

Royal College Colombo 07

රාජකීය විදාහලය කොළඹ 07

General Certificate of Education (Adv. Level) Examination, 2010

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය 2010

Grade 13 – Final Term Test July 2010

13 වන ශේණිය අවසාන වාර පරීකෂණය 2010 ජුලි

Time – 2 Hours

Chemistry I

Answer all the questions.

Which one of the following element has the maximum second ionization energy?
 Mg 2. Al 3. Na 4. S 5. K

2) Which one of the following statement is the most accurate about bonds?

- 1. Only bond that forms between two atoms may not be a π bond.
 - 2. π bond is more stable than σ bond.
 - 3. Lateral overlapping of hybrid orbitals form π bonds.
 - 4. Lateral overlapping of s and p orbitals, form π bonds.
 - 5. σ bond which is formed by linear overlapping is always non-polar.

3) Percentage mass of conc. H_2SO_4 solution is 96% (w/w). Density of the solution is 1.83 gcm⁻³. 22 cm³ of the above solution is diluted up to 1.0 dm³ with distilled water. What is the concentration of the diluted H_2SO_4 solution? (H = 1 S = 32 O = 16) 1. 1.0 mol dm⁻³ 2. 0.4 mol dm⁻³ 3. 0.2 mol dm⁻³ 4. 0.1 mol dm⁻³ 5. 0.12 mol dm⁻³

4) Which one of the following element has the maximum electropositivity?
1. Mg
2. Na
3. Al
4. Si
5. F

- 5) Which one of the following statement is true about the Hydrogen emission spectrum.
 - 1. Gap between the lines of a line spectrum increases to the increasing direction of energy.
 - 2. Emission of radiation occurs during the electrons transfer from lower energy levels to upper energy levels.
 - 3. Lines of the Hydrogen spectrum diverge rapidly when increasing the frequency.
 - 4. There are lot of similarities between the emission spectrums of H atom and He^+ ion.
 - 5. Electron transfer from n = 3 to n = 1 is relative to the H α line.
- 6) Which one of the following shows the change of radii of the ionic species N^{3-} , O^{2-} and F^{-} correctly.
 - 1. 136 pm , 140 pm , 171 pm
 - 2. 136 pm , 171 pm , 140 pm
 - 3. 171 pm , 140 pm , 136 pm
 - 4. 171 pm , 140 pm , 140 pm
 - 5. 140 pm , 171 pm , 136 pm
- 7) Relative molecular mass of a hydrocarbon is 70. Which one would be the number of non cyclic isomers of that hydrocarbon? (C = 12, H = 1)
 1. 3 2. 4 3. 5 4. 6 5. 7

1

8) 25 cm³ of FeC₂O₄ (aq) is titrated with 0.05 mol dm⁻³ standard KMnO₄ solution which is acidified with diluted sulphuric acid. Volume of KMnO₄ reacted at the end point is 30 cm³. What is the con of Fe²⁺ in FeC₂O₄ solution.
1. 0.15 mol dm⁻³ 2. 0.75 mol dm⁻³ 3. 0.10 mol dm⁻³ 4. 0.02 mol dm⁻³ 5. 0.5 mol dm⁻³

- 9) Inorganic salt D evolved coloured gas X and formed colourless solution Y with diluted HCl. Gas X turns into colourless solution with acidified KMnO₄. Z didn't give a colour to the Bunsen flame and added excess of K₂CO₃ solution to the solution Y was formed white precipitate. D would be.
 1. NaBr
 2. KNO₂
 3. Ca(NO₂)₂
 4. Sr(NO₂)₂
 5. Mg(NO₂)₂
- 10)Which one of the following molecule has the unequal bond lengths around the central atom.1. PF_5 2. CF_4 3. PF_3 4. BF_3 5. SF_6
- 11) Consider the following equilibrium.

$$O_2(g) + 2NO(g) \xrightarrow{} N_2O_4(g)$$

 $O_2(g)$ and NO(g) is allowed to reach to the equilibrium in 1:2 molar ratios under high temperature in a closed vessel 75% of NO(g) is remained in the equilibrium system. what is the molar ratio of NO(g): $N_2O_4(g)$ in the equilibrium system.

- 1. 2:1 2. 3:1 3. 1:2 4. 6:1 5. 4:1
- 12) Solution was prepared by mixing 500 cm³ of 0.01 mol dm⁻³ NaCl(aq), 250 cm³ of 0.02 mol dm⁻³ BaCl₂(aq) and 250 cm³ of 0.02 mol dm⁻³ NaNO₃ (aq) at 25⁰C. After that the solution was saturated with AgCl(s). What would be the Ag⁺ (aq) concentration? [AgCl] K_{sp} = $1.0 \times 10^{-10} \text{ mol}^2 \text{ dm}^{-6}$ 1. $1.0 \times 10^{-6} \text{ mol dm}^{-3}$ 2. $1.0 \times 10^{-4} \text{ mol dm}^{-3}$ 3. $1.0 \times 10^{-8} \text{ mol dm}^{-3}$ 5. $1.0 \times 10^{-5} \text{ mol dm}^{-3}$
- 13) Which one of the following statement is the most accurate about alkynes.
 - 1. Alkynes form white precipitate with ammonical AgNO₃ (aq)
 - 2. Alkynes form red precipitate with ammonical Cu_2Cl_2 (aq)
 - 3. Alkynes evolve $H_2(g)$ with solid Na(s)
 - 4. Alkynes can decolourise Br₂(aq)
 - 5. All the above statements are correct.
- 14) Which one of the correct IUPAC nomenclature of the following compound.

$$\begin{array}{c} O \\ CH_{3}CH_{2}-OH \\ NH_{2} \end{array} \begin{array}{c} 1. \ 2-amino-2-ethyl-5-formylhex-3-enoic acid \\ 2. \ 2-amino-2-ethyl-5-oxohex-3-enoic acid \\ 3. \ 5-amino-5-formylhept-3-en-2-one \\ 4. \ 2-amino-2-ethyl-5-oxohexenoic acid \\ 5. \ 2-amino-2-ethyl-5-oxopentenoic acid \end{array}$$

15) One method of industrial production of Hydrogen gas is as follows.

$$C(s) + H_2O(g) \xrightarrow{\frown} CO(g) + H_2(g) \qquad \Delta H^{\phi} = +131 \text{ KJ}$$

To have more amount of $H_2(g)$

- 1. Catalyst should be added to the system.
- 2. C(s) should be added to the system.
- 3. Temperature should be reduced in the system.
- 4. CO(g) should be added to the system.
- 5. None of the above can increase the amount of $H_2(g)$

Royal College - Chemistry

16) Which one is the false pair of resonance structures.

1.
$$H_2C = N^+ = N^- \iff H_2C - N^+ \equiv N$$

2. $H_2C = O \iff H_2C^+ - O^-$
3. $H_2N - O - H \iff H_2N = O - H$
4. $R_2 - C - C = O \iff R_2C = C - O^+ R^-$
5. $R - C - O - H \iff R - C = O^+ H$
6. $A = CH_3NH_2$ $B = CH_3CH_2NH_2$ $C = \bigcirc NH_2$ $D = \bigcirc NH_2$ $E = \bigcirc NH_2$
The accurate ascending order of basicity of the above species would be,
1. $D \leq E \leq C \leq A \leq R$

- 1. D < E < C < A < B 2. D < E < C < B < A

 3. E < D < C < A < B 4. D < C < E < B < A

 5. C < E < D < A < B 7. C < E < B < A
- 18) Organic compound X produces a pleasant smell with ethanol and few drops of H_2SO_4 when heating. X turns $Br_2(aq)$ colourless X shows the geometrical isomerism but not after heating it with sodalime. X would be,

1.
$$\bigcirc$$
 CH = CH - CH2COOH2. \bigcirc CH2CH = CH COOH \bigcirc CH3 \bigcirc COOH3. \bigcirc C = C - COOH \bigcirc CH3 \bigcirc C = C - H \bigcirc CH3 \bigcirc CH3

5. $CH_3CH = CHCH_2COOH$

17)

19) Which one of the following group of compounds that all can undergo hydrolysis at room temperature.

1. Cl
$$O = C - Cl CH_2 Cl$$

 O
 O
2. CH₃COOC₂H₅, CH₃CH₂ - C - Cl, CH₃CH₂MgBr
3. CH₃CH₂CH₂NH₂, O
 O
 O
 $CH_2 Cl O$
 $CH_2 Cl O$
 $CH_3 CH_2 - C - Cl$
 $CH_3 CH_2 - C - Cl$

5. Cl , CH₃CH₂CH₂NH₂, CH₃COOC₂H₅

20) Consider the following conversion.

What is the most suitable order of reactants to the above conversion.

- 1. Sn, conc. HCl | Br_2 , Fe | CnO, NaOH | NaNO₂, HCl (5 10⁰C)
- 2. $H^+/KMnO_4 | Br_2, FeBr_3 | NaNO_2, HCl (5 10^{0}C) | H_2O/\Delta$
- 3. conc. HNO₃, conc. H₂SO₄ | Br₂, FeBr₃ | Sn, conc. HCl | NaNO₂, HCl $(5 10^{0}C)$ | H₂O/ Δ
- 4. conc. H_2SO_4 , conc. $HNO_3 | Br_2$, $FeBr_3 | NaNO_2$, $HCl(aq) | H_2O/\Delta$
- 5. H_2SO_4 , $HNO_3 | NaNO_2$, $HCl | Br_2$, Fe | Sn, conc. $HCl | H_2O$

21) $CH_2 = CH - C - OH CH_3$ Which one of the following statement is false about the alcohol. CH₂ = CH - C - OH CH₃

- 1. It reacts with PBr₃
- 2. Br₂(1) turns colourless.
- 3. Can be oxidized to a ketone by acidified $KMnO_4$
- 4. Gives chloro compound with anhydrous $ZnCl_2$ and conc. HCl
- 5. Can eliminate water molecule by heating with Al_2O_3
- 22) What is the compound that you get when Propanone (CH₃COCH₃) and ethanal (CH₃CHO) is treated with dilute NaOH

OH

4. CH₃CHCH₂OH

ĊH₃

2. CH₃C CH₂CH₂OH CH₃

- OH OH 1. CH₃CHCH₂CHCH₃
- 3. $CH_3CCH_2CH_2CH_3$

$$\begin{array}{c} OH \\ OH_{3}CHCH_{2} - C - CH_{3} \end{array}$$

23) Consider the following reaction.

 $2A + B \rightarrow A_2B$

Order of the reaction with respect to A is zero and with respect to B is 2. At initial rate concentration of A is 2.5×10^{-2} mol dm⁻³ and concentration of B is 1.0×10^{-2} mol dm⁻³. What could

be the concentration of A when the rate is $\frac{1}{4}$ of the initial rate.

5.0 x 10⁻³ mol dm⁻³
 1.5 x 10⁻² mol dm⁻³
 1.0 x 10⁻³ mol dm⁻³
 2.45 x 10⁻³ mol dm⁻³
 1.25 x 10⁻² mol dm⁻³

24) 23.7 g of NH₄HCO₃ (s) is heated up to 77^{0} C in a closed vessel. Pressure inside the vessel after complete dissociation of NH₄HCO₃ (s) is 4.157×10^{5} Nm⁻². What is the volume of the vessel. (Assume all the gaseous products behave ideally.) (H = 1.0 N = 14 C= 12 O = 16) 1. 8.1 dm³ 2. 2.7 dm³ 3. 5.4 dm³ 4. 4.2 dm³ 5. 16.2 dm³

Royal College - Chemistry

- 25) By the mixing of two liquids A and B form an ideal solution. Vapour pressure of a solution contains 3 mol of A and 1 mol of B is 2.5×10^3 Nm⁻² at 27^{0} C. Saturated vapour pressure of A at that temperature is 2.0×10^3 Nm⁻². What is the molar ratio between A and B in vapour phase at 27^{0} C. 1. 1:2 2. 2:1 3. 1:3 4. 3:2 5. 1:1
- 26) pH value of aqueous weak mono basic HAc acid which has the concentration 1.0×10^{-3} mol dm⁻³ is 5.0. What is the pH value of 1.0×10^{-1} mol dm⁻³ HAc(aq) at the same temperature. 1. 5 2. 4 3. 3 4. 2 5. 1
- 27) What is the IUPAC nomenclature of $K_3[Fe(CN)_5CO]$
 - 1. Potassium(I) pentacyanaocarborniumiron(II)
 - 2. Potassium pentacyanocarbonyliron(II)
 - 3. Potassium pentacyanocarbonylferrate(II)
 - 4. Potassium pentacyanocarbonylfrrates(III)
 - 5. Tripotasium pentacyanocarbonylferrate(II)
- 28) Metal M belongs to d-block is silver in colour and no reaction with water or air at room temperature. It dissolves in dil.HCl and forms green complex. That solution is basified with NaOH, light green precipitate is formed, dissolved in excess NH₃(aq) and gave blue-violet colour. Addition of few drops of KCN to the M(II) ion aqueous complex forms light green precipitate M would be,
 - 1. Cu 2. V 3. Co 4. Cr 5. Ni
- 29) 1.0g of an organic compound dissolved in 100 cm³ of water. It is extracted with 50 cm³ of ether. Again it is exacted with 25 cm³ of ether and is separated aqueous layer. Find the mass of organic compound retains in the aqueous solution after the second extraction.
 1. 0.067 g
 2. 0.8 g
 3. 0.13 g
 4. 0.2 g
 5. 0.16 g

30) K_3PO_4 and K_2SO_4 was dissolved in water at 25^oC and prepared an aqueous solution. 100 cm³ from the above solution and was added 0.005 mol dm⁻³ Ba(OH)₂(aq) in excees that couldn't form precipitate furthermore. Required volume of Ba(OH)₂(aq) was 200 cm³. Precipitate gained was filtered, dried and weighed. Weight of the precipitate was 0.1435 g. concentration of SO_4^{2-} (aq) in the filtrate is 1.1×10^{-7} mol dm⁻³. Solubility product of BaSO₄ (s) at $25^{\circ}C = 1.1 \times 10^{-10}$ mol² dm⁻⁶. Solubility product of Ba₃(PO₄)₂ at $25^{\circ}C$ is 3.4×10^{-23} mol⁵ dm⁻¹⁵. What is the amount of Ba²⁺ precipitated. 1. 7.0 x 10⁻⁴ 2. 1.0 x 10⁻³ 3. 3.0 x 10⁻³ 4. 2.0 x 10⁻⁴ 5. 4.0 x 10⁻⁴

For each of the questions 31 to 40 four responses (a), (b), (c) and (d) are given. One or more of these is/are correct. Select the correct response/responses. In accordance with the instructions on your answer sheet, mark

1	2	3	4	5
Only (a) and (b) Correct	Only (b) and (c) Correct	Only (c) and (d) Correct	Only (d) and (a) Correct	Any other number of combination of responses correct.

31) Which one of the statement/s is/are true about allotropic forms of Sulphur.

- (a) Monoclinic sulphur is more stable than the rhombic sulphur.
- (b) Rhombic sulphur as well as monoclinic sulphur is soluble in CS_2
- (c) Bubbling of H_2S in to the aqueous HNO₃ solution produces colloidal sulphur.
- (d) Rhombic sulphur can be converted in to monoclinic sulphur but monoclinic sulphur can't convert in to rhombic sulphur.

- 32) Which one of the following statement/s is/are true.
 - (a) Rate constant of the endothermic reaction increases with temperature.
 - (b) In a reversible reaction rate constants of forward and backward reactions will increase with temperature.
 - (c) Rate constant of the exothermic reaction decreases with increasing temperature.
 - (d) In the reversible reaction the rate constant of forward reaction increases and the backward reaction decreases with increasing temperature.
- 33) It has found that the analysis of products of $CO_2(g)$ and $H_2O(l)$ are in 44:9 mass ratio in an organic compound with is combusted with excess of $O_2(g)$. Which of the following compound/s it/they would be.

(a)
$$\begin{array}{c} CH=CH_{2} \\ \bigcirc \\ O \\ (c) \\ CH3-C-H \end{array}$$
(b)
$$H-C \equiv C-H \\ \hline \\ CH_{3} \\ O \\ CH = CH-C-H \end{array}$$

- 34) Which one of the following statement/s is/are true?
 - (a) Ascending order of the strengths of Lewis acidity is $BCl_3 < AlCl_3 < GaCl_3$
 - (b) Ascending order of the thermal stability is $BeCO_3 < MgCO_3 < CaCO_3 < BaCO_3$
 - (c) Bond angle increases as $H_2Se < H_2S < H_2O$
 - (d) Covalent nature increases as $TiCl_2 < TiCl_3 < TiCl_3$
- 35) Which one of the following statement/s is/are true?
 - (a) The existence of nucleus was discovered for the first time by Rutherford through α ray diffraction experiment.
 - (b) Bohrs theory can be used only to explain about the atom or ion which contains one electron.
 - (c) Infra red waves in the electro magnetic spectrum have the longest wave lengths.
 - (d) Maximum number of electrons in p orbital is 6.
- 36) Which one of the following compound/s would produce $\rangle C = N$ product with Acetone (CH₃COCH₃).
 - (a) $C_6H_5NH_2$
 - (b) $(CH_3)_3N$
 - (c) $C_6H_5NHC_6H_5$
 - (d) $C_6H_5NHNH_2$
- 37) Which one of the following statement/s is/are correct?

(a)
$$P = \frac{2}{3}N(KE)$$

(b) $P = \frac{nRT}{V}$
(c) $P = \frac{1}{3}mN\overline{C^2}$
(d) $\overline{C^2} = \sqrt{\frac{3RT}{m}}$

- 38) Which one of the following set of compounds that cannot be existed together in an aqueous solution.
 - (a) Na_2CO_3 and $NaHCO_3$
 - (b) Na_2CO_3 and NaOH
 - (c) NaHCO₃ and HCl
 - (d) NaHCO₃ and NaOH

- 39) Which one of the following statement/s is/are true.
 - (a) Sn(II) is a strong oxidizing agent.
 - (b) $PbCl_2$ forms complex ion $(NH_4)_2[PbCl_6]$ with ammonia.
 - (c) PbI_4 can't be prepared.
 - (d) $SnCl_2$ is a linear molecule.
- 40) Which one of the following statement/s is/are true,
 - (a) Main component of the cinnamon oil is cinnamaldehyde.
 - (b) Latex of rubber contains polyisoprene.
 - (c) Citral can be extracted by the Lemon grass.
 - (d) Buds of clove contain eugenole

In questions 41 to 50, two statements are given in respect of each question. From the table given below, select the response out of the responses 1, 2, 3, 4 and 5 that best fits the two statements given for each of the questions and mark appropriately on your answer sheet.

	1 st statement	2 nd statement
1	True	True, and correctly explains the first statement
2	True	True, but does not explain the first statement correctly.
3	True	False
4	False	True
5	False	False

	1 st statement	2 nd statement
41)	Benzoyl alcohol is more acidic than para nitro	Nitro group draws electrons away from the
1	benzoyl alcohol.	benzene ring.
42)	Standard Lattice energy of MgCl ₂ is greater	Ionic radius of Na ⁺ is lesser than the ionic
	than the Standard lattice enthalpy of NaCl.	radius of Mg ²⁺ .
43)	Dark red arises in the mixture of Fe ³⁺ (aq) and	Fe ^{$3+$} ions get precipitated as Fe(OH) ₃ (s) with
	NH ₄ CNS(aq), reduces with the addition of	NaOH(aq).
	NaOH.	
44)	Concentration of $H^+(aq)$ in 1.0 mol dm ⁻³ HCl	HCl can act as a strong acid in aqueous
	solution at 25° C is 1.0 mol dm ⁻³ .	medium.
45)	Product given by the reaction between ethanal	O
	and HCN is non sterioisometric.	Reaction between $CH_3 - \ddot{C} - H$ and HCN is a
		nucleophilic addition.
46)	pH value is approximately 7 when it is getting	Phenolphthalein as well as methyl orange can
	closer to the end point of 0.1 mol dm^{-3}	be used for normal titration of F_3COOH and
	F ₃ CCOOH and 0.1 mol dm ⁻³ NaOH titration at	NaOH.
	25 [°] C.	

47)	Velocity of cathode rays equal to the velocity	Cathode rays can't be deflected by a magnetic
	of light ray.	field.
48)	Temporary hardness appears according to the bicarbonate ions of Ca $^{2+}$ and Mg $^{2+}$.	Addition of calculated amount of NaOH is a successful method to remove temporary hardness in water.
49)	Calculations done by using Van der Waals equation for real gases having high temperatures and low pressures is incorrect.	Real gases reach to ideal behaviour at low pressures and high temperatures.
50)	Application of tin metal on iron to prevent rusting is an anodic protection.	Tin is more reactive than iron.

51) Standard enthalpy changes of some reactions are given below.

	$2CO(g) + O_2(g) \rightarrow 2CO_2(g)$	$\Delta H^{\theta} = -566 \text{ KJ}$
ii.	$\operatorname{CO}_2(g) + 2\operatorname{H}_2\operatorname{O}(l) \rightarrow \operatorname{CH}_3\operatorname{OH}(l) + \frac{3}{2} \operatorname{O}_2(g)$	$\Delta H^{\theta} = +715 \text{ KJ}$
iii.	$\mathrm{H}_{2}(\mathrm{g}) + \frac{1}{2}\mathrm{O}_{2}(\mathrm{g}) \rightarrow \mathrm{H}_{2}\mathrm{O}(\mathrm{l})$	$\Delta H^{\theta} = -286 \text{ KJ}$

What would be the standard enthalpy of the following reaction.

$$CO(g) + 2H_2(g) \rightarrow CH_3OH(l)$$
 $\Delta H^{\theta} = ?$ 1. +137 KJ2. -140 KJ3. +435 KJ4. +1567 KJ5. -1537 KJ

52) Consider the following equilibrium. NH₄HS(s) \implies NH₃(g) + H₂S(g)

 $0.51 \text{ g of NH}_4\text{HS}(s)$ is allowed to reach the equilibrium in 5.0 dm³ closed vessel at 327°C. Kp at 327°C is $4.0 \times 10^4 \text{ N}^2 \text{m}^{-4}$. What is the amount of molar dissociation of NH₄HS(s).1. 0.012. 0.0253. 0.124. 0.025. 0.001

53) 0.772 g of chloride M which is a transition metal, completely dissolved in water and added excess of AgNO₃(aq). Precipitate formed is filtered, washed dried and weighed. Mass of the precipitate was 2.151 g. Molecular formula of the metal chloride would be, (Ag = 108 Cl = 35.5 M = 48)
1. MCl₂
2. M₂Cl₃
3. MCl₄
4. MCl
5. MCl₃

54) Two standard electrode potentials are as follows. Ag⁺ (aq 1.0 mol dm⁻³) | Ag(s) $E^{\varrho} = +0.80 \text{ V}$

Pt (s), Cl₂ (g 1.0 atm) | Cl⁻ (aq 1.0 mol dm⁻³)
$$E^{Q} = +1.36$$
 V

Which one of the following statement is correct about the electro chemical cell which is made by using the above two electrodes under the standard conditions.

- 1. Chlorine electrode is the cathode 2. E.m.f.of the cell is +2.16V
- 3. Oxidation occurs at Ag electrode. 4. E.m.f value of the cell is independent of temperature.
- 5. Oxidation occurs at cathode.

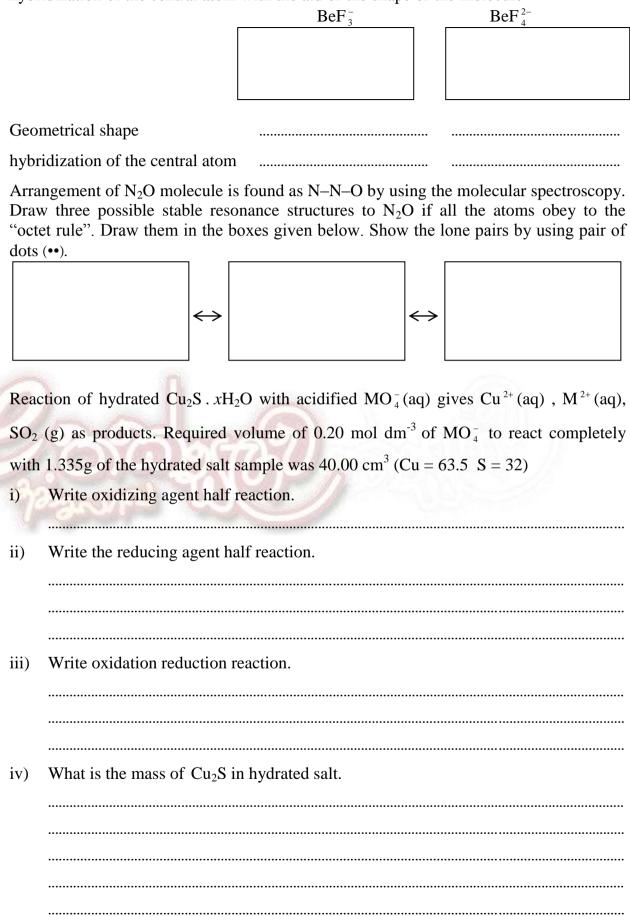
- 55)Which one of the following tri halide is the least basic.1.NCl₃2.NF₃3.NI₃4.NBr₃5.NAs₃
- 56) Which one of the following statement is true.
 - 1. Combustion of NH_3 produces NO_2 and H_2O as products.
 - 2. If NH_3 is passed on heated CuO produces NO_2 .
 - 3. Industrial production of NH_3 uses high temperatures and low pressures.
 - 4. Production of NH_3 is an exothermic reaction
 - 5. All the above are correct.
- 57) Which one of the following statement/s is/are incorrect about catalysts.
 - 1. TiCl₄ is used as a catalyst in the polymerization of ethane and propene.
 - 2. Mn²⁺ is a self catalyst in MnO $_4^-$ and C₂O $_4^{2-}$ reaction.
 - 3. MnO_2 is a catalyst in $KClO_3(s)$ thermal decomposition
 - 4. Cr_2O_3/ZnO use as a catalyst in the production of CH₃OH by using CO and H₂.
 - 5. V_2O_5 use as a catalyst in Haber process which is use to produce NH_3 .
- 58) Which one of the following is incorrect about phosphorous.
 - 1. Phosphorous is stored in water.
 - 2. It exists in allotropic forms.
 - 3. Undergoes disproportionation with the presence of dil. Acids.
 - 4. Forms cyclic oxiacids.
 - 5. More reactive than Nitrogen.
- 59) A bottle containing $SnCl_2(s)$ in the lab is mixed with $BaCl_2(s)$ by mistake. This is the method used by a A/L student to determine the mass percentage of $SnCl_2(s)$ in the salt mixture. Mixed the salt well and weighted 5.88g from it. Dissolved it in 100 cm³ of distilled water. 25 cm³ from that solution was measured by using a pipette and put into the titration flask. 0.2 mol dm⁻³ H₂O₂ 50 cm³ was added and kept it for some minutes. After that it was added excess of Ag₂O and evolved O₂ collected under s.t.p. was 112 cm³. Which one of the following value for mass percentage $SnCl_2(s)$ would be, (O₂ (g) behaves as an ideal gas. molar volume of ideal gas at s.t.p. is 22400 cm³) Sn = 119 Cl - 35.5 Ba - 137
 - 1. 12.36% 2. 50.54% 3. 64.62% 4. 85.42% 5. 75.84%
- 60) This experiment is done to determine the dissolved oxygen in a swimming pool. Water of the swimming pool was taken into 500 cm³ reagent bottle and MnSO₄ and alkaline KI(aq) were added. After ten minutes sulphuric acid was added and liberated I₂ was titrated with Na₂S₂O₃ (aq). 50 cm³ of I₂ solution required 20 cm³ of 0.02 mol dm⁻³ Na₂S₂O₃ (aq) to react completely. Concentration of O₂ in the water of the swimming pool would be,
 - 1. 8.0 ppm
 2. 16.0 ppm
 3. 32.0 ppm
 4. 64.0 ppm
 5. 120.0 ppm

Royal College Colombo 07

රාජකීය විදාහාලය කොළඹ 07

General Certificate of Education (Adv. Level) Examination, 2010 අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය 2010

> **Grade 13 – Final Term Test July 2010** 13 වන ලේණිය අවසාන වාර පරීකෂණය 2010 ජූලි


Chemistry II Part A – Structured Essay

Time – 3 Hours

Answer two questions only.

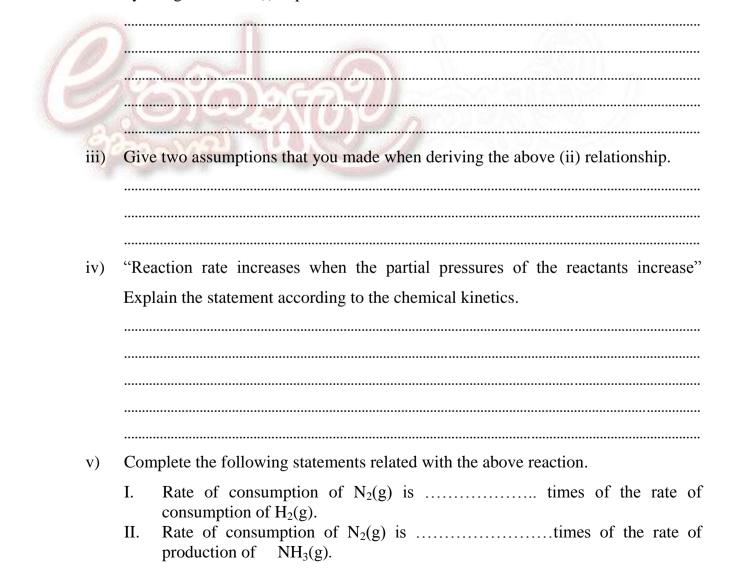
Con	ider Na, Mg, Al, Si, P, S, Cl, Ar which belong only to the third period.							
i)	Element that has the m	Element that has the maximum third ionization energy.						
ii)	Element that shows the	highest me				<i>n</i>		
iii) Element that has the highest electrical conductivity.								
iv)	Element/s that shows/show allotropy.							
v)	One element react with other element/s and the compound that produces, containing							
	two elements with the compound in a box giv		numbers as f	õllows. Giv	e one exam	ple for		
	Oxidation no	-2	-1	+1	+2	+4		
Compound								

(c) Beryllium forms stable BeF_3^- and BeF_4^{2-} ions. Write the geometrical shape and state the hybridization of the central atom with the aid of the shape of the molecule

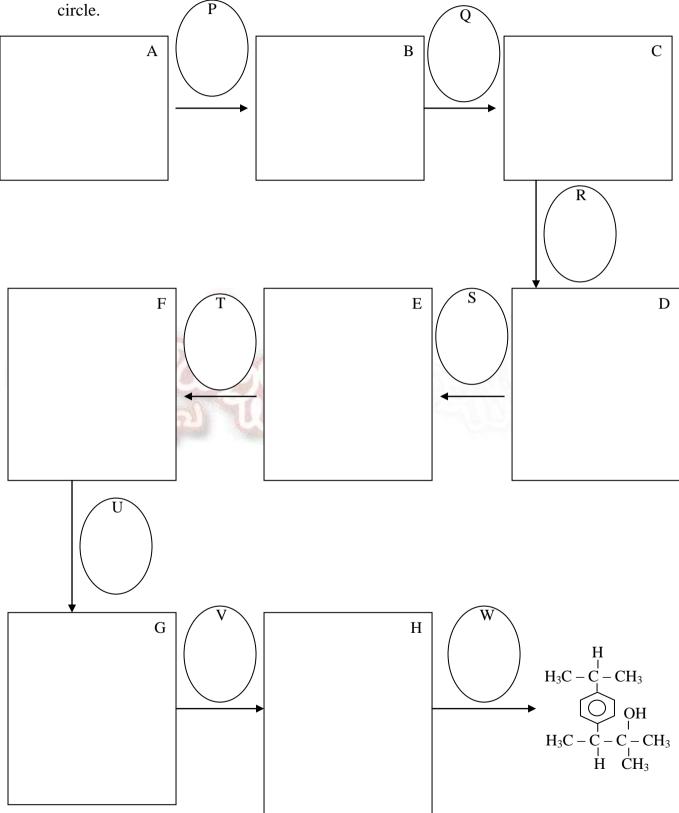
(d)

(2)(a)

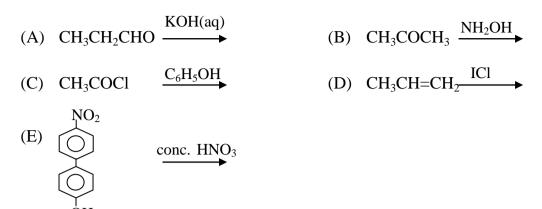
v) What is the value of "x"


(b) NH_3 gas is industrially produced by nitrogen gas and hydrogen gas. Equation for the above reaction as follows.

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

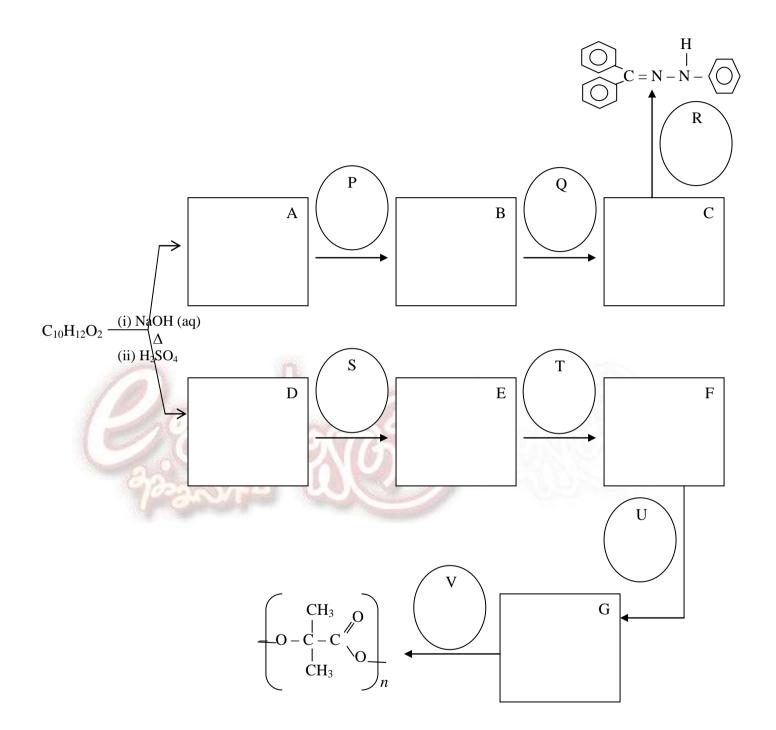

i) Write an expression to show the relationship between the reaction rate (R) and concentration of components.

.....


ii) Initial partial pressures of $N_2(g)$ and $H_2(g)$ are P_{N_2} and P_{H_2} respectively. Derive an expression to show the relationship between reaction rate (R) and partial pressures by using the above (i) expression.

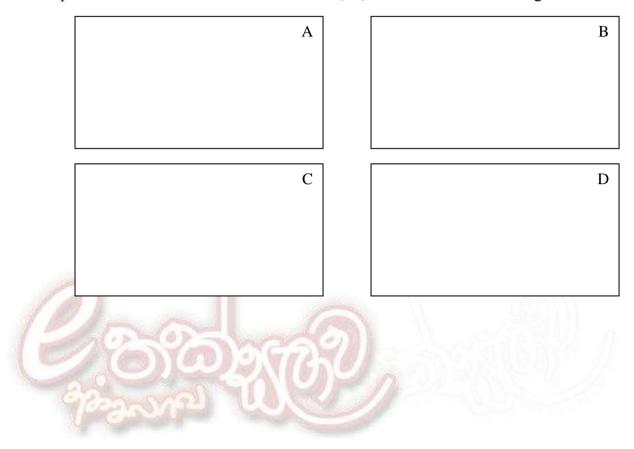
(3)(a) Synthesis the compound given below by using the relevant compounds among Mg, PCl₅, H₂O, anhydrous AlCl₃, LiAlH₄, KMnO₄, conc. H₂SO₄, CH₃-CH=CH₂, CH₃COCH₃, CH₃COCl, C₆H₆, C₂H₅OC₂H₅. Write the compounds in boxes and reagents in circles. If hydrolysis is necessary after any reaction, write it as (1)/(2) in the same

(b) Answer the following questions by using the given reactants and reagents.


	Final organic product	Species that attack the initial organic compound	Name of the mechanism of the reaction
Α			
В			
С			
D	V 330	XAN .	
Е	apon a		

(c) How do you separate the mixture of $H_3C - C - NH_3Cl$ and $CH_3CH_2CH_2CH_2NH_3Cl$, CH_3 CH_3

using the necessary compounds given below.


H₂SO₄, NaNO₂, HCl, PCl₅, AgNO₃, NaOH, KMnO₄

(4)(a) Complete the following reaction paths by putting correct compound in boxes and correct reagents in circle.

- (b) Complete combustion of 0.20 mol of an organic compound A, evolves 0.80 mol of CO_2 and 0.60 mol of water. 60.00 cm³ of 0.25 mol dm⁻³ NaOH solution was required to neutralize 25.00 cm³ of 0.30 mol dm⁻³ of solution A.
- i) Find the molecular formula of A by using the data given above. Give possible structures for "A". ii) Give IUPAC nomenclature for the following compound. iii) 0 COOH H Η Η H $C - NH_2$ H₃C C C H C₆H₅ Η Η C Ⅲ C CH₃

(c) Compound "A" having C₈H₁₅ON molecular formula shows optical isomerism. Further it shows geometrical isomerism. When it is heated with H₂/Ni produces C₈H₁₉N, compound "B", which shows neither optical isomerism nor geometrical isomerism. When A is heated with NaOH(aq), produces NH₃ and C. Addition of dil H₂SO₄ to C produces "D". Draw the structures for A, B, C and D in the following boxes.

Royal College Colombo 07

රාජකීය විදාාලය කොළඹ 07

General Certificate of Education (Adv. Level) Examination, 2010 අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය 2010

> Grade 13 – Final Term Test July 2010 13 වන ශේණිය අවසාන වාර පරීකෂණය 2010 ජූලි

Chemistry II Part B – Essay

Answer two questions only.

- (5)(a)i) Define the following standard enthalpies and give thermo chemical equation for each.
 - I. Standard enthalpy of formation $\Delta H_f^0 H_2 SO_4(l)$; 194 kJ mol⁻¹
 - II. Standard enthalpy of hydration ΔH_{hvd} Na⁺(aq); 390 kJ mol⁻¹
 - III. Standard lattice enthalpy $\Delta H_L MgCl_2$; 2502 kJ mol⁻¹

ii) $CaC_2(s)$ is produced by heating C(s) and CaO(s) in electric arc furnace Standard enthalpies of CaO(s), CaC₂(s), CO₂(g) are - 668 kJ mol⁻¹, - 798 kJ mol⁻¹, - 393 kJ mol⁻¹. By using the given data above, calculate the enthalpy of the following reactions using enthalpy diagram.

$$2CaO + 5C(s) \rightarrow 2CaC_2(s) + CO_2(g)$$

 $CaC_2(s) + 2H_2O(1) \rightarrow Ca(OH)_2(aq) + C_2H_2(g)$

iii)

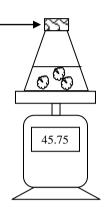
Standard enthalpies of formation of $\Delta H_f H_2O(1)$, $\Delta H_f Ca(OH)_2$ (aq), and $\Delta H_f C_2H_2$ are – 286 kJ mol⁻¹, -991.1 kJ mol⁻¹, and +227 kJ mol⁻¹. Calculate the enthalpy change with relevant to the reaction between 1mol of CaC₂ and water by using the above data.

iv)
$$C_2H_2(g) + \frac{5}{2}O_2(g) \rightarrow 2CO_2(g) + 2H_2O(l)$$

Calculate the enthalpy of combustion related to the above reaction by using the thermo chemical data given in above parts.

(b) Consider the following equilibrium.

$$\operatorname{COCl}_2(g) \rightleftharpoons \operatorname{CO}(g) + \operatorname{Cl}_2(g)$$


0.1 mol of $\text{COCl}_2(g)$ introduced in to a closed vessel which has volume V, was allowed to reach equilibrium at 400° C. Total pressure was $2x10^{5}$ Pa in the equilibrium mixture. Percentage dissociation of $\text{COCl}_2(g)$ was 25% from the initial amount.

- i) Calculate the mole fractions of each component in equilibrium mixture.
- ii) Calculate the partial pressures of COCl₂, CO and Cl₂ in equilibrium mixture.
- iii) Calculate Kp and Kc of the equilibrium system at 400° C
- iv) Calculate the partial pressures and the total pressure of the mixture if 0.1mol of He is introduced in to the vessel.
- v) Calculate the degree of dissociation of $COCl_2$ (g) if the volume is reduced to V/2.

(c) Student was planned the following experiment to determine the rate of a reaction between CaCO₃(s) and HCl.

 $CaCO_3(s)$ (marble chips) was taken to the flask and dil HCl was added to it and closed with the cotton wool plug. He was put it on the electronic balance and was taken the reading after every 10 seconds.

Cotton wool plug

	Time seconds	mass g
1	0	200.00
2	10	191.00
3	20	183.50
4	30	178.50
5	40	174.25
6	50	170.50
7	60	167.25
8	70	164.00
9	80	164.00
10	90	164.00
11	100	164.00

- i) Plot a graph mass Vs time.
- ii) According to the graph at what time the reaction is ceased after mixing.
- iii) What is the criteria that can be used to measure the rate of a reaction.
- iv) Mark the change of reaction rate with time in the graph. Which quantity shows the rate of the reaction.
- d) Different volumes of 1 mol dm⁻³ solution and water were mixed according to the following table and added same shaped equal amounts of piece of $CaCO_3(s)$. Mass reduction after 20 s was recorded. Determine the order of the reaction with respect to HCl.

1 mol HCl ml	water ml	mass reduction after 20		
10	90	0.20 g		
20	80	0.87 g		
30	70	1.78 g		
40	60	3.56 g		
50	50	4.96 g		
60	40	7.18 g		

- Define the term "buffer solution"? Expalin how a buffer solution resist changes in pH, if (6)(a)(i) small amounts of acid or base solutions were added, using an example ?
 - (ii)
 - Calculate the of pH of 0.22 mol dm⁻³ C₂H₅COOH solution, pKa 4.87 at 25° C A solution made by adding 100 cm³ of 0.22 mol dm⁻³ C₂H₅COOH solution to 100 cm³ of (iii) 0.10 mol dm⁻³ solution NaOH. Calculate the pH of the resultant solution?
 - 25.00 cm³ of a weak acid HX of concentration 0.10 mol dm⁻³ was titrated with (iv) 0.10 mol dm⁻³ sodium hydroxide solution, and the pH measured at intervals. The results are set out below.

volume of sodium hydroxide cm^3	5	10	12	20	23	24	25	26	30
pН	4.5	4.8	4.9	5.5	6.5	7.0	9.0	12.0	12.5

- I. Draw a titration curve and use it to calculate the Pk_a for the acid HX
- Suggest a suitable indicator for the titration ? II.
- The solubility product of $Ag_2C_2O_4$ at 25^0C is $1.29 \times 10^{-11} \text{ mol}^3 \text{ dm}^{-9}$. A solution of $K_2C_2O_4$ (b) containing 0.1520 mol in 500 cm³ water, is shaken with excess of Ag₂CO₃ till the following equilibrium will be reached.

 $Ag_2CO_3(s) + K_2C_2O_4(aq) \implies Ag_2C_2O_4(s) + K_2CO_3(aq)$

At equilibrium the solution contains 0.0358 mol of K₂CO₃. Assuming the degree of dissociation of $K_2C_2O_4$ and K_2CO_3 to be equal, calculate the solubility product of Ag₂CO₃(s)

- A weak mono acid base "B" is in the equilibrium between an organic solvent. "L" and water at (c) 298 K. 5 cm³ of 0.2 mol dm⁻³ HCl solution is required to titrate the 10 cm³ of aqueous layer and 2.5 cm³ of 0.1 mol dm⁻³ HCl solution is required to titrate the 25 cm³ of organic solvent " L"
 - i) Calculate the partition coefficient of B between water and L
 - Calculate the dissociation constant Kb of "B" ii)
 - K_w at 298 K is $K_w = 1 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$
- Sample of molten CuBr₂ is electrolyzed with the presence of C electrodes. When 1A is passed (7)(a)through the electrolyte in 30 s, mass of the electrode increased by 0.508 g.

 $(Cu = 63.5, Br = 80.0 \text{ charge of an electron } 1.6 \times 10^{-19} \text{C})$

- How do you recognize the cathode and anode of the electrolytic cell. i)
- Write the balanced half ionic equations for the reactions occur near anode and cathode. ii)
- What quantity of electricity is required to produce one mole of Cu at the respective iii) electrode.
- Calculate a value for Avogadro's constant by using the experimental results and data. iv)
- Explain one reason if the calculated value in (iv) is different from the standard value. v)
- Can we do the same calculation for Avogadro's constant as the above if the electrolysis of vi) $CuBr_2(aq)$ is done through long period of time.
- Standard chemical cell is prepared by the standard electrode containing $A^{4+}(aq) / A^{2+}(aq)$ ions (b) and $B^{3+}(aq) / B^{2+}(aq)$. Standard electrode potentials of that electrodes are 0.15V and 0.77V respectively.
 - State anode and cathode of the above electro chemical cell clearly. i)
 - What is the most suitable instrument to measure the electro motive force of the above cell ii)
 - Give the reactions occur near anode and cathode and the cell reaction? iii)
 - iv) Give the standard cell diagram.
 - Calculate the electromotive force of the cell. v)
 - vi) If small amount of H₃PO₄ is added to the ionic solution B which is considered as iron, is there any effect or not on electromotive force.

- (c) Consider the mixture of n- hexane and n-heptane behave as ideal.
 - i) Plot a graph temperature Vs. liquid composition at constant pressure and mark following things on it. Saturated Vapour pressures of n-hexane and n-heptane are P_{hexane} and P_{heptane} respectively.

Composition of n-heptane when the mole fraction is 0.8, is m_1 . Standard boiling point at composition of m_1 is T_1 . Composition of vapour of the solution which boils at T_1 in equilibrium is n_1 . Composition of n_1 distillate is m_2 . Standard boiling temperature of liquid m_2 is T_2 . Composition of the vapour of the liquid boils at T_2 is n_2 .

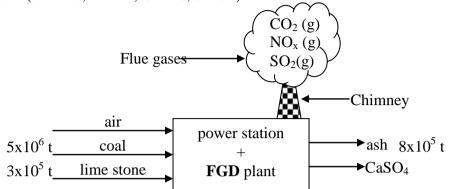
- ii) Explain composition of m_1 can be separated out by using fractional distillation with the use of boiling point composition curve.
- iii) What is the instrument that can use to the above process (II)
- iv) State the law related to the above process.
- v) Can we use the above principle to extract citronell oil. Explain.

<u>C Part Essay</u>

- (8)(a) Consider four elements Fe, Cr, Mg and Al.
 - i) Which blocks of the periodic table each element belongs to.
 - ii) State four physical or chemical properties of transitional elements among the above elements.
 - iii) Give one example related with the above properties
 - iv) Name three soils that contain iron
 - v) Name two other things mix with the soil use in iron exaction.
 - vi) Write down five relevant balanced chemical equations for the reactions occur in the blast furnance.
 - vii) Write down the half reactions for rusting of iron and state anodic and cathodic reactions clearly.
 - viii) Give two methods that can use Cr to prevent rusting of iron.
 - ix) Write down the relevant balanced chemical equations for the preparation of aqueous $Cr_2O_7^{2-}$ solution starting with Cr.
 - x) Briefly explain how the process of iron containg certain component in a body changes due to NO_3^- ion containing drinking water.
 - xi) How do you show that Fe³⁺ and Fe²⁺ ions contain in the aqueous solution containing Fe and Cr, at laboratory.
 - (b) Costic Soda (NaOH) the can be produced by using sea water Cl₂ evolves as one byproduct. High percentage of NaOH is used for soap production. NaOH liquid required for the soap production being sent to market as it is.
 - i) State the most important steps of NaOH production (States and balanced equations are required).
 - ii) Give two other byproducts of NaOH production .
 - iii) Name three industrial or domestic products of Cl_2 . Give uses of each. (Uses must differ from each other).
 - iv) What are the affects of chlorine containing products in (III) to the environment. Explain.
 - v) Give two advantages of introducing NaOH which is used to the soap production, in liquid form to the market.
 - vi) Name other three substances that use in the production of soap with NaOH.

- (9)(a) Sample of 1.00 g of vulcanized rubber containing the oxide of a certain element, burnt completely and the evolved gas was reacted with excess of Br₂ and steam. Solution gained was acidified with dil. HNO₃ and was added excess of BaCl₂ solution. Precipitate formed was filtered, dried and weighed. Mass of the precipitate was 0.739 g precipitate formed by combustion was dissolved in dil HCl. Excess of NH₃ was added and H₂S was bubbled. Then clear white precipitate was formed and it was filtered, dried and weighted. Mass was 0.055 g.
 - i) Write down all the relevant balanced equations for the above process.
 - ii) Write the structural formulae of monomer and polymer of rubber.
 - iii) State the structural difference occurred in rubber after vulcanization.
 - iv) Deduce the oxide that has added to the vulcanization.
 - v) Name one filling agent is added to the rubber.
 - vi) Calculate the mass percentage of S in the sample.
 - vii) Calculate the mass percentage of the oxide in the sample. R.m.m. of the oxide of the element = 81 Ba = 137 S = 32 O = 16 C = 12R.m.m. of the sulphide of the element = 97 Cl = 35.5 Br = 80 H = 1 N = 14

(b) Structure of caprolactam is given below.

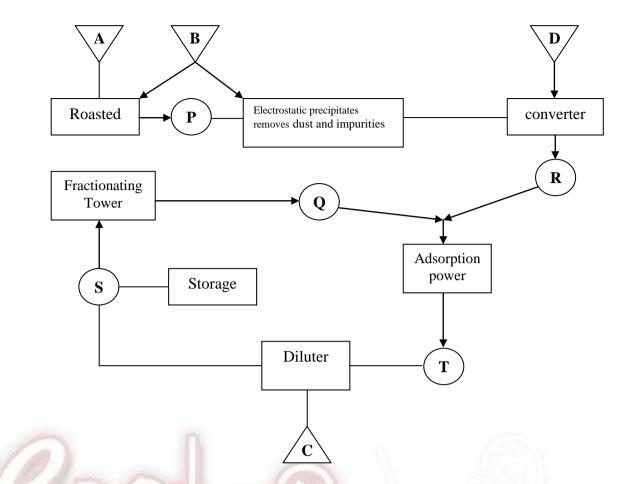

$$CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2$$

Useful polymer can be produced by the polymerization of the product, gained by the hydrolysis of the above compound in the basic medium.

- i) Write the structural formula of caprolactam produced by hydrolysis.
- ii) Using the above structure as the monomer, draw its polymer and name it.
- iii) Why is that polymer doesen't wet with water.
- (c) Sulphunic acid can be produced by the byproducts removed from purification process of crude oil. Considerable percentage of the purified crude oil is used as a fuel. Use anti knocking agents to increase the fuel efficiency.
 - i) What do you mean by "cracking of petroleum"
 - ii) Name the main elemental pollutant releases to the atmosphere by the combustion of petrol.
 - iii) Name four gaseous pollutants is added to the environment by the fuel combustion.
 - iv) Explain the affect of the two pollutants to the environment.
- (d) Consider the chlorides of NCl₃, PCl₃ and BiCl₃
 - i) Give balanced chemical equations for the hydrolysis of the above chlorides.
 - ii) Deduce the electro negativity changes according to N>C1>Bi by using the products gained by hydrolysis.
 - iii) Based on two basic characters of oxides derived from the maximum oxidation state of N,P and Bi, show how the electro positivity of an element increases with the increasing atomic number of a group.

(10)(a) A coal - fired power station is fitted with a flue gas desulphurization (FGD) plant, which removes some of the sulphur dioxide from waste gases.

In the FGD plant, the waste gases are treated with powdered limestone (CaCO₃) producing CaSO₃ this is oxidized by air to form solid CaSO₄ (s). The diagram below shows the amounts of substances used. and produced by such a coal - fired power station with an FGD plant in one year. (Ca = 40, C = 12, O = 16, S = 32)



- I. What process provides the energy used in the power station?
 - II. Which gas, not visited in the diagram, is the chief component of the flue gases ?
 - III. Explain why oxide of nitrogen (NO_x) are present in the flue gases.
- ii) Write a balanced equation in each case to show
 - I. lime stone reacts with SO_2
 - II. $CaSO_3$ is oxidized by air

i)

iii)

- I. Using the equation in (ii) (I) to determine the maximum mass of SO_2 which could be removed by $3x10^5$ of lime stone in the FGD plant. (1 t = 1000 kg)
- II. Use the equation in (iii) to determine the maximum mass of $CaSO_4$ which would be produced from the $3x10^5$ of tons of lime stone.
- iv) The FGD plant removes 90% of the SO₂ from the waste gases using for your answer to (iii)(I). Calculate the mass of SO₂ which is released into the atmosphere each year by this power station when 5×10^6 t of coal are burnt.
- v) What are the other things that you get except $CaSO_4$ when effluent gases treated with $CaCO_3$.
- vi) Suggest two possible disadvantages of the use of an FGD plant. (Ca = 40, S = 32, C = 12)

Answer the following questions using above flow chart given above for contact process in the manufacture of H_2SO_4 .

- i) Write the starting material used in the triangle A, B, C.
- ii) Write the catalyst used in converter in triangle D.
- iii) Write the chemical formulae of substances in proper circles P,Q, R, S, T.
- iv) Write the structural formulae for compound T.
- v) Give the conditions used in converter.
- vi) Give two industrial uses of H_2SO_4 .
- vii) Write the chemical balanced equations for all reactions occur in this process.

(b)