සියලු හිමිකම් ඇවිරිණි / All Rights reserved

වයම් පළාත් අධ්යාපන දෙවාර්තමේන්තුව Provincial Department of Education - NWP වයම් පළාත් අධ්යාපන දෙවාර්තමේන්තුව Provincial Department of Education - NWP වයම් පළාත් අධ්යාපන දෙවාර්තමේන්තුව Provincial Department of Education - NWP වයම් පළාත් අධ්යාපන දෙවාර්තමේන්තුව Provincial Department of Education - NWP වයම් පළාත් අධ්යාපන දෙවාර්තමේන්තුව Provincial Department of Education - NWP වයම් පළාත් අධ්යාපන දෙවාර්තමේන්තුව Provincial Department of Education - NWP වයම් පළාත් අධ්යාපන දෙවාර්තමේන්තුව Provincial Department of Education - NWP වයම් පළාත් අධ්යාපන දෙවාර්තමේන්තුව Provincial Department of Education - NWP වයම් පළාත් අධ්යාපන දෙවාර්තමේන්තුව Provincial Department of Education - NWP වයම් පළාත් අධ්යාපන දෙවාර්තමේන්තුව Provincial Department of Education - NWP වයම් පළාත් අධ්යාපනමේන්තුව Provincial Department of Education - NWP වනම් අවත්ය අධ්යාපනම්න්තුව Provincial Department of Education - NWP වනම් අවත්ය අධ්යාපනම්න්තුව Provincial Department of Education - NWP

වයම් පළාත් අධ්යාපන දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයම පළාත් අධ්යාපන දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයම් පළාත් අධ්යාපන දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයම් පළාත් අධ්යාපන දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයම් පළාත් අධ්යාපන දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයම් පළාත් අධ්යාපන දෙපාර්තමේන්තුව Provincial Department of Education - NWP

Third Term Test - Grade 13 - 2016

Combined Mathematics I Index No:.....

Three hours only

Instructions:

- * This question paper consists of two parts. Part A (Question 1 - 10) and Part B (Question 11 - 17)
- Answer all questions. Write your answers to each question in the space provided, you may use additional sheets if more space is needed.
- * Part B
- Answer five questions only. Write your answers on the sheets provided.
- * At the end of the time allocated, tie the answers of the two parts together so that Part A is on top of part B before handing them over to the supervisor.
- * You are permitted to remove only Part B of the question paper from the Examination Hall.

For Examiner's Use only

	Paper I	athematics I	Combined M	(10)
	Paper II	Marks Awarded	Question No	Part
	Total	· San Calendaria	1 1	
	Final Marks	A CONTRACTOR	2	
			3	
			4	
al Marks	Fin		5	. L
	In Numbers	ı.	6	A
	In Words		7 ,	
	`		8	
			9 .	
			10	Γ
r	Marking Examine		Total	Γ
,1	Marks Checked by		11	
2	Warks Checked by		12	· [
	Supervised by	*	13	
	<u> </u>	. 3	14	
	* .		15	В
			16	
			17	
			Total	
			r 1 total	Paper

Combined Mathematics 13 -I (Part A)

(01)	Using the Principle of Mathematical Induction , prove that when $f(n) = 4.6^n + 5^{n+1}$ is
	divided by 20, remainder is 9 for all $n \in z^+$
(02)	[x-3]
(02)	Find all real values of x, satisfying the inequality $\frac{ x-3 }{(x-2)} > 5$.
	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(03)	Sketch the loci of the points represented by the complex numbers satisfying $ z - 2 = 2$ and $ z - 4 = 2$ on the same diagram and find the complex number represented by their points of intersection.
(04)	Find the range of values of x for which the greatest numerical value of the expansion $\left(2 + \frac{3x}{3}\right)^{10}$
(0.1)	Find the range of values of x for which the greatest numerical value of the expansion $\left(2 + \frac{3x}{8}\right)^{10}$ is only at the fourth term.
(0.1)	is only at the fourth term.
(0.1)	is only at the fourth term.
	is only at the fourth term.
(0.1)	is only at the fourth term.
	is only at the fourth term.
	is only at the fourth term.
	is only at the fourth term.
	is only at the fourth term.
	is only at the fourth term.
	is only at the fourth term.
	is only at the fourth term.
	is only at the fourth term.
	is only at the fourth term.

(05)	Prove that.	$\lim_{x \to \frac{\pi}{4}} \mid$	$\left[\frac{\sin\left(\frac{\pi}{4}-x\right)}{\sqrt{2}Cosx-1}\right]$] = 1					
		••••••							
	•••••	•••••	•••••	••••••					••••••
		•••••							
		•••••		•••••				•••••	
		•••••		•••••			•••••		
				••••••					
		•••••		••••••					••••••
	•••••	•••••	••••••	••••••	•••••	•••••	••••••	••••••	••••••
	••••••	•••••	••••••	••••••		••••••	••••••	••••••	••••••
(06)	Find the area	a of the re	egion enclo	sed by the	curves y	$=x^2-4x$	x and $y = 2$	lx.	
(06)	Find the area	a of the re	egion enclo	sed by the	curves y	$= x^2 - 4x$	x and $y = 2$		
(06)	Find the area	a of the re	egion enclo	sed by the	curves y	$= x^2 - 4x$	x and $y = 2$		
(06)	Find the area	a of the re	egion enclo				x and $y = 2$		
(06)	Find the area	a of the re	egion enclo						
(06)	Find the area	a of the re	egion enclo						
(06)	Find the area	a of the re	egion enclo						
(06)	Find the area	a of the re	egion enclo						
(06)	Find the area								
(06)									
(06)									
(06)									
(06)									

Let C be the curve given by $x = t$, $y = \frac{1}{t}$ where "t" is a parameter. Prove that the normal to the
curve C at the point corresponding to $x = 2$; meets the curve again at point $\left(-\frac{1}{8}, -8\right)$
Equations of sides AB, BC, CA of triangle ABC are $2y - x + 4 = 0$, $y - 2x - 1 = 0$ and $y + x - 1 = 0$ respectively. Find the equation of the interior angle bisector of the angle B.

Two 2 <i>y</i> –	-3 = 0. If	the circuit						
		•••••						
•••••	•••••	••••••		•••••	•••••	•••••	••••••	•••••
•••••	•••••	•••••		•••••	•••••	•••••		•••••
						•••••		
		•••••		•••••		••••		
•••••								
•••••	•••••	•••••		•••••	•••••	•••••		
	•••••	•••••		•••••	•••••	•••••		
		•••••						
•••••	•••••	••••••		••••••	••••••	•••••	•••••••	•••••
•••••	•••••	•••••		•••••	•••••	•••••	•••••	••••••
								•••••
	-			gle and sir	$nB = \frac{12}{13} ;$	where B is a	an acute ang	gle. Find
	-	ere <i>A</i> is an d tan(<i>A</i> –		gle and sir	$nB = \frac{12}{13} ;$	where B is a	an acute ang	gle. Find
	-			gle and sir	$nB = \frac{12}{13} ;$	where <i>B</i> is a	an acute ang	gle. Find
	-							gle. Find
	-							
cos ((A + B) and	d tan(A –	- B).					
cos ((A + B) and	d tan(A –	- B).					
cos ((A + B) and	d tan(A –	- B).					
cos ((A + B) and	d tan(A –	- B).					
cos ((A + B) and	d tan(A -	- B).					
cos ((A + B) and	d tan(A –	- B).					
cos ((A + B) and	d tan(A -	- B).					
cos ((A + B) and	d tan(A -	- B).					
cos ((A + B) and	d tan(A –	- B).					
cos ((A + B) and	d tan(A –	- B).					
cos ((A + B) and	d tan(A -	- B).					
cos ((A + B) and	d tan(A –	- B).					
cos ((A + B) and	d tan(A –	- B).					
cos ((A + B) and	d tan(A -	- B).					
cos ((A + B) and	d tan(A -	- B).					

Combined Mathematics 13 -I (Part B)

(11)

a) If roots of the equation $ax^2 + bx + c = 0$: $(a, c \neq 0)$ are in the ratio λ :1; prove that : $ac\lambda^2 + (2ac - b^2)\lambda + ac = 0$.

If ratio between the roots of the equation $lx^2 + mx + n = 0$; $(l, n \neq 0)$ and the ratio between the roots of the equation $px^2 + qx + r = 0$ $(p, r \neq 0)$ are equal, deduce that $m^2rp = q^2nl$.

b) Prove that $f(x) = ax^2 + bx + c$: $(a \ne 0)$ where a, b, c are real numbers, can be represented either in the form of $a[(x-p)^2 + q^2]$ or $a[(x-p)^2 - r^2]$. Such that p, q, r are real numbers. Explain the difference between two instances. What happens when $b^2 - 4ac = 0$.

Represent $f_1(x) = -x^2 + 2x + 3$ in one of the above form, and hence sketch a rough graph of $y = f_1(x)$

(12)

- a) In the word "DEFEATED", Find the number of permutations which can be made by not keeping letter E together.
- b) A committee consisting of four members is to be selected from six boys and six girls. Find the number of different ways in which this can be done,
 - i. If the committee must consist of two boys and two girls.
 - ii. If the committee including at least one girl and one boy.
 - iii. Although either the oldest boy or the oldest girl should be included in to the committee, both should not included in to the committee together.
- c) Find U_r of the series; $1 + \frac{1}{1+2} + \frac{1}{1+2+3} + \cdots$

Is the above series convergent?

Find f(r) and A such that: $U_r = A[f(r) - f(r+1)]$ Hence find $\sum_{r=1}^n U_r$ for $r \in z^+$

_ ..

Find $\sum_{r=1}^{\alpha} U_r$

Further find $\sum_{r=1}^{\alpha} 4U_r$

(13)

a) Two matrices A and B are given as
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -1 \\ -1 & -1 \\ 0 & 0 \end{pmatrix}$

i. Find matrix C: such that: AB = C

ii. Is
$$(AB)^T = B^T A^T$$
?

iii. Find the inverse matrix of *C*.

iv. Hence solve

$$-x - 3y = 8$$

$$-x - 9y = -4$$

b) If z = x + iy:

i. Find
$$Re\left(Z + \frac{1}{z}\right)$$
 and $Im\left(Z + \frac{1}{z}\right)$

Find the locus of the points of Z such that $Im\left(Z + \frac{1}{z}\right) = 0$.

ii. Two complex numbers Z_1 and Z_2 are such that $Z_1+Z_2=1$: where $Z_1=\frac{a}{1+i}$ and $Z_2=\frac{b}{1+2i}$; a,b are real.

Find the values of a and b.

For these values of a and b; represents Z_1 and Z_2 on the Argand diagram and find the distance between relevant points.

(14)

a) If
$$y = e^{\sin x}$$
, show that $y \frac{d^2y}{dx^2} + y^2 \sin x - \left[\frac{dy}{dx}\right]^2 = 0$.

b) It is given that
$$f(x) = \frac{2x^2 - 4x}{(x-3)(x+1)}$$
; for $x \neq 3, -1$. Show that $f'(x) = \frac{-12(x-1)}{(x-3)^2(x+1)^2}$

Sketch the graph of the function y = f(x) indicating the turning points and asymptotes.

c) The figure represents a rhombus, touching its four sides of a circle of centre 0 and radius α . Here OB = y, OA = x and $B\hat{A}O = \theta$

i. Show that
$$y = \frac{ax}{\sqrt{x^2 - a^2}}$$

ii. When the area of the above rhombus takes its minimum value, show that rhombus becomes a square and the minimum area of it is $4a^2$.

(15)

a) F(x) is a continuous and differentiable function in the range [a, b]. Where a < c < b; prove that; $_a^b \int f(x) dx = _a^c \int f(x) dx + _c^b \int f(x) dx$.

Find
$$_{-2}^{5} \int |x+1| dx$$
.

b) Prove that: $\frac{1}{(x-p)(x+p)} = \frac{1}{2p(x-p)} - \frac{1}{2p(x+p)}$

Hence: find a and b such that;

$$\int \frac{2x^2 + 3}{(x^2 - 1)(x^2 + 4)} dx = a \ln \left| \frac{x - 1}{x + 1} \right| + b \tan^{-1} \frac{x}{2} + C$$

where c is an arbitrary constant.

c) Using integration by parts: Evaluate

$$\int x^{1/2} (\ln x)^2 \, dx.$$

- d) Prove that: $\int \sqrt{1 + \sin \frac{x}{4}} dx = 8 \left(\sin \frac{x}{8} \cos \frac{x}{8} \right) + C$, c is an arbitrary constant.
- Let $S_1 \equiv x^2 + y^2 25 = 0$ and $l_1 \equiv y x + 1 = 0$. Two circles S and S' are drawn through the points of intersection of the circle S_1 and line l_1 , so that both S and S' touch the line

$$l_2 \equiv x + y - 25 = 0$$
. Find the equations of S and S'.

Show that two common tangents can be drawn to S and S' and, further show that the common tangents do not intersect.

17) (a) State the Cosine rule for a triangle ABC, in the usual notation.

Prove that,

$$a^2 = (b+c)^2 - 4bcCos^2(\frac{A}{2}) = (b-c)^2 + 4bcSin^2(\frac{A}{2})$$
 Hence,

deduce that,
$$tan^2 \frac{A}{2} = \frac{(a+b-c)(a+c-b)}{(a+b+c)(b+c-a)}$$

- Sketch the graphs of the functions y = 2 sin x + 1 and y = √2 (cos x + sin x) on the same co ordinate plane for 0 ≤ x ≤ 2π
 Hence find the number of real solutions of the equation,
 2 sin x + 1 = √2 | cos x + sin x | in the range given above.
- (c) Solve for x;

$$\tan^{-1}(\frac{1-x}{1+x}) = \frac{1}{2} \tan^{-1} x$$
, Where $x > 0$