Royal College，Colombo 07

Grade 13
Final Term Test
July 2010
13 ๑ળુాe్లిద

2010 ช్ర
Physics I

ษて๘ ๑とૃญณิ
Important ：
＊t：This quesfion paper consists of 60 questions in pages．
揞 Answer cll the questions．
楼 Wrife your Index Number in the space provided in the answer sheet．
af Instructions are given on the back of the answer sheet．Follow fhose carciully
th In each of the questions 1 to 60．pick one af the alfernativers from（1）．（2）．（3）．（4）．（5） which is correct or most appropriate and mark your response on the answer sheet with a cross（ x ）in accordance with the instrucrions given in rhe back of the answer sheer． $\mathrm{g}=10 \mathrm{Nkg}^{-1}$

01）Which of the followings do not represent energy？
1．force x volume
2．electric charge x potential difference
3．pressure x volume
4．electromotive force x electric current

5．Plank＇s constant x frequency
02）The expression $V=\sqrt[K]{\frac{F}{\mu}}$ is a standard equation used in physics．Where V and F are the velocity and force．K is a dimensionless constant．The dimensions of μ are，
1． ML^{-2}
2． MLT^{-2}
3． ML^{-1}
4． LT^{-1}
5． $\mathrm{ML}^{2} \mathrm{~T}^{-2}$

03）The rate of emission of thermal radiation from a hot body depends on，
1．temperature and the atmospheric pressure
2．temperature and the surface area
3．the nature of the surface and the pressure
4．surface area and the humidity
5．temperature and the nature of the surface
04）If full break is applied on a moving bus with no passengers it moves a distance S before coming to rest．When the passengers are on board its mass increases by 40% ．Now the bus is moving with the same velocity and full break is applied again．The distance it moves before coming to rest is，
1． 1.4 s
2．$\sqrt{1.4} \mathrm{~s}$
3．$(1.4)^{2} \mathrm{~s}$
4． 1.2 s
5．s

05）Consider the following statements regarding the photoelectric effect．
a．If the frequency of the incident light is constant the stopping potential is independent of the intensity．
b．The work function depends on the type of the metal and the nature of the surface．
c．Photo electric effect shows the particle nature of the radiation．
Of the statements
1．only a and b are correct 2．only b and c are correct
3．only a and c are correct
4．all a, b and c are correct
5．all a, b and c are wrong
06）Specially designed circular venire scale is used by a spectrometer．Main scale is marked by 1^{0} and the vernier scale has 60 divisions marked by 5 divisions．The scale reading shown is

1． $46^{\circ} 12^{\prime}$
2． $47^{0} 20^{\prime}$
3． $48^{0} 30^{0}$
4． $50^{0} 45^{0}$
5． $55^{0} 50$ ，
07) The power of a convex lens is +30 D . The power of the lens combination made by this lens and another lens is 20 D . The power of the other lens is

1. -50 D
2. -30 D
3. -10 D
4. +20 D
5. +50 D
8)

There is a steady air flow along the tube of two cross sectional areas A_{1} and $A_{2}\left(A_{1}>A_{2}\right)$. The speed of the flow and the density of air in the tube of cross section area A_{1} are V_{1} and ρ_{1} respectively. The speed of the flow and the density of air in the tube of cross section area A_{2} are V_{2} and ρ_{2} respectively. The ratio $\frac{\rho_{2}}{\rho_{1}}$

1. is independent of $A_{1}, A_{2}, V_{l}, V_{2}$
2. depends on $\frac{A_{1}}{A_{2}}$ but is independent of V_{l} and V_{2}.
3. depends $\frac{V_{1}}{V_{2}}$ but is independent of A_{l} and A_{2}
4. depends on $\frac{A_{1} V_{2}}{A_{2} V_{1}}$
5. depends on $\frac{A_{1} V_{1}}{A_{2} V_{2}}$
9) A compound microscope is adjusted to form the final image at the near point of the eye. The object distance is changed and final image is brought back to the near point. The variation of angular magnification (m) of the microscope with the linear magnification $\left(\mathrm{m}_{0}\right)$ of the objective is best shown by the graph

1.

2.

3.

4.

5.
10) Consider the following statements regarding a thermometer.
a. If the volume of the mercury bulb of a mercury thermometer is increased, its sensitivity increases but accuracy decreases.
b. The reason for high sensitivity of the constant volume gas thermometer is due to the large pressure variation even for small temperature change.
c. One advantage of a thermocouple over the other thermometers is it only is capable to measure rapidly changing temperatures.
Of the statements

1. only a is correct
2. only b is correct
3. only c is correct
4. only a and b are correct
5. only b and c are correct
11) The wave which produces high pitch sound is,

1.

2.

3.

4.
5.
12) The diagram shows a conductor of uniformly decreasing cross section area. The radius at x and y are $2 r$ and r respectively. The conductor is connected across a battery. The drift velocity of electrons at x and y are V_{x} and V_{y} respectively. The ratio $\frac{V_{x}}{V_{y}}$ is,

1. $\frac{1}{16}$
2. $\frac{1}{12}$
3. $\frac{1}{8}$
4. $\frac{1}{6}$
5. $\frac{1}{4}$
13) The variation of energy of photons with their wave length is best shown by the graph

1.

2.

3.

4.

5.
14) Younger's modulus of a material is E. It is subjected to the stress is σ. The energy stored in a unit volume of the material is.

1. $\frac{\sigma E}{2}$
2. $\frac{\sigma^{2} E}{2}$
3. $\frac{\sigma^{2}}{2 E}$
4. $\frac{\sigma}{2 E}$
5. $\frac{\sigma^{2} E^{2}}{2}$
15) A soap film can be formed easily on a wire frame but not the water film. The reason for this is,
1. difference of angle of contact of the two liquids
2. the higher density of water than that of soap solution.
3. the surface tension at points on the soap film is not uniform but it is uniform on the water film.
4. the surface tension of soap solution is greater than that of water.
5. water is in compressible
16)

The trolley on the smooth inclined plane is released from the point R from rest. It rolls down and strikes the spring. Then it starts oscillating about the point Q along the path PQR . The variation of the horizontal velocity opponent of the trolley with time is best shown by,

1.

2.

3.

4.

5.
17)

Mass \boldsymbol{m} connected to the one end of the light elastic string is hung by connecting the other end to the ceiling. The mass is raised up and dropped from the point A . Then it oscillates between A and B. The elastic potential energy in the string when it is in extension \mathbf{h} is

1. $m g \frac{h}{2}$
2. $m g \frac{h}{4}$
3. $m g \frac{h}{\sqrt{2}}$
4. $m g h$
5. $2 m g h$
18)

Of the two diagrams x and y are spring balances. Two light strings connected to the objects $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are going over a smooth pulley. Masses of A and B are 5 kg each and the masses of C and D are 4 kg and 6 kg respectively. The readings of balances x and y when the two systems are released from rest are,

	x	y
1.	10 kg	10 kg
2.	10 kg	12 kg
3.	0 kg	2 kg
4.	0 kg	3.2 kg
5.	10 kg	9.6 kg

19) Consider the following statements regarding light.
a. The critical angle of glass for red colour is less than for blue colour.
b. Red colour travels faster than blue in glass.
c. The minimum deviation for red colour is greater than that of blue for a given prism.

Of statements

1. only a is correct
2. only b is correct
3. only c is correct
4. only a and b are correct
5. all a, b and c are correct
20) A vehicle traveling to the North runs over a piece of mud and it sticks on the tire. The direction of acceleration when it leaves the ground with the tire is
1. vertically upwards
2. horizontally to the North

3. horizontally to the south
4. no acceleration
5. 45^{0} inclined to the vertical
21) A closed vessel contains some amount of dry air. It is expanded from A to B by the two separate processes one along the path $A B$ and the other along the path ACB. Which of the followings is in correct?
1. The work done by the gas is maximum along the path $\mathrm{A} \rightarrow \mathrm{B}$
2. The change of internal energy is the same along the both paths.
3. A maximum energy is absorbed in the path $A \rightarrow B$

4. The work done along the path $\mathrm{C} \rightarrow \mathrm{B}$ is zero.
5. Heat is absorbed only in one of the two processes along the path AC and CB
22) A satellite orbiting round the earth experiences the air friction. Of the following statements what is true?
1. It enters to near orbit with a high speed.
2. It enters to a near orbit with a low speed.
3. It leaves the earth in a spiral path.
4. It falls down in spiral path with increasing velocity and decreasing radius
5. Its speed decreases and hence the period about the earth increases.
23) Cool breeze at temperature $-10^{\circ} \mathrm{C}$ blows over the ice layer deposited on the water surface of a lake. It takes 10 s to grow the ice layer from the thickness 20 mm to 21 mm . The time taken to grow the layer from the thickness 40 mm . to 42 mm . approximately is
1. 10 min
2. $10 \sqrt{2} \mathrm{~min}$
3. 20 min
4. 40 min
5. 80 min
24) A radio active sample contains two radioactive elements X and Y. At the time $t=0$ activities of both elements are equal and it is A_{0}. The half life time of X is 24 days and that of Y is 16 days. The activity of the sample after 48 days is
1. $\frac{1}{4} A_{0}$
2. $\frac{3}{5} A_{0}$
3. $\frac{1}{4} A_{0}$
4. $\frac{3}{16} A_{0}$
5. $\frac{3}{8} A_{0}$
25) The input power of an ideal transformer is 10 kW . The current in the secondary coil is 25 A . The ratio of number of turns between the primary and secondary coils is $8: 1$. The input voltage is
1. $\frac{10^{4} x 8^{2}}{25} V$
2. $\frac{10^{4} x 8}{25} V$
3. $\frac{10^{4}}{25} V$
4. $\frac{10^{4}}{25 x 8} V$
5. $\frac{10^{4}}{25 x 8^{2}} V$

The cross-sectional area, linear expansivity and younger modulus of the pillar of negligible weight shown in the diagram are $10 \mathrm{~cm}^{2}, 2 \times 10^{-5} \mathrm{k}^{-1}$ and $1 \times 10^{11} \mathrm{Nm}^{-2}$ respectively. The load X required to put on the pillar to stop the expansion when its temperature is increased by $100^{\circ} \mathrm{C}$ is

1. $2 \times 10^{5} \mathrm{~N}$
2. $4 \times 10^{5} \mathrm{~N}$
3. $2 \times 10^{4} \mathrm{~N}$
4. $2 \times 10^{3} \mathrm{~N}$
5. $2 \times 10^{2} \mathrm{~N}$
27) Two light strings AB and CD are connected to a smooth light ring which goes through the rod as shown in the diagram. The wave pulse on the string AB is moving towards the ring. The shapes and directions of the pulses moving along the strings after the first pulse reaches the ring are best shown by

2.

4.

5.

B
28) The fundamental frequency of a one end closed tube is f_{o} when it contains H_{2} gas. The fundamental frequency of the tube if it contains O_{2} gas at the same temperature is

1. $\frac{1}{4} f_{0}$
2. $\frac{1}{2} f_{0}$
3. f_{0}
4. $2 f_{0}$
5. $4 f_{0}$
29) Consider the following statements regarding water vapour in the atmosphere.
a. The relative humidity is low when absolute humidity in low.
b. The relative humidity is low if the dew point is low
c. The vapour pressure in the atmosphere is equal to the saturated vapour pressure at the dew point only in open space.

Of the statements

1. only a is correct
2. only b is correct
3. a and c are correct
4. all a, b and c are correct
30) The object A of mass \mathbf{m} is at temperature $100{ }^{\circ} \mathrm{C}$. The object B of the mass 2 m is at temperature $0^{\circ} \mathrm{C}$. Their specific heat capacities are S_{A} and S_{B} respectively. If the two objects are kept in contact without heat lost to the surrounding, the system reaches to the final temperature $20^{\circ} \mathrm{C}$. The correct relation between S_{A} and S_{B} is
1. $2 \mathrm{~S}_{\mathrm{A}}=\mathrm{S}_{\mathrm{B}}$
2. $4 \mathrm{~S}_{\mathrm{A}}=\mathrm{S}_{\mathrm{B}}$
3. $\mathrm{S}_{\mathrm{A}}=2 \mathrm{~S}_{\mathrm{B}}$
4. $\mathrm{S}_{\mathrm{A}}=4 \mathrm{~S}_{\mathrm{B}}$
5. $\mathrm{S}_{\mathrm{A}}=\mathrm{S}_{\mathrm{B}}$

The internal resistances of the cells shown in the circuit is negligible. The ammeter reading is,

1. 0.2 A
2. 0.1 A
3. 0.4 A
4. 0.3 A
5. zero
32) The potential difference and the energy stored in the capacitor shown in the circuit are respectively
1. $3 \mathrm{~V}, 18 \mu \mathrm{~J}$
2. $1 \mathrm{~V}, 20 \mu \mathrm{~J}$
3. $5 \mathrm{~V}, 16 \mu \mathrm{~J}$
4. $8 \mathrm{~V}, 20 \mu \mathrm{~J}$
5. $8 \mathrm{~V}, 18 \mu \mathrm{~J}$

33) If a battery is connected across a solenoid $P Q$ shown in the diagram Magnetic flux density at the axis is 0.4 T . The half of the solenoid is removed and the other half is connected across the battery. The magnetic flux density now at the axis is
1. 0.8 T
2. 0.6 T
3. 0.4 T
4. 0.2 T
5. 0.1 T 34) A, B and C are steel block magnet and steel cylinder of equal
size and mass. Three objects are released from the to P the
aluminum plane inclined with the horizontal at the same
time. What is true regarding their arrival to the bottom? A, B and C are steel block magnet and steel cylinder of equal
size and mass. Three objects are released from the to P the
aluminum plane inclined with he horizontal at the same
time. What is true regarding their arrival to the bottom? A, B and C are steel block magnet and steel cylinder of equal
size and mass. Three objects are released from the to P
aluminum plane inclined with the horizontal at the same
time. What is true regarding their arrival to the bottom? A, B and C are steel block magnet and steel cylinder of equal
size and mass. Three objects are released from the to P
aluminum plane inclined with the horizontal at the same
time. What is true regarding their arrival to the bottom?
6. A comes first and C at the last
7. C comes first and A at the last
8. A comes first and B at the last

9. B comes first and C at the last

10. All come same time
35)

The graph A shows the variation of radiation intensity of white body at temperature T_{1} with the wave length. The corresponding graph of a black body at the same temperature is shown by the graph.

1. a
2. b
3. c
4. d
5. A
36) A monochromatic beam of light passes through an optical device as shown the diagram. The device is shown by the box. The possible optical device is

1.

2.

3.

4.

5.

The circuit shows a close loop operational amplifier supply voltage (Vs) $= \pm 10 \mathrm{~V}$. Resistances R_{1} and R_{2} are $10 \mathrm{k} \Omega$ and $30 \mathrm{k} \Omega$ respectively and input voltage $\mathrm{V}_{\text {in }}=3 \mathrm{~V}$ possible output voltage $\left(\mathrm{V}_{0}\right)$,

1. 6.5 V
2. 7.8 V
3. 9.6 V
4. 11 V
5. 13 V

38) The frequency of the two stationary sound sources S_{1} and S_{2} is f_{0}. An observer O in between S_{1} and S_{2} is running towards S_{1} with velocity \boldsymbol{v}. The speed of sound in air is V . The beat frequency heard by the observer is

1. $\frac{v f_{0}}{V}$
2. $\frac{v f_{0}}{2 V}$
3. $\frac{2 v f_{0}}{V}$
4. $\frac{V}{2 v} f_{0}$
5. $\frac{V}{v} f_{0}$

39) The mass m is attached to the ceiling of the hollow box of mass M as shown in the diagram. The system is hung by the spring balance. Then the rending in the balance is A. The string breaks and the mass m is falling down. Then the reading is B. The mass m hits the bottom and comes to rest. Then the reading is C . The right values of A, B and C are

	A	B	C
1.	$M+m$	m	$M+m$
2.	$M+m$	$M+m$	$M+m$
3.	$M+m$	M	$M+m$
4.	M	M	$M+m$
5.	$M+m$	$M-m$	m
l	$M+m$		

40) A heater of power 100 W is kept inside a metal block. The block comes to the maximum steady temperature $80^{0} \mathrm{C}$. If the power is disconnected it starts cooling and cooling rate at $50^{\circ} \mathrm{C}$ is $0.04{ }^{0} \mathrm{C} \mathrm{s}^{-1}$. The room temperature is $30^{\circ} \mathrm{C}$. The heat capacity of the heater is negligible. The heat capacity of the metal block is

1. $1000 \mathrm{Jk}^{-1}$
2. $2000 \mathrm{Jk}^{-1}$
3. $3000 \mathrm{Jk}^{-1}$
4. $4000 \mathrm{Jk}^{-1}$
5. $5000 \mathrm{Jk}^{-1}$
41) The three vessels A, B and C of equal base area are filled with 2 kg of water. All three bases barely withstand the pressure. Now the water is removed from the vessels and three blocks of masses 2 kg are kept on the bases.
1. the base A only can withstand the pressure
2. the base B and C only can withstand the pressure

3 . the base C only can withstand the pressure
4. the base A and B only can withstand the pressure 5. all the bases A, B and C can withstand the pressure

(a)

(b)

(c)
42) The resistances of three uniform wires of same length $P Q, Q R$ and RS are $4 \Omega, 10 \Omega$ and 6Ω respectively. Resistors are connected in series to the battery of EMF 10 V and negligible internal resistance. The length of the connecting wires between the from P to S is resistors are negligible. The variation potential best shown by

1.

2.

3.

4.

5.
43) $\quad S_{1}$ shown in the diagram is a close gausian surface. Charged inside S_{1} are $+5 C,-4 C$ and $-3 C$. The charges outside S_{1} are $+4 C$ and $-2 C$. To reverse the amount of flux through the S_{1}

1. +2 C should be kept inside S_{1}
2. +4 C should be kept inside S_{1}
3. -4 C should be kept inside S_{1}
4. +5 C should be kept outside S_{1}
5. -6C should be kept outside S_{1}

The radius of circle shown by the dotted lines are R and $r(R>r)$. At the circles and the centre 12 identical particles of mass m are kept. The resultant gravitational force on the particle at the center is

1. $\frac{12 G m^{2}}{R^{2}}$
2. $\frac{6 G m^{2}}{R^{2}}$
3. $\frac{5 G m^{2}}{r^{2}}$
4. $G m^{2}\left(\frac{6}{R^{2}}+\frac{5}{r^{2}}\right)$
5. $\frac{G m^{2}}{r^{2}}$
45) Masses of four cylinders of same cross sectional area made by iron, copper, lead and aluminum are $4 \mathrm{~g}, 5 \mathrm{~g}, 6 \mathrm{~g}$ and 7 g respectively. These four cylinders are kept in water at $100^{\circ} \mathrm{C}$ equal time and then kept vertical on an ice block at $0^{\circ} \mathrm{C}$. The ice in surrounding area gets melt and the part of the cylinders go into the ice block. The specific heat capacities of the cylinders respectively are $4.6 \times 10^{2} \mathrm{Jkg}^{-1} \mathrm{k}^{-1}, 4 \times 10^{2} \mathrm{Jkg}^{-1} \mathrm{k}^{-1}, 1.3 \times 10^{2} \mathrm{Jkg}^{-1} \mathrm{k}^{-1}$ and $9 \times 10^{2} \mathrm{Jkg}^{-1} \mathrm{k}^{-1}$. The height of the cylinders which immerse in ice in ascending order is
1. Iron, Copper, Lead, Aluminum
2. Iron, Lead, Copper, Aluminum
3. Lead, Iron, Copper, Aluminum
4. Aluminum, Copper, Iron, Lead
5. Aluminum, Copper, Lead, Iron
46) The circuit shows the network of resistors. The resistance R1 is increased 0 to R. The resultant resistance between A and B changes from
1. O to 0.5 R
2. O to R
3. R to $2 R$
4. R to $4 R$
5. no change

47) Five bulbs A, B, C, D and E are connected as shown in the circuit. If a voltage is applied across x and y, the bulbs $A, C \& E$ light bright and the bulbs B \& D do not light. The most correct statement regarding the circuit is,
1. The power of B is very low and D is burn.
2. B is burn and the power of D is very low.
3. The powers of both B and D are high.

4. Both B and D are burn.
5. As the resistances of the bulbs are not known, the right explanation can be given regarding the lighting of the bulbs
48)

The potentiometer is connected to the thermocouple of EMF 6 mV as shown in the diagram. The resistance of the potentiometer wire PQ is 5Ω and length is 1 m . The EMF of the driver cell is 2 V . The balance is obtained at the length 60 cm from the P . The resistance R is

1. 95Ω
2. 195Ω
3. 495Ω
4. 995Ω
5. 1995Ω
49) A current I is induced when the magnet is brought towards the insulating conducting ring. The ring is bent to form two identical rings as in the figure (b) and the magnet is brought towards the rings with the same speed again. The new current produced in the ring is,
1. I
2. $2 I$
3. $4 I$
4. $\frac{I}{2}$
5. 0
6.

50) Y is a hollow conducting sphere and X is a small conducting sphere inside Y. Both spheres are connected to two separate electroscopes S_{1} and S_{2}. In diagram (a) two spheres are concentric and the deflection of S_{1} and S_{2} are θ_{1} and θ_{2} respectively. In diagram (b) X is in touch with the inner surface of Y and the deflection of S_{1} and S_{2} are θ_{3} and θ_{4} respectively. What is true regarding the deflections of the
 electroscopes?

1. $\theta_{1}<\theta_{2}, \theta_{4}<\theta_{3}$
2. $\theta_{1}>\theta_{2}, \theta_{4}<\theta_{3}$
3. $\theta_{1}=\theta_{2}=\theta_{4}, \theta_{3}=0$
4. $\theta_{1}>\theta_{2}=\theta_{3}=\theta_{4}$
5. $\theta_{1}=\theta_{2}, \theta_{3}>\theta_{4}$
51) Liner charge density of the ring of radius r is $\sigma \mathrm{cm}^{-1}$. Electric field intensity at the point x on the axis the distance r from the centre is,

1. $\frac{\varepsilon \sigma}{\sqrt{2}}$
2. $\frac{\sigma}{2 \sqrt{2} \varepsilon}$
3. $\frac{2 \sigma}{\varepsilon}$
4. $\frac{\varepsilon \sigma}{2 \sqrt{2}}$
5. $\sqrt{2} \sigma \varepsilon$
52) Three diagrams a, b and c show the dc biasing voltage at the terminals emitter, base and the collector of a transistor. The diagrams which correctly show the transistor biased to cut off, saturated and active region respectively is

	cut off
1.	a
2.	b
3.	a
4.	c
5.	b

saturated
b
a
c
b
c
active
c
c
b
a
a

(a)

(b)

(c)
53) The circuit of a logic gate is shown in the diagram. D_{1} and D_{2} are silicon diodes. The terminal X is at potential +5 V . A and B are inputs and Y is the output. The potentials given in the table are applied to A and B . The outputs Y for each inputs are

1. Y
2. Y
3. Y
4. Y
5. Y

0	0	0	5 V	0
5 V	5 V	5 V	0	0
5 V	5 V	0	0	0
5 V	0	5 V	0	5 V

\mathbf{A}	\mathbf{B}
0	0
0	5
5	V
V	0

54) The correct stream line pattern when a ball is moving without rotation with rotation and at rest with rotation in a steady air flow is

55) The circuit shown in the diagram is used to find the unknown resistance R. The readings in the voltmeter and the ammeter are V and I respectively. The internal resistance of the voltmeter is R_{V}. The resistance given by the ratio $\frac{V}{I}$ is R^{\prime}. The relatio between R, R^{\prime} and R_{V} is given by

1. $R=R^{\prime}-R_{\mathrm{V}}$
2. $R=R^{\prime}+R_{\mathrm{V}}$
3. $\frac{1}{R}=\frac{1}{R^{\prime}}-\frac{1}{R_{V}}$
4. $\frac{1}{R}=\frac{1}{R^{\prime}}+\frac{1}{R_{V}}$
5. $R=\frac{R^{\prime}}{R_{V}}$
56) A cylinder is kept vertical on a horizontal plane which is applied with viscus fluid. The cylinder is rotating about its axis with angular velocity. The variation of velocity gradient downward of the liquid along a radius is,

57) A merry-go-round at a fair ground can rotate in two difference angular velocities w_{1} and $w_{2}\left(w_{1}<w_{2}\right)$ about the vertical axis. It's horizontal arms can be stretched or folded to change the distances to the seats at the ends of the arms. Also the seats can be lowered or raised as necessary. The most stable rotation of the merry-go-round is

58) It is required to design a logic circuit to open the gate of a home. This is done by pressing a switch S_{1} when the gate is powered by the main supply. Also it is required to open the gate by pressing the switch S_{2} when the power is supplied by extra battery during a power cut. Having the power and not having the power on the main line E are logic " 1 " and logic " 0 " respectively. The switch S_{1} close and open are the logics ' 0 ' and ' 1 ' respectively. The gate should open when the output G is " 1 ". The correct logic circuit which satisfy these condition is

1.

2.

5.

Three sheets of equal area made by same material are free to rotate about the axis O Magnetic fields of equal strengths are acting perpendicular to each sheets. Their dampping in descending order is

1. $\mathrm{A}>\mathrm{B}>\mathrm{C}$
2. $\mathrm{B}>\mathrm{C}>\mathrm{A}$
3. $\mathrm{B}>\mathrm{A}>\mathrm{C}$
4. $\mathrm{C}>\mathrm{A}>\mathrm{B}$
5. $\mathrm{A}>\mathrm{C}>\mathrm{B}$
60)

The diagram shows container filled with two immiscible liquids. The container is falling down along a inclined plane. The correct shapes of the interfaces of the liquids are shown by
1.

2.

4.
5.

1. Draw a labeled diagram of the experimental setup to determine the coefficient of viscosity of water using a capillary tube at the school laboratory in the space provided.
(a) Write down an expression for the volume of water flow Q in time t through the capillary tube clearly identifying the symbols used.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) How would you determine the rate of flow of water practically?
\qquad
\qquad
(c) An accurate value for the radius a can be obtained if the mercury thread method is used rather than measuring it directly using a traveling microscope. What is the reason for this?
\qquad
\qquad
(d) Water is generally not used instead mercury in the method mentioned (c) above. Give two reasons.
\qquad
\qquad
(e) i) If you are asked to plot a suitable linear graph to determine the coefficient of viscosity of water. What measurements do you take?
\qquad
\qquad
\qquad
ii) What is the experimental measurement represented by the x-axis?
iii) What are the readings that you would take to find the measurement mentioned in (e) (ii)
\qquad
\qquad
\qquad
(f)

The graph obtained by a student in this experiment is shown here. What is the reason for graph being curved for higher values of x ?
\qquad
\qquad
\qquad
02. The diagram shows a laboratory setup to determine the angle of deviation of light due to refraction from a prism.

(a) Pins P_{1} and P_{2} represent an incident ray. Pose two other pins P_{3} and P_{4} to track the ray of emergence. Show the position of eye with respect to $P_{3} P_{4}$.
(b) Mark the apparent positions of the images of P_{1} and P_{2} as I_{1} and I_{2} in the diagram with respect to the position of the eye.
(c) Show the angle of deviation of the ray by the symbol d.
(d) Plot the variation of d with the incident angle i.

(e) What is quantity that is obtained from the graph to determine the refractive index of the prism ?
(f) Plot the respective d-i graph along the same axis if a prism of prism angle 30° is used?
(g) State why a prism of prism angle 90° cannot be used for this experiment?
(h) The spectrometer can be used to find the deviation a light by a prism. Draw the image pattern on cross wires if a white light is used to illuminate the slit? Name the boundary colours in the diagram.
\qquad
\qquad
\qquad
(i) What are the two spectrometer readings you should take to determine the quantity mentioned in part (e) for the mid colour of the spectrum?
\qquad
\qquad
(j) By what method the spectrometer method or graphical method you obtain more accurate value for the quantity mentioned in part (e)? state the reason.
\qquad
\qquad
\qquad
\qquad
03. The diagram shows a setup to investigate variation of volume of a fixed mass of gas at content temperature with the pressure. By pumping air into the tank pressure and the volume of the air column trapped in the tube can be varied. The pressure of the air column (\boldsymbol{P}) is shown by the pressure gangue and the volume of the air column (v) is measured the scale.

(a) You should be careful to keep the temperature in the tube unchanged when the air volume is reduced. How do you perform the experiment ensuring this fact?
\qquad
\qquad
(b) As the pressure in the tank is increased the pressure in the air column equally increases. Explain how this can happen
\qquad
\qquad
(c) Sketch the graph of \boldsymbol{P} vs. $\frac{1}{v}$ you obtain by the experiment.

P

(d) Write the gas law which is verified by this experiment
\qquad
\qquad
\qquad
(e) A student suggests to increase the pressure in the tube by directly pumping air into it without doing it through the oil tank to investigate the same relation. Comment on his suggestion.
(f) When the pressure gauge reading is $2.5 \times 10^{5} \mathrm{~Pa}$ the volume of the air column is $25 \mathrm{~cm}^{3}$. What is the volume of the air column when the pressure gauge reading is $5 \times 10^{5} \mathrm{~Pa}$?
\qquad
\qquad
\qquad
(g) i) If water is used in the tank instead of oil, obtain an expression for the air pressure \boldsymbol{P} in the tube. Define all the terms you used.
\qquad
\qquad
ii) Sketch the graph of \boldsymbol{P} vs $\frac{1}{v}$ at this condition

(g) According to the Boyles law when the volume is halved pressure of the air column doubles. How do you explain this by the kinetic theory of gas.

\qquad
\qquad
\qquad
04. The diagram shows an experimental setup to determine the temperature resistance co-efficient of nicrome wire. AB is the nicrome wire coiled around the ceramic rod and it is connected to meter bridge by the wires x an y. The nicrome wire is heated by oil bath which is heated by the burner.

(a) How do you maintain the steady constant temperature in the oil bath?
\qquad
(b) Why is the wire heated by the oil bath not keeping it directly in the flame of the burner?
\qquad
\qquad
(c) What are the important steps you should follow to find the resistance of the wire at a given temperature?
\qquad
\qquad
\qquad
\qquad
(d) In this experiment it is required to bring the balance point close to the mid point of the wire LM. Give two reasons for this?
1.
2.
(e) Why is it more suitable to use the meter bridge than the other instruments available in the laboratory to measure the resistance of the wire?
\qquad
\qquad
(f) If a high resistance is not connected in series with the galvanometer there is a possibility to fuse it at off balance points. At what position of the meter bridge wire where the contact key s is touched there is more possibility to burn the galvanometer. Explain your answer.
\qquad
\qquad
\qquad
(g) The graph shows variation of resistance of the wire with the temperature.

Resistance (Ω)

Calculate temperature resistance coefficient using the graph.
\qquad
\qquad
\qquad
(h) The length and the diameter of the nicrome wire are 30 cm and 12 mm respectively. Calculate the resistivity of nicrome at $0^{\circ} \mathrm{C}$.
\qquad
\qquad
\qquad

	Royal College, Colombo 07 రురవిడ రిદ్రృల ఠవృల్రి 07		
	Grade 13 13 ఠG్రియిద	Final Term Test 	$\begin{gathered} \text { July } 2010 \\ 2010 \text { శ్రఁ్ర } \end{gathered}$
	Physics II ๑セฺమీవ లెદุงอ II		Two Hours ษ๘ณ ๑દฺณิ

Part B - Essay
Answer four questions only
($\mathrm{g}=10 \mathrm{~N} \mathrm{~kg}^{-1}$)
(01) According to the statistics the increase of electric power consumption from the 1995 to 2010 is shown by the bar chart below.

i) What is the energy 1 GWh in Jules?
ii) The increase of energy consumption from 2005 to 2010 was produced by a then built hydro power station. At the power station potential energy of water falling from height 500 m is converted to electric power. The water fall is fed by the rain fall to the catchment area of cross section area $216 \mathrm{~km}^{2}$. What is the average height of the annual rain fall to this region during the given period. The density of water is $1000 \mathrm{kgm}^{-3}$. Write your assumption for this calculation.
iii) At a coal power station the heat produced by the combustion of coal is used to boil the water and to produce steam at high pressure $10^{6} \mathrm{kPa}$ and at high temperature $250^{\circ} \mathrm{C}$. The part of a boiler to produce steam is shown by the diagram below.

The steam produced in the boiler is flowing along the tube of cross-section area $1 \mathrm{~m}^{2}$ and strikes the turbine.
Then turbine rotates and produces electricity.
a. The speed of the gas inside the boiler is negligible. The pressure at the turbine is $10^{5} \mathrm{kPa}$ and the density of stem is $0.2 \mathrm{kgm}^{-3}$. Assuming the steam obeys the Bernoulli Principle calculate the speed of steam striking the turbine.
b. Assuming that total power of the steam flowing along tube is absorbed by the turbine. Calculate the power transferred to the turbine .
c. The speed of the steam completely destroys after striking the turbine. What is the force excreted on the turbine by the steam.
d. Can the power of the energy be increased by reducing the cross section area of the opening of the tube where the steam is ejected without changing the rate of combustion of coal?
e. Energy produced by the combustion of 1 kg coal is $3 \times 10^{5} \mathrm{~kJ} \mathrm{~kg}^{-1}$. To produce energy need in the year 1995 coal of mass $6 \times 10^{7} \mathrm{~kg}$ was used. What is the efficiency of the power station?
(02) i) Give four differences between the travelling waves and stationary waves in relation to energy, frequency amplitude and phase angle.
ii) Explain the meaning of the resonance.
iii) In a day of room temperature $16^{\circ} \mathrm{C}$ the air column inside a one end closed tube is vibrated by variable sound frequency source. The frequency of the source is increased from 0 Hz to 1000 Hz . The speed of sound at $16^{0} \mathrm{C}$ is $340 \mathrm{~ms}^{-1}$. Neglect the end error of the tube.
a. Calculate the frequencies at which the tube resonates with the source.
b. Sketch the variation of sound intensity at the open end with the frequency of the source indicating the resonance frequencies.
iv) The air column in a one end close tube of length 16.8 cm is vibrated by the variable sound frequency source. The minimum frequency the source resonates with the tube at the room temperature $16^{\circ} \mathrm{C}$ is 500 Hz . Calculate the end error of the tube.
v) The diagram shows two end open tube $A B$ of length 1 m . The flexible diaphragm is kept inside at 30 cm from the end A separating the tube into two sections.

Flexible diaphragm

The air column inside is vibrated by external variable frequency source kept close to the one end and the source frequency is increased gradually from zero. The air column on both sides vibrates with displacement node at the diaphragm. The temperature inside the tube is $127^{\circ} \mathrm{C}$. Neglect the end correction of the tube.
a. what is the lowest frequency of the source which resonates with the air the columns?
b. draw the corresponding wave pattern in the tube at this moment
(03) The magnetic flues density on the axis of a current carrying solenoid B is given by $\mathrm{B}=\mu_{0} \mathrm{nI}$, Identify terms μ_{0}, n and I .
i) A cross section of the solenoid along the axis is given below. Copy the diagram and draw the magnetic field lines in it according to the direction of the current.

The current out of the plane (\bullet) The current into the plane (+)
(•)
$(+) \quad(+)$
(+)

The diagram above shows how the magnetic field in the solenoid is used in a current balance. The rectangular frame BCEF supports on two conducting tips at A and D. The section $A B C D$ of the frame is a conductor the remaining part is an insulator. S is a light scale pan and $A B=A F$. The frame balances horizontally when the switch K is open.
iii) a. What's the direction of the current in BC when K is closed.
b. Evaluate B if $\mathrm{n}=200 \mathrm{~m}^{-1}, \mathrm{I}=2 \mathrm{~A}$ and $\mu_{0},=4 \pi \times 10^{-7}$.
c. Assume that the field in the solenoid is uniform. When the switch K is closed the balance in the frame lost moving the scale pan up.
What mass is needed on the scale pan to counter balance it if the length BC is 4 cm .
iv) What are the magnitude of the magnetic forces on AB and BD if $\mathrm{AB}=\mathrm{BD}=12 \mathrm{~cm}$.
v) How do you expect to loose the balance if the current in the circuit is reversed?
vi) State why soft iron is not suitable for the frame instead of copper.
vii) Now the frame is removed and D.C supply is replaced by an A.C supply .You are provided with a secondary flat small coil. Propose a method to induce an e.m.f. in the coil using the above setup.
(04) i) a. Why is it necessary to clean the bore of the capillary tube in the capillary rise method to determine the surface tension of water?
b. What are the two readings obtained to find the capillary rise.
c. State reasons for why this type of method is not applicable for mercury.
ii)

A vessel of square base of side length 4 cm and 15.4 g mass is kept in another vessel. Now water is poured gently into the large vessel the density and the surface tension of water are $10^{3} \mathrm{kgm}^{-3}$ and $7.5 \times 10^{-2} \mathrm{Nm}^{-1}$ respectively. The angel of contact between the vessel with water is 60°.
a. What are the forces acted upon the small vessel when it floats in water.
b. What height of the vessel will be below the water level when it just begin to float?
c. There is a hole of radius 1 mm at a side of the bottom. Show by a calculation that water doesn't enter the vessel through the hole.
d. Find the maximum mass that can be kept in the middle of the vessel go that water doesn't enter it through the hole.
e. The above vessel with that weight is suspended by a sensitive spring balance it is gently raised up to the water level. What's the maximum reading of the balance?
f. Plot the rough variation of the radius of the water bubble forming through the hole with the depth h of the vessel in water.
(05) Answer either part (A) or part (B) only.
A)

The diagram shows the wire frame of a AC dynamo. The effective area of the wire frame, its number of turns and flux density of the uniform magnetic field are A, N and B respectively. Initially the frame is parallel to the magnetic field and rotates anti clock wise direction with angular velocity ω as shown in the diagram.
ii) Which terminal has the highest potential when the frame is in the given position? State the law which is applied to come to your answer.
iii) Sketch the variation of EMF and root mean square EMF generated across X and Y with time in the same axis.
iv) A small scale hydropower station uses similar AC dynamo mentioned above.

It uses a magnetic field of flux density $\frac{1}{6} \mathrm{~T}$ and a wire frame of 1000 turns and cross sectional area $350 \mathrm{~cm}^{2}$. Water column flowing through a tunnel from a small water tank strikes the turbine. The turbine connected to wire frame rotates with the frequency 600 r.p.m.
a. Calculate the peak EMF and root mean square EMF produces across the carbon brushes.

$$
(\pi=3, \sqrt{2}=1.4)
$$

b. A house uses 4 bulbs rated $60 \mathrm{~W} / 240 \mathrm{~V}$ and two fans rated as $120 \mathrm{~W} / 240 \mathrm{~V}$. All are connected in parallel with the dynamo if these appliance are operating with the rated power what is the total current drawn from the dynamo.
c. The dynamo is connected to the house by cable of length 50 m which has two wires. What is the potential drop across the cable when the above current is drawn from the dynamo?
d. Bulbs are manufactured to withstand the 5% power increase than their given power ratings. Calculate the power of the bulbs when the two fans are switched off and hence show that bulbs are not fused at this moment.
v) Show only the necessary changes to convert the ac dynamo to dc dynamo by a diagram
B) i) Sketch the voltage (V) - current (I) characteristic curve of a diode.
ii) Explain the action of a Zener diode.
iii)

In the circuit given Zener diode of voltage 12 V is used. The resistances R_{s} and R_{L} are $120 \Omega, 200 \Omega$ respectively supply voltage $\mathrm{V}_{\mathrm{in}}=25 \mathrm{~V}$
a. Calculate the currents through $\mathrm{R}_{\mathrm{s}}, \mathrm{R}_{\mathrm{L}}$ and the diode. $\mathrm{I}_{\mathrm{S}}, \mathrm{I}_{\mathrm{L}}$ and I_{z} respectively.
b. What is the power of the diode?
c. What is is the possible maximum power of the diode?
d. What should be the minimum power rating of the diode used for proper operation of the circuit?
iv) The circuit shows operational amplifier used to amplify small alternating single.
a. What is the voltage gain of the amplifier?
b. The input signal $\mathrm{V}_{\text {in }}$ shown below is applied to the input of the circuit.

Sketch the variation of output signal with time, indicating the peak voltage.
v) The transistor shown in the circuit is biased to cut off region and saturated region respectively by applying input voltages 0 V and 5 V respectively. Transfer characteristic ($\mathrm{I}_{\mathrm{C}} \mathrm{Vs} \mathrm{I}_{\mathrm{B}}$) of the transistor is shown in the graph. The dc current gain β of transistor is 100 .

$$
V_{C C}=+5 \mathrm{~V}
$$

a. Calculate the resistance R_{C} and the maximum resistance for R_{B}.
b. Copy the table below and complete it giving the outputs for inputs 0 V and 5 V .

Input (A)	Output (F)
0 V	
5 V	

c. What is the equilant logic gate which gives the same output and give its truth table.
(06) Answer either part (A) or part (B) only.
(A) The water in the vessel A is boiled by a heater immersed in it. The vessel is totally lagged the vessel is connected to the conducting vessel B with a well lagged conducting rod PQ vessel B contains water with some ice at $0^{\circ} \mathrm{C}$.

A narrow uniform glass tube is fitted to the vessel B initially it is filled with water. The
 vessel B totally lagged.

One junction of a thermo couple, connected to a sensitive galvanometer is touched at the middle of the rod PQ and the other junction is kept at B.

Sometimes after the heater has been operated the voltmeter reading began to increase gradually and finally stabilized. When the voltmeter reading is stable it is found that the water level in the tube C changes at a constant rate of $0.5 \mathrm{cms}^{-1}$.
i) State why the water level changes.
ii) Evaluate the mass of ice melts in one second at this instant provided that the densities of ice and water at $0^{0} \mathrm{C}$ are $920 \mathrm{kgm}^{-3}$ and $1000 \mathrm{kgm}^{-3}$ respectively.
iii) Then the junction X of the thermopile is kept at the hot water bathe then voltmeter reads 4 mV . Then what should be the voltmeter reading when that Junction is kept at the middle of PQ.
iv) The length of PQ is 40 cm The cross-sectional area is $5 \mathrm{~cm}^{2}$ conductivity of metal is 230 evaluate the latent heat of fusion of ice.
v) It is found that the mass of the condensed steam at the open end R of the vessel A in 10 min is 17.1 g Find the power of the heater if the latent heat of steam is $0.5 \times 10^{6} \mathrm{~kg}^{-1}$
Suppose that a significant length of water exists in the tube C when all the ice is melted. Plot the variation of the height h of the water column in C with the temperature θ if the heater is operated continuously.
State why water in B is not boiled. Propose a method to boil the water in B by the same setup (neglect the vessel expansion)
(B) The nucleus of any atom is composed of protons and neutrons. In heavier nuclei the protons try to repel each other because they have the same charge. There must be a strong attractive force between any two protons or neutrons in the nucleus and this nuclear force responsible for holding the nucleus together must be big enough to overcome the coulomb repulsion between two protons $10^{-14} \mathrm{~m}$ apart given by $F=9 \times 10^{9} \frac{q_{1} q_{2}}{r^{2}}$.
Nuclear force between any two nucleons (protons and neutrons) is same. To remove a nucleon from the nucleus, work must be done on it against the nuclear force.
The work done to separate the nucleons increases their masses. So the mass of the separated nucleons is greater than the combined mass in the nucleus before separation. This mass difference is called the mass defect of the nucleus. Mass at atomic level is usually expressed in atomic mass unit (u) where, 1 u is equal to $1.66 \times 10^{-27} \mathrm{~kg}$ and the energy relevant to mass is found by $\mathrm{E}=\mathrm{mc}^{2}$. This energy is equal to work done to separate nucleon from the nucleus and is also called binding energy of the nucleus

Fission of a nucleus occurs when the nucleus splits into two fragments. This happens when the uranium ${ }_{92}^{235} U$ is bombarded with neutrons.
$n+{ }_{92}^{235} U \rightarrow{ }_{56}^{138} B a+{ }_{36}^{95} K r+3 n+$ energy
Fission neutrons produce further fissions giving more and more neutrons and so on. So huge amount of energy would be released in very short time in an uncontrolled chain reaction.

This chain reaction is controlled in nuclear reactor shown in the diagram. ${ }^{\text {(e.g. water) }}$

The uranium used as the fuel is in the form of rods enclosed in metal containers. These fuel rods are spaced regularly in a moderator such as graphite or water chosen to slow fission neutrons down. Slow neutrons are more effective in fissionning U-235 than the fast neutrons. Controls rods, to maintain steady rate of fissioning are inserted into the moderator core and it contains element such as boron or cadmium which absorbs neutrons without fissioning. The water as coolant is pumped through the channel in the moderator to remove heat energy to heat exchanger. The moderator is enclosed in a steel vessel design to withstand high pressure and temperature inside the reactor. The concrete shield round the vessel prevents escaping radiation from the chamber.

Fusion takes place where the nuclei combine to form a bigger nucleus. Solar energy is produced as a result of fussion reaction inside the sun. Moving with very high speed due to enormous temperature inside the sun protons overcome the coulomb repulsion and fuse together one by one to form helium nuclei. From every helium nucleus formed from the protons 1 Mev of energy is released. This energy is equal to the mass change and also equal to the kinetic energy change of the protons when they fuse.
i) Calculate nuclear force between two protons in the nucleus. Charge of a proton=1.6 $\times 10^{-19} \mathrm{C}$
ii) What is meant by the mass defect?
iii Calculate the amount of energy in 1u in Mev
iii) Calculate binding energy of the ${ }_{2}^{4} \mathrm{He}$ nucleus in Mev

Mass of the He nucleus $=4.001504 \mathrm{u}$
Mass of a proton $\quad=1.00728 \mathrm{u}$
Mass of a neutron $\quad=1.008665 \mathrm{u}$
v) According to the paragraph why are the masses of separated nucleons and combined nucleus different
vii) Give one use for each of the following parts of the nuclear reactor

Moderator
Control rod
Concrete shield
viii) energy release from the fission of $\mathrm{U}-235$ in Mev

Mass of the neutron $=1.00866 \mathrm{u}$
Mass of the U-235 $=235.04390 \mathrm{u}$
Mass of $\mathrm{Ba} \quad=137.90500 \mathrm{u}$
Mass of $\mathrm{Kr} \quad=94.90000 \mathrm{u}$
ix) Estimate the velocity of the protons inside the sun

Estimate the temperature at the inside of the sun
One mole of proton is 0.00 kg
Hint: use the equation in kinetic theory of gasses and ideal gas equation Gas constant $\mathrm{R}=8.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{k}^{-1}$

