water is filled upto half of the arms of a u tube held vertically as shown in the figure. What will be the least height h of tube such that water doesn't spill out when the tube is rotated about xy axis at an angular velocity $15 \mathrm{rads}^{-1}$? Consider $\mathrm{H}=10 \mathrm{~cm}$, density of water $=1000 \mathrm{kgm}^{-3}$.
(1) 2.25 cm

(2)
10 cm (3) 22.5 cm
(4) 25 cm

31. Which of the following is /are correct
(A) if the momentum of an object is constant with time, then kinetic energy of that body must be constant with time
(B) if the momentum of an object changes uniformly with time then kinetic energy must also linear changes with time
(C) if the kinetic energy of an object is constant with time, then momentum of that body change uniformly with time
(1) A only
(2) B Only
(3) C only
(4) A, B only
(5) A, C only
32. A uniform rod of length 10 m and mass 30 kg is placed at two supports B, C such that $A C=3 \mathrm{~m}$. What is the maximum load that can be placed at A without disturbing the equilibrium of the rod?

(1) 10 kg
(2) 15 kg
(3) 20 kg
(4) 30 kg
(5) 22.5 kg
33. A force changing with time according the graph is acted upon a vehicle of mass 1000 kg placed on a smooth surface. What will be the speed of the vehicle after 100 s in m / s ?
(1) 25
(2) 50
(3) 75
(4) 100
(5) 175

34. In a one end closed tube the difference of frequency between two consecutive overtones is 300 Hz . What is the length of an open end tube having the same fundamental frequency with the one end closed tube? Consider the speed of sound in air is $300 \mathrm{~m} / \mathrm{s}$.
(1) 10 cm
(2) 25 cm
(3) 50 cm
(4) 75 cm
(5) 100 cm
35. At what temperature the of oxygen will be equal to the speed of hydrogen H_{2} at 200 K
(1) 400 K
(2) 800 K
(3) 1000 K
(4) 3200 K
(5) 6400 K
36. For a planet of radius R, there is satellite of mass m at its surface. What will be the increase in the potential energy of the satellite when it is moved to a distance of 4R? along radially
(1) $4 m g R$
(2) 3 mgR
(3) $\frac{3}{4} m g R$
(4) $m g R$
(5) $\frac{4}{5} m g R$
37. A, B are two similar non-conducting spheres with same amount of positive charge uniformly distributed in one and same amount of negative charge uniformly
 distributed in the other. The distance between them is much greater than their radius. Which of the following graph correctly represent the variation of electric field intensity(E) with r. r is the distance from x to y along xy
(1)

(2)

(4)

(5)

38. In the figure shown the cell have negligible internal resistance. What is the voltage difference across 3Ω resistance?
(1) 0
(2) 1 V
(3) 2 V
(3) 3.5 V
(5) 7 V

39. An object A is released from the top of a smooth inclined plane of height h. At the same time another particle B is thrown from the bottom of the inclined plane along the inclined plane. If the both particles meet at the middle of the inclined plane what will be the initial velocity of B. 1 is the distance between A and B initially.

(1) $2 g \ell \sin \theta$
(2) $\frac{g \ell \sin \theta}{2}$
(3) $\sqrt{\frac{g h}{2}}$
(4) $\sqrt{g h}$
(5) $g \ell \cos \theta$
40. A glass prism ABC is immersed in water as shown in figure. What will be the correct statement if a ray incident normal to AB on AB is totally reflected on face AC . Refractive index of water and glass are $3 / 2,4 / 3$ respectively.
(1) $\operatorname{Sin} \theta \geq 8 / 9$
(2) $\operatorname{Sin} \theta \geq 2 / 3$
(3) $\operatorname{Sin} \theta=\sqrt{3} / 2$
(4) $\operatorname{Sin} \theta=2 / \sqrt{3}$
(5) $2 / 3<\sin \theta<8 / 3$

41. A person standing 1 m from a source hears a sound of 90 dB . The person move 99 m away from the source. What is the new intensity level of the sound he hears?
(1) 10 dB
(2) 30 dB
(3) 50 dB
(4) 70 dB
(5) 130 dB
42. A van emitting a signal of frequency 700 Hz , is moving at a speed of $2 \mathrm{~m} / \mathrm{s}$ towards a rock that can reflect signals back. How many beats per second will be observed by the driver? Speed of sound in air is $350 \mathrm{~m} / \mathrm{s}$.
(1) 1 Hz
(2) 4 Hz
(4) 5 Hz
(4) 8 Hz
(5) 10 Hz
43. As shown in figure two identical rods are connected symmetrically. The combination is fully lagged except the faces A, C and D. faces A, C and D are placed at constant temperatures T_{1}, T_{2} and $\mathrm{T}_{3} .\left(\mathrm{T}_{1}<\mathrm{T}_{2=} \mathrm{T}_{3}\right)$. Temperature at junction B
(1) $\frac{T_{1}+T_{2}+T_{3}}{3}$
(3) $\frac{2 T_{1}+T_{2}+T_{3}}{5}$
(5) $\frac{T_{2}+T_{3}-2 T_{1}}{5}$
(4) $\frac{2 T_{2}+2 T_{3}-T_{1}}{5}$

44. A satellite situated 4 r distance from center of a planet revolves around it with a speed of 3 v . What will be the speed of a satellite revolving at a distance of r from the center of same planet?
(1) V
(2) 2 V
(3) 3 V
(4) 6 V
(5) 12 V
45. Bulb A consist of an ideal gas at pressure $5 \times 10^{5} \mathrm{~Pa}$ and temperature 300 K . Bulb B consist the same ideal gas at temperature 400 K and pressure $1 \mathrm{X} 10^{5} \mathrm{~Pa}$. screw x is opened and the gas system is allowed to attain equilibrium
 by keeping the initial temperature of bulbs constant. If the volume of B is four times that of A find the final pressure in Pa .
(1) 1×10^{5}
(2) 1.8×10^{5}
(3) 2×10^{5}
(4) 2.6×10^{5}
(5) 3.2×10^{5}
46. The structure shown in figure, the circle with radius R and the diameter $A B$ is made of substance having \propto as the resistance per unit length. Equivalent Resistance across A and 0 is.
(1) $\left(\frac{\pi+2}{2 \pi}\right) R \propto$
(2) $\left(\frac{\pi+4}{\pi-2}\right) R \propto$
(3) $\left(\frac{\pi+4}{2 \pi}\right) R \propto$

(4) $\left(\frac{\pi+2}{\pi+4}\right) R \propto$
(5) $\left(\frac{\pi+4}{\pi+2}\right) R \propto$
47. The initial temperature and initial relative humidity of a room is θ_{1} and $x_{1} \%$ respectively. When the temperature of the room is reduced by using an air conditioner to θ_{2}, the relative humidity of the room is observed to be $\mathrm{x}_{2} \%$. At dew points θ_{1} and θ_{2} the absolute humidity of air is y_{1} and y_{2} respectively. Find the mass per unit volume of water vapour removed by the air conditioner from the room.
(1) $\frac{x_{1} y_{1}-x_{2} y_{2}}{100}$
(2) $100\left(x_{1} y_{1}-x_{2} y_{2}\right)$
(3) $\left(\frac{x_{1}}{y_{1}}-\frac{x_{2}}{y_{2}}\right) \frac{1}{100}$
(4) $\left(\frac{x_{1}}{y_{1}}-\frac{x_{2}}{y_{2}}\right) \times 100$
(5) $\left(\frac{y_{1}}{x_{1}}-\frac{y_{2}}{x_{2}}\right) \times 100$
48. $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S are identical rectangular metal pieces. They placed parallel to each other such that distance between two consecutive plates is d. area of each plate is A. P is joined with S and Q is joined with R using a thin metal wire as shown in the figure. What is the capacitance between A and B ?
(1) $\frac{A \varepsilon_{0}}{d}$
(2) $\frac{2 A \varepsilon_{0}}{d}$
(3) $\frac{3 A \varepsilon_{0}}{d}$
(4) $\frac{2 A \varepsilon_{o}}{3 d}$
(5) $\frac{A \varepsilon_{0}}{3 d}$

49. One mole ideal gas loses (70) nof energy when undergone through a cyclic process ABCA. $\mathrm{T}_{1}=100 \mathrm{~K}, \quad \mathrm{~T}_{2}=200 \mathrm{~K}$ $\mathrm{R}=8.3 \mathrm{Jmol}^{1} \mathrm{~K}^{-1}$. During process $B C$ theework done by the gas is
(1) 305 J
(2) 760 J
(4) -900 J
(5) 900 J
(3) 830 J

50. In the electric network structure shown in the figure all the resistance are 12Ω. Find the equivalent resistance between A and B.
(1) 4Ω
(2) 6Ω
(3) 7Ω
(4) 9Ω
(5) 14Ω

