Qu. No.	Answer	Qu. No.	Answer
(1)	3	(26)	3
(2)	2	(27)	3
(3)	3	(28)	3
(4)	5	(29)	2
(5)	3	(30)	4
(6)	3	(31)	1
(7)	2	(32)	5
(8)	4	(33)	4
(9)	1	(34)	5
(10)	4	(35)	3
(11)	5	(36)	1
(12)	1	(37)	4
(13)	2	(38)	2
(14)	5	(39)	4
(15)	4	(40)	2
(16)	5	(41)	2
(17)	3	(42)	4
(18)	4	(43)	4
(19)	5	(44)	1
(20)	1	(45)	2
(21)	3	(46)	3
(22)	2	(47)	5
(23)	1	(48)	2
(24)	4	(49)	4
(25)	5	(50)	1

G.C.E. (A.L) Support Seminar - 2016 Biology - Paper I

-1-

(01 mark each total marks 50)

- 2 -Biology

Answer Guide

Part A - Structured Essay

1.	(A)	(i) Name the main nucleotide whic	ch supplies energy for metabolic activities in liv	ing cells.
		ATP / Adenosine Tri Phosphate		(1 × 2)
		(ii) Name the major component n	nolecules of the above mentioned nucleotide.	
		Ribose sugar, Adenine base, Ph	osphate group	(1 × 2)
		(iii) State the main reason to consider the compound mentioned above in A (i) function.		
		Presence of high energy Phosph	nate bond which can dissociate easily.	(1 × 2)
		(iv) What is the significance of sel	f replication of DNA in cell division.	
		Produce identical DNA molecu	les for daughter cells.	(1 × 2)
		(v) Name two major enzymes whi functions.	ch are important in DNA self replication and s	state their specific
		Enzyme	Function	
		DNA Helicase	Separation of 2 strands of DNA by brea	king H bonds.
		DNA Polymerase	Synthesis of new chains by joining nucl	eotides.
				(4 × 2)
		(vi) What is meant by a recombin	ant DNA molecule.	
		A DNA molecule which can act	as a single unit produced by joining of DNA of	otained from
		different species.		
		(vii) State three applications of DN	A recombination technology in Medicine.	
		Production of human Insuli	n / Growth hormone.	
		• Production of Hepatitis B a	ntigen.	
		Production of blood clotting	g factors.	
		• Production of Interferon.		(any 3 × 2)
		(viii)Name an enzyme for each of	the following functions in genetic recombinar	nt technology.
		Function	Enzyme	
		Cutting DNA at specific sites	Restriction endonuclease	
		Joining of DNA fragments	DNA ligase	(2 × 2)
	(B)	(i) Name the an enzyme for each o	f the following functions.	
		Function	Structure	
		a. Synthesis of membrane pho	spholipids Rough endoplasmic reticu	
		b. Cytoplasmic Streaming	Cytoskeleton	
		c. Production of ribosome	Nucleus / Nucleolus	
		d. Prevent leakages through c		
				(4 × 2)

(ii) (a) What is 'sarcomere'?

(ii) (a) What is 'sarcomere'?		
It is a functional unit of a striated	I muscle, which is located between tw	o adjoining Z
lines of a myofibril of striated muscle	fibre.	(1 × 2)
(b) Name the types of muscles in which	n sarcomeres can be seen.	
cardiac muscle		
Skeletal muscle		(2 × 2)
(iii) State two physiological differences betw	veen muscle types you mentioned in abo	we (ii) (b).
Cardiac muscles are myogenic while s	keletal muscles are neurogenic.	
• Cardiac muscle are involuntary while s	skeletal muscle are voluntary in action.	
• Cardiac muscles show rhythmic contractions.	actions while skeletal muscles do not show	v rhythmic
Cardiac muscles do not get fatigue wh	ile skeletal muscles get fatigue easily.	(any2 × 2)
(iv) State four changes occur in a sarcomere	during contraction of muscle according	g to the sliding
filament theory.		
• Length of I band / zone decreases.		
• Length of the H band / zone decrease	S.	
• Actin filaments slide over myosin fila	iments.	
• Length between two Z lines decrease	s. / Z lines become closer.	(4 × 2)
(v) Name the tissues which are important	for mechanical support in plants and	state how the
each tissue is modified for function.		
Tissue	Modification	
Collenchyma	Walls of cell corners are thickened with e	extra cellulose.
• Sclerenchyma	Bearing lignified cell walls.	
Xylem tissue	Cell walls are lignified.	$(3+3) \times 2$
(vi) What is the complex tissue type from the	he tissues you mentioned in B (v) above	•
Xylem		(1 × 2)
(vii) State two functions of the above mention	oned (vi) tissue other than mechanical s	upport.
• Transportation of water.		
• Transportation of minerals.		
• Transportation of some plant growth	substances/ cytokinine / Absisic acid	(any 2 × 2)

- 3 -

(C) (i) What are the main functions of human skeletal system?

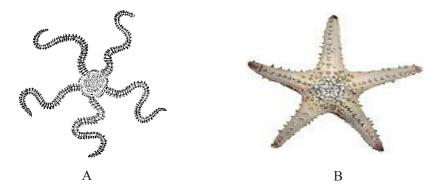
- Support
- Protection.
- Movements.
- Production of blood cells.
- Storage and Release of Calcium
- Storage and Release of Phosphates $(any 5 \times 2)$

	- 4 -
(ii) Name the bones in human	n vertebral column which are formed by fusion of vertebrae and
state the number of fused	vertebrae in each.
Bone	Number of vertebrae
• Sacrum	5
• Coccyx	4 (4 × 2)
(iii) State two features seen in	the human vertebral column that contribute to maintain erect
posture.	
Presence of 4 curvatures in v	vertebral column.
Thickening of infervetebral	discs/ increased size of vertebral bodies Progresively in downward
direction.	(2 × 2)
(iv) State one major feature of	following vertebrae which can be used to differentiate them from
typical vertebrae.	
• Cervical vertebrae :	Presence of transverse foramen for vertebal artery. / Vertebral
	arterial foramen
• Thoracic vertebrae :	Presence of facets for articulation with ribs / downward projected
	long neural spine.
• Lumbar vertebrae :	Presence of rectangular shaped neural spine.
	(3×2)

 (3×2) (any 50 × 2 = 100)

2. (A) (i) Name the Kingdoms belong to Domain Eukarya.

Protista	
fungi	
Plantae	
Animalia	(4 × 2)


(ii) If the given character in the first column is present in the animal phyla given in the table, indicate with a (√) in the appropriate cage.

		An	imal phyla		
character	Coelenterata	Arthropoda	Annelida	Nematoda	Mollusca
Cephalization		1	\checkmark		1
Exoskeleton	1	1			1
Circulatory System is absent	V			٦	

(8 × 2)

- 5 -

(iii) Following questions are based on animals A and B.

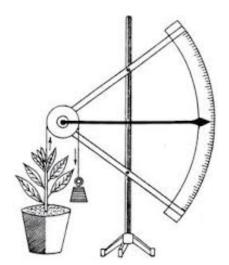
- (a) State two major external features which can be used to distinguish animals A and B from each other.
 - Arms are distinctly separated from central disc in A, but not in B.
 - A possesses an anus, but B does not possess an anus.
 - Suckers are absent on tube feet in A, suckers are present on tube feet in B. (any 2×2)
- (b) Name the animal phylum into which above animals A and B belong to.

Echinodermata

 (1×2)

- (c) State two external characteristic features which help to catogarize animals A and B into the above mentioned phylum.
 - Penta radial symmetry
 - Presence of tube feet
 - Presence of ambulacral grooves
 - Presence of madreporite. $(any 2 \times 2)$
- (B) (i) State four reasons to consider that plants of phylum Anthophyta are evolutionary more advanced than that of the plants of phylum Cycadophyta.
 - Seeds are enclosed within in the fruit.
 - Presence of a flower as the reproductive organ.
 - Presence of vessel elements in xylem and sieve tubes and companion cells in phloem.
 - Presence non motile male gametes / development of pollen tube to a transport make gametes External water is not needed for fertilization of gametes.
 - Formation of triploid endosperm due to double fertilization. $(any 4 \times 2)$
 - (ii) What is meant by the terms given below regarding morphological features of flowers.

(a) Hypogynous flower	r:	A flower in which the ovary is located above the level of other floral parts.
(b) Epipetaly	:	Presence of stamens attached to petals.


(c) Perianth : The outer sterile part of the flower which is not differented into corolla and calyx.

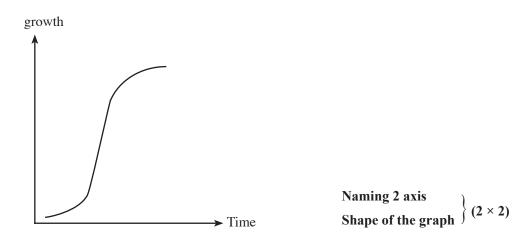
(iii) Pogonatum, Selaginalla, Nephrolephis, Cycas, Mangifera

Select and write the relevant genus/genera of plants from the above list compatible to the following features.

		(10 × 2)
(f)	Homospory is present	Pogonatum, Nepholepis
	each other and autotropic	Nephrolepis
(e)	Sporophyte and gametophytes are independent from	
(d)	Development of pollen tube to conduct male gametes.	Mangifera
(c)	Presence of monoecious photoautotrophic gametophytes.	Nephrolepis
(b)	Gametophytes are enclosed by sporophytic tissues.	Cycas, Mangifera,
(a)	Presence of biflagellated male gametes	Pogonatum, Selaginella

(C) (i) Given below is an equipment used in the laboratory.

(a) Identify the above equipment.


(Lever) Auxanometer.

(1 × 2)

(b) What is the objective of using the above equipment.

To detect the growth of plant by measuring the increase of hight / length of shoot. (1×2)

(c) Plot a graph in the given space using the data obtained from above equipment.

- 7 -

(ii) State the parameters used to measure the growth of following plant organs.

(a) A fruit : Increase	of vo	lume.
------------------------	-------	-------

(b) A leaf : Increase of surface area. (2×2)

(iii) State two differences of plant growth substances from animal hormones.

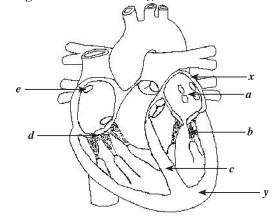
- Plant growth substances are not secreted by specific glands. Animal hormones are secreted by endocrine glands.
- Plant growth substances are transported through xylem, phloem or parenchyma while animal hormones are transported through blood. (2 × 2)

(iv) State a plant growth substance which perform following functions.

Function	Plant growth substances	
(a) Inhibit apical dominance	Cytokinine	
(b) Promote the elongation of stem	Gibberelin/ Ethylene	
(c) Inhibit cambial activity	Abscisic acid	(3 × 2)

(v) State three artificial plant growth substances used in agriculture and horticulture and their applications.

Plant growth substance	Applications
IBA	To induce rooting in stem cuttings. / Induce parthenocarpy
2 4 D / MCPA	As weedicides.
Gibberellin	Induce seed germination/ induction of stem
	elongation.
Ethylene	Induce rippening of fruit.
	any $(3+3) \times 2$


 $(any 50 \times 2 = 100)$

3. (A) (i) Name the parts labelled as (a) to (e) in the above diagram.

- A pumping device / Heart.
- (Blood) vesseles.
- Circulating fluid.

(3 × 2)

(ii) Diagram given below is a Longitudinal section of a human heart.

(a) Name the parts (a) to (e) in the diagram.

- (a) Opening for pulmonary veins.
- (b) Chordae tendinae
- (c) Interventricular septum.
- (d) Tricuspid valve / right atrio ventricular valve.

- 8

- (e) Opening of superior Vena cava. (5×2)
- (b) Why the wall of "Y" is thicker than that of "X".

Y has to generate force to pump blood out of the heart throughout the body while X has to

generate force to pump blood only to the ventricles which needs reletively low force. (1×2)

- (c) State the functions of "b" and "d".
 - *b* Prevent the eversion of atrioventricular valves during ventricular contraction.
 - d Prevent back flow of right ventricular blood to right auricle. (2×2)
- (iii) State the correct order of structures passed by a CO₂ molecule being entered into the heart through vena cava upto respiratory surface of man.

Right atrium \longrightarrow right ventricle alveoli \leftarrow lungs \leftarrow Pulmonary artery (1 × 2)

- (iv) State two structural differences between blood circulatory system and Lymphatic System of man.
 - Blood circulatory system possesses a heart but a heart is absent in lymphatic system.
 - Blood capillaries are opened at either ends but lymph capillaries originate blindly.
 - Blood circulatory system possess arteries and veins but lymphatic system does not possess arteries and veins. $(any 2 \times 2)$
- (v) Name the two major vessels of lymphatic System of man.
 - Right Lymphatic duct.
 - Thoracic duct. (2×2)

(vi) What is the origin of lymph ?

• Tissue fluid (1×2)

(B) (i) What is meant by internal environment of the body?

The immediate surrounding of cells which provide the medium, in which they have to live

 (1×2)

(ii) State the major factors in the internal environment that must be controlled in human body.

- Concentration of chemical constituents /eg glucose, ions.
- Maintenance of relative amount of water and solutes.
- Body temperature. (3×2)

(iii) Name the hormones which increase blood glucose level of man.

Glucogon, Thyroxin, Cortisol, Adrenaline

(4 × 2)

			-		
	(iv) Sta	ate the major factor	s which are controlled in o	smoregulation in man.	
	•	Controlling the am	nount of water.		
	•	Controlling the am	nount of salt gained and lost	by the body.	(2 × 2)
	(v) Na	me the major osmo	regulatory organ in huma	n body.	
	•	Kidney			(1 × 2)
	(vi) Na	me the two hormon	es which are directly invol	ved in osmoregulation in humans.	
	•	ADH			
	•	Aldosteron			(2 × 2)
	(vii)(a)	State the secretory 3 B (vi).	y site and target / structure	e of the hormones you mentioned i	n above
		Hormones	Secretory site	Target	
	•	ADH	Posterior pituitary	Distal convoluted tubules a	nd
				collecting duct.	
	•	Aldosteron	Adrenal Cortex	Distal convoluted tubules	(4 × 2)
	(b)) How the secretion	of above hormones are sti	imulated ?	
	•	ADH - Incre	ased osmotic pressure in blo	bod	
	•		eased blood pressure or bloo		
		reduc	ed Na ⁺ concentration of blo	od	(2 × 2)
(C)		ate two organic comp ants.	onents and two inorganic co	mponents translocated in phloem tis	sue in
(C)				mponents translocated in phloem tis Inorganic Components	
(C)		nnts. Organic Comp Sucrose	ponents		
(C)		onts. Organic Comp Sucrose Plant growth substat	ponents	Inorganic Component: • Water	
(C)		Organic Comp Sucrose Plant growth substan Amino acids	ponents	 Inorganic Components Water K+ , PO₄⁻³ 	s
(C)	pla • •	Ants. Organic Comp Sucrose Plant growth substat Amino acids Vitamins	ponents nces.	 Inorganic Components Water K+, PO₄⁻³ 	
(C)	pla • •	Ants. Organic Comp Sucrose Plant growth substan Amino acids Vitamins ate four special featu	ponents	 Inorganic Components Water K+, PO₄⁻³ 	s
(C)	pla • •	Ants. Organic Comp Sucrose Plant growth substan Amino acids Vitamins Ate four special featu Bidirectional.	ponents nces. ures of phloem translocatio	Inorganic Components • Water • K+, PO ₄ ⁻³	s
(C)	pla • • • • • • • • • • • • • • • • • • •	Annts. Organic Comp Sucrose Plant growth substan Amino acids Vitamins ate four special featu Bidirectional. Transport take play	ponents nces. ures of phloem translocation ce under hydrostatic pressur	Inorganic Components • Water • K+, PO ₄ ⁻³	s
(C)	pla • • • • • (ii) Sta •	Annino acids Vitamins Addirectional. Transport take place I arge amount of su	ponents nces. ures of phloem translocation ce under hydrostatic pressur	Inorganic Components • Water • K+, PO ₄ ⁻³	s
(C)	pla • • • • • • • • • • •	Amino acids Vitamins Bidirectional. Transport take place large amount of su	ponents nces. ures of phloem translocation ce under hydrostatic pressur ubstances are transported of transport is high.	Inorganic Components • Water • K+, PO ₄ -3 (on.	s
(C)	pla • • • • • • • • • • •	ants. Organic Comp Sucrose Plant growth substan Amino acids Vitamins ate four special featu Bidirectional. Transport take plau large amount of su Distance and rate of ame the nutrients the	ponents nces. ures of phloem translocation ce under hydrostatic pressur	Inorganic Components • Water • K+, PO ₄ ⁻³ (on.	s (2 + 2) × 2
(C)	pla • • • • • • • • • • •	Amino acids Plant growth substat Amino acids Vitamins Ate four special featur Bidirectional. Transport take plau large amount of su Distance and rate of the nutrients the Carbon dioxide	ponents nces. ures of phloem translocation ce under hydrostatic pressur ubstances are transported of transport is high.	Inorganic Components • Water • K+, PO ₄ ⁻³ (on.	s $(2+2) \times 2$ ny (3×2)
(C)	pla • • • • • • • • • • • • • • • • • • •	Amino acids Plant growth substant Amino acids Vitamins Ate four special featur Bidirectional. Transport take place large amount of sur Distance and rate of Amino acids Carbon dioxide Oxygen	ponents nces. ures of phloem translocation ce under hydrostatic pressur ubstances are transported of transport is high. at are obtained in gaseous	Inorganic Components • Water • K+, PO ₄ -3 (on. re. an form by plants.	s (2 + 2) × 2
(C)	pla • • • • • • • • • • • • • • • • • • •	Annino acids Plant growth substant Amino acids Vitamins Ate four special featur Bidirectional. Transport take plant large amount of sur Distance and rate of Carbon dioxide Oxygen Ate three natural pro-	ponents nces. ures of phloem translocation ce under hydrostatic pressur ubstances are transported of transport is high. at are obtained in gaseous	Inorganic Components • Water • K+, PO ₄ ⁻³ (on.	s $(2+2) \times 2$ ny (3×2)
(C)	pla • • • • • • • • • • • • • • • • • • •	Annino acids Plant growth substant Amino acids Vitamins Ate four special featur Bidirectional. Transport take place large amount of sur Distance and rate of Carbon dioxide Oxygen Ate three natural pro- Nitrogen fixation.	ponents nces. ures of phloem translocation ce under hydrostatic pressur ubstances are transported of transport is high. at are obtained in gaseous	Inorganic Components • Water • K+, PO ₄ -3 (on. re. an form by plants.	s $(2+2) \times 2$ ny (3×2)
(C)	pla • • • • • • • • • • • • • • • • • • •	Annino acids Plant growth substant Amino acids Vitamins Ate four special featur Bidirectional. Transport take plant large amount of sur Distance and rate of Carbon dioxide Oxygen Ate three natural pro-	ponents nces. ures of phloem translocation ce under hydrostatic pressur ubstances are transported of transport is high. at are obtained in gaseous	Inorganic Components • Water • K+, PO ₄ -3 (on. re. an form by plants.	s $(2+2) \times 2$ ny (3×2)

- 9 -

	()	Nome a spacies of champ autotranhic argonism which reduce vituates to account w	trocor
	(v)) Name a species of chemo autotrophic organism which reduce nitrates to gaseous min soil.	urogen
		Thiobacillus denitrificans	(1 × 2)
		Total marks 50 ×	. ,
			- 100
(A)	(i)	Name the layers of cross section of the Earth from outer to inner in order.	
		Crust, mantle, core	(1 × 2)
	(ii)	(a) Name the major layers of atmosphere from bottom to upper according to the temp	erature.
		Troposphere, Stratosphere, Mesosphere, Thermosphere	(1 × 2)
		(b) Name the layer out of the above mentioned layers in 4 (ii) (a) in which that ozone lay located.	ver is
		Stratosphere	(1 × 2)
	(iii)) State two sources of pollutants that could pollute each of the following resources.	
		(a) Ocean : Industrial effluent/oil spills/ Garbage	(2 × 2)
		(b) Air : Buring of fossil fuel / Emissions from automobiles/ Refrigerators/ a	air
		conditioners/ aerosol.	(2 × 2)
		(c) Soil : Fertilizer/ agro chemicals/ Solid wastes/ radio active wastes/	
		Industrial wastes	(2 × 2)
	(iv)) State the impact of excessive use of fertilizers in water bodies.	
		• NO_3^- and PO_4^{-3} of levels of water increases, creating to	
		• Increased growth of cyanobacteria and Algae / leads to Algal blooms.	
		• O ₂ Concentration of the water body decreases at night / increasing BOD value.	
		• Death of fish occur / death of aquatic organisms.	
		• Growth of bacteria on dead bodies and anaerobic decomposition.	
		• Releasing bad smelling gases/ leading to bad odour/ H_2S , ammonia are released.	6 × 2)
	(v)	What is meant by 'Air Pollution'?	
		Deterioration of the quality of air by releasing substance or energy in such quantit	ies which
		prevent smooth/ balanced functioning of natural processes and produce undesirable envir	ronmental
		and health effects.	(1 × 2)
	(vi)) Name an air pollutant which is responsible for the following undesirable impacts.	
		(a) Cause photochemical smog.	
		Oxides of nitrogen / Hydrocarbons.	(1 × 2)
		(b) Decrease in O_2 carrying capacity of blood.	
		Carbon monoxide / Oxides of nitrogen	(1 × 2)
		(c) Bronchitis and emphysema.	- /
		SO ₂	(1 × 2)
		2	· -/

- 10 -

4.

(B) (i) (a) What is meant by Bio diversity?

(i) (a) What is meant by Bio diversity?						
Variability among organisms from all sources including inter alia, terrestrial, marine and other						
aquatic ecosystems and the ecological comp	blexes of which they are part of. (1×2)					
(b) Name the three basic components of Bio diversity.						
Genetic diversity.						
• Species diversity.						
• Eco-system diversity.	(3 × 2)					
(c) What is the importance of conserving Bi	o diversity?					
• Ensure of long term survival of many s	• Ensure of long term survival of many species as possible.					
• Protection of species that are in danger						
(ii) Name the major types of Bio diversity conservation method applied in each of the following						
instances.						
(a) Reintroduction of species : In - s	itu conservation.					
(b) Maintain field gene banks : Ex -	situ conservation.					
(c) Traditional home gardens : In - s	itu conservation. (3×2)					
(iii) Name the International conventions which contribute to conservation of bio diversity and state the specific objective of each.						
Convention	Objective					
RAMSAR	Conservation of internationally important					
	wetlands					
CITES	to Ensure that international trade in specimens					
	of wild animals and plants does not threaten					

Bio diversity convention

Protection of bio diversity, Sustainable use of

its compronents and the fair and equitable

sharing of benifits arising from the use of genetic resources.

(any 2 + 2) × 2

(C) (i) What is meant by microbial food spoilage?

Making food unfit for human consumption due to the growth of micro organisms in food that changes physical, chemical & biological structure. (1×2)

their survival

(ii) State the reasons for spoiling fish by micro organisms easily.

- Fish contain suitable optimum pH for bacterial growth.
- high moisture content of fish which favour bacteria growth.
- It is a good nutrient source for growth of micro organisms.
- Absence of natural covering to prevent entrance of microboes. (4×2)

· 11 ·

- 12 -	
(iii) What is the group of micro organisms which s	poil fish.
Bacteria	(1 × 2)
(iv) Briefly explain the chemical reaction occur du	ring spoilage of fish.
 Putrefaction. Protein food. <u>Proteolytic</u> Micro organisms 	o acids + Amines + Ammonia + H_2S (7 × 2)
(v) Name three common method used to presen	rve fish and state the principle / principles
applied in each method.	
Method	The way of control
Canning	prevent entering of micro organisms/
	prevent growth and activity of micro
	organisms. Destroying all forms of micro
	organisms.
Drying/ Sun drying/ Smoking/ salt and drying	prevent growth & activity of micro
	organisms.
Low temperature preservation	Prevent the growth and activity of micro
(Freezing)	organisms.
	$(3+3) \times 2$
	any $50 \times 2 = 100$

* *

- 13 -Part B - Essay

5. Describe the role of chloroplast in photosynthesis.

- 1. Photosynthesis occurs within a chloroplast in two steps.
- 2. Light reaction
- 3. Dark reaction / Calvin cycle
- 4. Light reaction occurs at thylakoid membranes/ grana and lamella when light is present.
- 5. Dark reaction occurs in the chloroplast stroma independently from light.

In the light reaction;

- 6. Photo system I photo system II are located on thylakoid membranes,
- 7. photosynthetic pigments at antennal complexes,
- 8. absorb light rays of wave lenght of blue and red range of visual spectram
- 9. is transmitted to the reaction centers (by resonance)
- 10. Special chlorophyll molecules of reaction centers become excited.
- 11. and electrons are boosted to high energy levels / electrons become excited
- 12. These high energy electrons are captured by primary electron acceptors located at thylakoid membranes.
- 13. and transmit through the series of electron carrier molecule on thylokoid membranes.
- 14. Energy is emitted when high energy electrons transmit in downhill direction
- 15. And ATP is produced using this energy / photophosporylation takes place
- 16. Electrons emitted from PS II replace the electrons of Photosystem I
- 17. Photolysis of water takes place at Photosystem II
- 18. O_2 is liberated
- 19. H⁺ are supplied to the Photosystem I
- 20. Electrons produced by photolysis of water are used to replace the electrons deficiency of Photosystem II
- 21. Electrons boosted to high energy levels in Photosystem I, are received by primary electron acceptors
- 22. and transmitted to NADP⁺ through a series at electron carriers.
- 23. NADP⁺ is reduced here by using H⁺ provided by photolysis of water from PS II.
- 24. Enzymes located on thylakoid membranes involve in this reduction of NADP+
- 25. NADPH and ATP produced in light reaction participate to produce carbohydrates in the Calvin cycle.

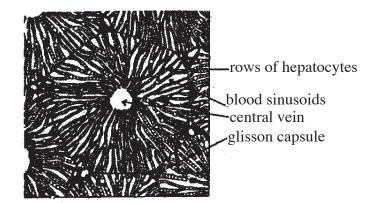
Dark reaction

26. RUBP and RUBP carboxylase required for this, are located in the stroma of chloroplast.

This occurs in three steps.

- 27. carboxylation
- 28. reduction of PGA
- 29. regeneration of RUBP
- 30. RUBP Captures CO₂ and produce a 6C unstable compound
- 31. This step is catalysed by RUBP carboxylase
- 32. 6C unstable compound soon breaks into two molecules of 3C PGA.
- 33. PGA is reduced to PGAL by all NADPH and
- 34. a part of ATP produced in light reaction
- 35. a part of this PGAL produce hexoses/ carbohydrates through a series of reactions.
- 36. remaining PGAL regenerate RUBP through RUMP by a series of reacton
- 37. using the rest of the ATP
- 38. Simple sugars produced, are converted to starch and get stored temporary in the stroma of choroplast.
- 39. raw materials and bi-products are transported across membranes of the chloroplasts to carry out an efficient photosynthesis

(any 38 × 4 = 152) (Maximum 150)


6. (a) State the location of human liver.

- 1. below the diaphragm
- 2. In abdominal cavity
- 3. In upper right region.

(b) Describe the gross and tissue structure of human liver.

- 4. upper and anterior surfaces of liver are smooth :
- 5. Consists of four lobes.
- 6. right lobe.
- 7. left lobe.
- 8. caudate lobe.
- 9. quadrate lobe.
- 10. all lobes are enclosed in fibrous capsule
- 11. lobes are made up of tiny lobules.

- 12. lobules are hexagonal in shape.
- 13. are formed by pairs of hepatocytes rows.
- 14. hepatocytes rows radiate as pairs from the central vein in each lobule
- 15. in between pairs of hepotocytes rows liver sinusoides are located
- 16. Sinusoids are dialated blood capillaries with incomplete walls.
- 17. Kuffer cells which is a type of macrophages are found in the lining of sinusoide..
- 18. Within a pair of liver cells bile canaliculi are located.
- 19. Glisson's capsules are located in the connective tissue in between of each liver lobules.
- 20. Each Glisson's capsule mainly contains a branch of Hepatic portal vein.
- 21. a branch of hepatic artery.
- 22. and a branch of bile duct.

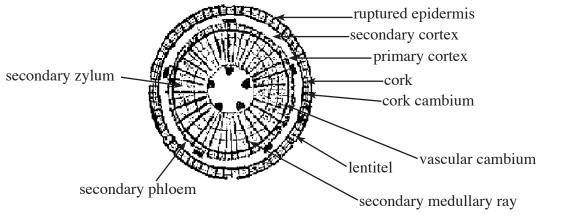
- (c) Describe the contribution of human liver for regulation of physical nature and chemical composition of internal environment.
 - 23. Regulation of blood glucose level

when blood glucose level rises than normal level

- 24. Glucose is converted in Glycogen and fat with the help of insulin and stored in liver cells.
- 25. Excessive glucose is oxidized within liver cells

when blood glucose level is decreased than normal level

- 26. Stored glycogen in the liver is converted into glucose by glucagon and released to blood.
- 27. liver regulates lipid content in the body by accelerating oxidizing of stored fat in it.
- 28. liver synthesizes non essential amino acid.
- 29. Detoxification of alcohol, microbial toxins and some drugs.
- 30. Production of heat to regulate body temperature/ Heat produces in the liver due to high metabolic rate distribute heat through blood.


- 31. Inactivation and removal of hormones.
- 32. Breakdown of hemoglobin.
- 33. Breakdown of red blood cells which have completed their life cycles
- 34. Storage of blood.
- 35. Storage of fat soluble vitamins A, D, E and K
- 36. Storage of iron and copper.
- 37. Synthesis of plasma proteins such as of Albumin. Globulin and blood clotting factors.
- 38. Synthesis of cholesterol.
- 39. Production of urea / excess amino acids are deaminated to produce urea.

(any 37 × 4 = 148) (diagram = 04) (maximum 150)

7. (a) State the types of meristems according to the localization in plant body and describe the locations and the functions of each.

- 1. Apical meristems.
- 2. are called root apices when located at root apex.
- 3. root apices involve growing of root.
- 4. When located at stem apex are called stem apices.
- 5. stem apices/ shoots involve in growth of stems / shoots.
- 6. intercalary meristems are located at
- 7. Leaf bases of grass,
- 8. nodes of the stems.
- 9. increase the length of stems / internodes.
- 10. lateral meristems are
- 11. vascular cambium.
- 12. the cork cambium
- 13. in-between xylem and phloem of vascular cambium of dicot stem
- 14. the increases the diameter of stem and root / girth / involves in secondary growth.
- 15. the cork cambium is located in the cortex of stem and root pericycle area of
- 16. cork cambium increases the diameter of stem and root.

- 17 -
- (b) Describe the role of secondary meristems of a dicot stem.


```
(any \ 8 \times 1 = 8)
```

- 17. In primary stem, intrafascicular cambium become activated in between xylem and phloem.
- 18. a parenchyma cell layer of primary medullary rays gain meristamatic ability.
- 19. and diffentiate into interfascicular cambium.
- 20. vascular cambium /cambial ring is formed by the fusion of intra fascicular and interfascicular cambium.
- 21. Due to action of vascular combium, new cells are produced in inward and outward directions of the stem.
- 22. Secondary xylem is formed by the cells produced in inward direction.
- 23. Secondary pholem is formed by the cells produced in outward direction.
- 24. Secondary xylem and secondary colomn are arranged circulary in the step
- 25. Parenchyma cells are produced in both inward and outward directions.
- 26. Secondary medullary rays are formed by such parenchymatous strands.
- 27. The diameter of the stem increases due to formation of secondary xylum and secondary pholem.
- 28. Stem cortex is pushed outward / due to new tissues into added to interior
- 29. Therefore, a cell layer in cortex gets meristemetic ability and becomes cork cambium.
- 30. secondary cortex is produced by cells produced towards interior
- 31. cells produce outward form the cork.
- 32. lenticels contain complimentory cells.
- 33. secondary xylum become wood when matured.
- 34. all tissues outer to vascular cambium become bark.
- 35. Cork cambium and secondary cortex together form periderm
- 36. Annual rings form in wood due to seasonal changers.

(any 36 × 4 = 144) (labeled diagrume 8) (Total = 152) (Maximum = 150)

8. (a) Describe the contribution of mitosis and meiosis for continuty of life and evalution process.

- 1. Sexually reproducing
- 2. diploid animals
- 3. by meiosis
- 4. Produce haploid gametes
- 5. Plants produce haploid spores.
- 6. In plants, gametes are produced by mitosis in gametophytes.
- 7. Gametes fertilize and produce diploid sporophyte generation.
- 8. and maintain the chromosome number within the species from generation to generation
- 9. Geneticaly Identical daughter cells are produced during mitosis.
- 10. Therefore, multicellular organisms maintain the genetic constituent of their cell during growth,
- 11. during their embryonic development,
- 12. Replacement of tissues.
- 13. And regeneration of some animals, mitosis is important.
- 14. During asexual reproduction of some animals
- 15. increase their number of organisms by mitosis
- 16. eg :- Hydra/ Paramecium
- 17. During prophase I of meiosis
- 18. Due to exchange of parts of chromatids of homologous pairs/crossing over
- genetic variation in offsprings takes place by production of new allele combination between homologous chromosomes
- 20. In meta phase I of meiosis
- 21. due to the random orientation of homologous chromosomes on the equator.
- 22. cause random combination of parental chromosomes
- 23. result new genetic variations among offspring.
- 24. these type of variations contribute for evolution.

(b) Explain how the natural selection is important for evolution of life.

- 25. there are morphological,
- 26. behavioral and
- 27. structural differences among organisms of a species.
- 28. These are variations
- 29. some variations are favourable, some are unfavourable,

- 30. some favourable variations are heritable, some are non heritable
- 31. There is a competition between organisms of a species for food, shelter or for reproductive partners.
- 32. In this competition, organisms with favourable variations establish in the population.
- 33. They pass their favourable variation to the next generation by reproduction
- 34. These organisms are more adapted to the environment with the time
- 35. Organisms with favourable character increase in number with the time.
- 36. Therefore, most fitted organisms are selected by the nature./ natural selection occur
- 37. Organisms having unfavourable characters remove from the population with the time.
- 38. Due to not getting chances for reproduction
- 39. as they get failed in the competition. (any $38 \times 4 = 152$)

(Maximum = 150)

9. Describe the role of micro organisms in the following processes.

(a) Production of vinegar

- 1. phloem sap of coconut tree is used.
- 2. sucrose in sweet toddy is hydrolyzed into glucose.
- 3. by Saccharomyces cerevisiae.
- 4. from sucrase / invertase enzyme.
- 5. this sucrose is converted to ethanol and CO_2
- 6. by alcoholic fermentation / anaerobic oxidating
- 7. Saccharomyces cerevisiae participate to
- 8. Ethyl alcohol is converted into acetic acid $(C_2H_5OH + O_2 \longrightarrow CH_3COOH + H_2O)$
- 9. by aerobic oxidation
- 10. by Acetobacter aceti and
- 11. Gluconobacter.

(b) production of compost.

- 12. decomposing fertilizer / compost is produced
- 13. by using natural decomposing ability of microorganisms
- 14. heterotrophic fungi and
- 15. bacterial activity are used here
- 16. compost production is done under warm.
- 17. moist

- 18. aerobic conditions
- 19. by a mixed population of microorganisms
- 20. by decomposing organic mater.

(c) Extraction of Metal extraction by microbial leaching..

- 21. to extract copper from low grade ores containing iron and suphur/ (calcopyrites)
- 22. Thiobacillus ferroxidans and
- 23. Thiobacillus thiooxidans
- 24. like chemoautotropic bacteria are used.
- 25. In their metabolism or chemosynthesis, bacteria produce,
- 26. H_2SO_4 and
- 27. Fe^{+3} .
- 28. by those ores are oxidized
- 29. and copper in it is converted to $CuSO_4$
- 30. this $CuSO_4$ is electrolyzed to extract copper.

(d) Coir production

- 31. to obtain coir by coir retting
- 32. aerobic as well as anaerobic
- 33. heterogeneous population of microbes are used.
- 34. specifically bacteria are used.
- 35. this process is called retting
- 36. this loosening of fibres in plant sources
- 37. pectinase enzyme secreted by micro organisms is used here.
- 38. plant parts are immersed under water for varying lengths of time for retting.

 $(any 38 \times 4 = 152)$

(maximum 150)

10. Write short notes on the following.

(a) Human brain stem.

The parts belong to brain stem are,

- 1. Pons varoli
- 2. Medulla oblongata
- 3. Mid brain

Pons varoli

- 4. located in front of the cerebellum, below the mid brain and above the medulla oblongata
- 5. Consists of peripheral white matter and inner gray matter
- 6. It consists of solid mass of neuron and fibers.
- 7. It joins two hemispheres of cerebellum
- 8. Intergrates information transmit in upward and downward directions.
- 9. Regulate lung ventilation.

Medulla oblongata

- 10. Located below pons varoli and above the spinal cord
- 11. Consists of peripheral white matter and central gray matter

12. Respiratory centre and cardio vascular centers are located in the medulla oblongata. Functions

13. regulate the rate and force of heart beat / control the blood pressure

14. affect the heart beat and respiratory rate

15. control the involuntary reflexes such as sneezing, coughing, swallowing. vomiting Mid brain

- 16. located between upper cerebrum lower pons varoli
- 17. consists of group of nerve cells and nerve fibers

Functions

- 18. control the reflexes of eye muscles
- 19. control the reflexes of head, neck and trunk as responses to visual and auditory stimuli.
- 20. Change the sizes of pupil and size and shape of the eye lens.

(b) Concept of water potential

- 21. Any system containing water has a water potential
- 22. Water potential of a system is affected by factors such as pressure,
- 23. dissolved solutes
- 24. Hydrophilic substances and temperature
- 25. Water potential is related to kinetic energy of water molecules
- 26. Water potential is denoted by Ψ
- 27. And is measured by the units of pressure Mpa / Pa/ atm
- 28. Pure water possesses the highest water potential

- 29. Arbitrarily, the water potential of pure water at atmospheric pressure is considered as zero
- 30. When solutes dissolve in water, the water potential is decreased and it become negative
- 31. Therefore the water potential of most naturally occurring aqueous systems is negative
- 32. When solutes dissolve in water, water potential is decreased and become negative /
- Therefore the water potential is inversely proportional to solute concentration of the system
- 33. When pressure is increased the kinetic energy of water potential are also increased, thereby increasing the water potential of the system /

Therefore water potential is directly proportional to the system

34. Water potential of a cell is collection of solute potential and pressure potential / $\Psi w = \Psi s + \Psi p$

(c) Chromosomal mutations.

- 35. Changes that occur in DNA/ genetic material is referred as mutation.
- 36. Which is transmitted into next generation.
- 37. Changes in number of chromosomes or
- 38. Structure of chromosomes can cause chromosomel mutation .
- 39. Errors that occur during segregation of chromosomes during cell division / meiosis may lead to chromosome mutation.
- 40. Mutation that occur in structure of chromosomes can be due to changes in number of nucleotides.
- 41. Examples Deletion of part of chromosome/

Substitution of part of chromosome.

Two types of mutation due to changes in number of chromosome.

- 42. Aneuploidy
- 43. Polyploidy
- 44. Aneuploidy occur due to non disjunction of chromosome during meiosis

Three types of aneuploidy

- 45. Down's syndrome
- 46. Occurs due to additional somatic chromosomes /
- 47. Turners syndrome
- 48. Occurs due to having single sex chromosomes / onc sex chromosome is lacking

49. Kleinefelter syndrome

- 50. Occur due to an extra X chromosome
- 51. Polyploidy occurs due to the multiplication of chromosome sets. / Example 3n, 4n

any $50 \times 3 = 150$
