ිසියලු ම හිමිකම් ඇවිරිනි / ω ගුට පුනිට්பුඹණයාක ω න් $All\ Rights\ Reserved$

(නව නිර්දේශය/பුதிய பாடத்திட்டம்/New Syllabus)

ලංකා වනතු දෙපාර්තමේත්තුව ලි ලංකා විශාශ දෙපාර්ත්**තින්තුන් සහාන දෙපාර්තමේ**න්තුන්තාශ දෙපාර්තමේත්තුව ලි ලංකා විශාශ දෙපාර්තමේත්තුව නිශාශස්සභාර ඉහස්කසට පාර්තමේත්තුව tions, Sri Lanka Department of Barl Hallota, Sri Lanka Department of Examinations, Sri Lanka වෙත්තුව ලි ලංකා විශාශ දෙපාර්තමේත්තුව සහාන දෙපාර්තමේත්තුව ලි ලංකා විශාශ දෙපාර්තමේත්තුව ලි ලංකා විශාශ දෙපාර්තමේත්තුව ඉහස්කයට பාර්තමේත්තුව නිශාශස්සභාර ඉහස්කයට පාර්තමේත්තුව නිශාශස්සභාර ඉහස්කයට පාර්තමේත්තුව නිශාශස්සභාර

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020

සංයුක්ත ගණිතය இഞෲந்த கணிதம் Combined Mathematics

சැය තුනයි மூன்று மணித்தியாலம் Three hours අමතර කියවීම් කාලය - මිනිත්තු 10 යි மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

Use additional reading time to go through the question paper, select the questions you will answer and decide which of them you will prioritise.

B B B B B B B B B B W W B	A R H H H H H H H M C- M				

Instructions:

- * This question paper consists of two parts;
 Part A (Questions 1 10) and Part B (Questions 11 17).
- * Part A:

 Answer all questions. Write your answers to each question in the space provided. You may use additional sheets if more space is needed.
- * Part B:
 Answer five questions only. Write your answers on the sheets provided.
- * At the end of the time allotted, tie the answer scripts of the two parts together so that $\mathbf{Part}\ \mathbf{A}$ is on top of $\mathbf{Part}\ \mathbf{B}$ and hand them over to the supervisor.
- * You are permitted to remove only Part B of the question paper from the Examination Hall.

For Examiners' Use only

Part Question No. Marks 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Total Total	(10)	Combined Math	iematics I
A 5 6 7 8 9 10 11 12 13 14 15 16 16 17	Part	Question No.	Marks
A 5 6 7 8 9 10 11 12 12 13 14 15 16 16 17		1	
A 5 6 7 8 9 10 11 12 13 14 15 16 17 17		2	
A 5 6 7 8 9 10 11 12 13 14 15 16 16 17		3	
B		4	
B	A	5	
B		6	
B		7	
B 10 11 12 13 14 15 16 17		8	
B 11 12 13 14 15 16 17 17		9	
B 12 13 14 15 16 17		10	
B 13 14 15 16 17		11	
14 15 16 17	-	12	
14 15 16 17	IR	13	
16 17	LU .	14	
17		15	
		16	
Total		17	
		Total	

	Total
In Numbers	
In Words	

A-1000		Code Numbers
Marking Examine	r	
Checked by:	1	
	2	
Supervised by:		

	Part A
1.	Using the Principle of Mathematical Induction, prove that $\sum_{r=1}^{n} (4r+1) = n(2n+3)$ for all $n \in \mathbb{Z}^+$.
	*
2) (Carlot of the Carlot of Carlot o	••••••
015-440E0001/VI	
	$c_1 + 1 + 1 + \dots + c_n $
2.	Sketch the graphs of $y=3 x-1 $ and $y= x +3$ in the same diagram.
2.	Sketch the graphs of $y=3 x-1 $ and $y= x +3$ in the same diagram. Hence or otherwise, find all real values of x satisfying the inequality $3 2x-1 >2 x +3$.
2.	Sketch the graphs of $y=3 x-1 $ and $y= x +3$ in the same diagram. Hence or otherwise, find all real values of x satisfying the inequality $3 2x-1 >2 x +3$.
2.	Sketch the graphs of $y=3 x-1 $ and $y= x +3$ in the same diagram. Hence or otherwise , find all real values of x satisfying the inequality $3 2x-1 >2 x +3$.
2.	Hence or otherwise, find all real values of x satisfying the inequality $3 2x-1 >2 x +3$.
2.	Hence or otherwise, find all real values of x satisfying the inequality $3 2x-1 >2 x +3$.
2.	Hence or otherwise, find all real values of x satisfying the inequality $3 2x-1 >2 x +3$.
2.	Hence or otherwise, find all real values of x satisfying the inequality $3 2x-1 >2 x +3$.
2.	Hence or otherwise, find all real values of x satisfying the inequality $3 2x-1 >2 x +3$.
2.	Hence or otherwise, find all real values of x satisfying the inequality $3 2x-1 >2 x +3$.
2.	Hence or otherwise, find all real values of x satisfying the inequality $3 2x-1 >2 x +3$.
2.	Hence or otherwise, find all real values of x satisfying the inequality $3 2x-1 >2 x +3$.
2.	Hence or otherwise, find all real values of x satisfying the inequality $3 2x-1 >2 x +3$.
2.	Hence or otherwise, find all real values of x satisfying the inequality $3 2x-1 >2 x +3$.
2.	Hence or otherwise, find all real values of x satisfying the inequality $3 2x-1 >2 x +3$.
2.	Hence or otherwise, find all real values of x satisfying the inequality $3 2x-1 >2 x +3$.
2.	Hence or otherwise, find all real values of x satisfying the inequality $3 2x-1 >2 x +3$.
2.	Hence or otherwise, find all real values of x satisfying the inequality $3 2x-1 >2 x +3$.

J.	numbers z satisfying
	(i) $Arg(z+1-3i) = -\frac{\pi}{4}$ and
	(ii) $ z-2 = \sqrt{2}$.
	Hence, write down the complex numbers represented by the points of intersection of these loc
	,
	······································
	4
A	
4.	Let $n \in \mathbb{Z}^+$. Write down the binomial expansion of $(1+x)^n$ in ascending powers of x . Show that if the coefficients of two consecutive terms of the above expansion are equal, then n is odd.
4.	Let $n \in \mathbb{Z}^+$. Write down the binomial expansion of $(1+x)^n$ in ascending powers of x . Show that if the coefficients of two consecutive terms of the above expansion are equal,
4.	Let $n \in \mathbb{Z}^+$. Write down the binomial expansion of $(1+x)^n$ in ascending powers of x . Show that if the coefficients of two consecutive terms of the above expansion are equal, then n is odd.
4.	Let $n \in \mathbb{Z}^+$. Write down the binomial expansion of $(1+x)^n$ in ascending powers of x . Show that if the coefficients of two consecutive terms of the above expansion are equal, then n is odd.
4.	Let $n \in \mathbb{Z}^+$. Write down the binomial expansion of $(1+x)^n$ in ascending powers of x . Show that if the coefficients of two consecutive terms of the above expansion are equal, then n is odd.
4.	Let $n \in \mathbb{Z}^+$. Write down the binomial expansion of $(1+x)^n$ in ascending powers of x . Show that if the coefficients of two consecutive terms of the above expansion are equal, then n is odd.
4.	Let $n \in \mathbb{Z}^+$. Write down the binomial expansion of $(1+x)^n$ in ascending powers of x . Show that if the coefficients of two consecutive terms of the above expansion are equal, then n is odd.
4.	Let $n \in \mathbb{Z}^+$. Write down the binomial expansion of $(1+x)^n$ in ascending powers of x . Show that if the coefficients of two consecutive terms of the above expansion are equal, then n is odd.
4.	Let $n \in \mathbb{Z}^+$. Write down the binomial expansion of $(1+x)^n$ in ascending powers of x . Show that if the coefficients of two consecutive terms of the above expansion are equal, then n is odd.
4.	Let $n \in \mathbb{Z}^+$. Write down the binomial expansion of $(1+x)^n$ in ascending powers of x . Show that if the coefficients of two consecutive terms of the above expansion are equal, then n is odd.
4.	Let $n \in \mathbb{Z}^+$. Write down the binomial expansion of $(1+x)^n$ in ascending powers of x . Show that if the coefficients of two consecutive terms of the above expansion are equal, then n is odd.
4.	Let $n \in \mathbb{Z}^+$. Write down the binomial expansion of $(1+x)^n$ in ascending powers of x . Show that if the coefficients of two consecutive terms of the above expansion are equal, then n is odd.
4.	Let $n \in \mathbb{Z}^+$. Write down the binomial expansion of $(1+x)^n$ in ascending powers of x . Show that if the coefficients of two consecutive terms of the above expansion are equal, then n is odd.
4.	Let $n \in \mathbb{Z}^+$. Write down the binomial expansion of $(1+x)^n$ in ascending powers of x . Show that if the coefficients of two consecutive terms of the above expansion are equal, then n is odd.
44.	Let $n \in \mathbb{Z}^+$. Write down the binomial expansion of $(1+x)^n$ in ascending powers of x . Show that if the coefficients of two consecutive terms of the above expansion are equal, then n is odd.
44.	Let $n \in \mathbb{Z}^+$. Write down the binomial expansion of $(1+x)^n$ in ascending powers of x . Show that if the coefficients of two consecutive terms of the above expansion are equal, then n is odd.

5.	Show that $\lim_{x \to \frac{\pi}{3}} \frac{\sin\left(x - \frac{\pi}{3}\right)}{\left(\sqrt{3x} - \sqrt{\pi}\right)} = \frac{2\sqrt{\pi}}{3}$.
	$x \rightarrow \frac{n}{3} \left(\sqrt{3}x - \sqrt{\pi} \right)$
	¥.
	. *
	<u>.</u>
6.	The region enclosed by the curves $y = \frac{e^x}{x}$, $x = 0$, $x = \ln 3$ and $y = 0$ is rotated about the x-axis
б.	The region enclosed by the curves $y = \frac{e^x}{1+e^x}$, $x = 0$, $x = \ln 3$ and $y = 0$ is rotated about the x-axis
б.	The region enclosed by the curves $y = \frac{e^x}{1+e^x}$, $x = 0$, $x = \ln 3$ and $y = 0$ is rotated about the x-axis through 2π radians. Show that the volume of the solid thus generated is $\frac{\pi}{4}(4\ln 2 - 1)$.
б.	The region enclosed by the curves $y = \frac{e^x}{1+e^x}$, $x = 0$, $x = \ln 3$ and $y = 0$ is rotated about the x-axis through 2π radians. Show that the volume of the solid thus generated is $\frac{\pi}{4}(4\ln 2 - 1)$.
б.	The region enclosed by the curves $y = \frac{e^x}{1+e^x}$, $x = 0$, $x = \ln 3$ and $y = 0$ is rotated about the x-axis through 2π radians. Show that the volume of the solid thus generated is $\frac{\pi}{4}(4\ln 2 - 1)$.
6.	The region enclosed by the curves $y = \frac{e^x}{1 + e^x}$, $x = 0$, $x = \ln 3$ and $y = 0$ is rotated about the x-axis through 2π radians. Show that the volume of the solid thus generated is $\frac{\pi}{4}(4\ln 2 - 1)$.
б.	The region enclosed by the curves $y = \frac{e^x}{1+e^x}$, $x = 0$, $x = \ln 3$ and $y = 0$ is rotated about the x-axis through 2π radians. Show that the volume of the solid thus generated is $\frac{\pi}{4}(4\ln 2 - 1)$.
6.	The region enclosed by the curves $y = \frac{e^x}{1 + e^x}$, $x = 0$, $x = \ln 3$ and $y = 0$ is rotated about the x-axis through 2π radians. Show that the volume of the solid thus generated is $\frac{\pi}{4}(4\ln 2 - 1)$.
б.	The region enclosed by the curves $y=\frac{e^x}{1+e^x}$, $x=0$, $x=\ln 3$ and $y=0$ is rotated about the x-axis through 2π radians. Show that the volume of the solid thus generated is $\frac{\pi}{4}(4\ln 2-1)$.
б.	The region enclosed by the curves $y = \frac{e^x}{1 + e^x}$, $x = 0$, $x = \ln 3$ and $y = 0$ is rotated about the x-axis through 2π radians. Show that the volume of the solid thus generated is $\frac{\pi}{4}(4\ln 2 - 1)$.
б.	The region enclosed by the curves $y = \frac{e^x}{1+e^x}$, $x = 0$, $x = \ln 3$ and $y = 0$ is rotated about the x-axis through 2π radians. Show that the volume of the solid thus generated is $\frac{\pi}{4}(4\ln 2 - 1)$.
б.	The region enclosed by the curves $y = \frac{e^x}{1+e^x}$, $x = 0$, $x = \ln 3$ and $y = 0$ is rotated about the x-axis through 2π radians. Show that the volume of the solid thus generated is $\frac{\pi}{4}(4\ln 2 - 1)$.
б.	The region enclosed by the curves $y = \frac{e^x}{1 + e^x}$, $x = 0$, $x = \ln 3$ and $y = 0$ is rotated about the x-axis through 2π radians. Show that the volume of the solid thus generated is $\frac{\pi}{4}(4\ln 2 - 1)$.
б.	The region enclosed by the curves $y = \frac{e^x}{1+e^x}$, $x = 0$, $x = \ln 3$ and $y = 0$ is rotated about the x-axis through 2π radians. Show that the volume of the solid thus generated is $\frac{\pi}{4}(4\ln 2 - 1)$.
ნ.	through 2π radians. Show that the volume of the solid thus generated is $\frac{\pi}{4}(4\ln 2 - 1)$.
ნ.	through 2π radians. Show that the volume of the solid thus generated is $\frac{\pi}{4}(4\ln 2 - 1)$.
б.	through 2π radians. Show that the volume of the solid thus generated is $\frac{\pi}{4}(4\ln 2 - 1)$.

7.	Show that the equation of the normal line to the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$ at the point $P \equiv (5\cos\theta, 3\sin\theta)$ on it, is $5\sin\theta x - 3\cos\theta y = 16\sin\theta\cos\theta$.
	Find the y-intercept of the normal line drawn to the above ellipse at the point $\left(\frac{5}{2}, \frac{3\sqrt{3}}{2}\right)$ on it.
	· · · · · · · · · · · · · · · · · · ·
	<u>.</u>
	· · · · · · · · · · · · · · · · · · ·
	······································
8.	Let $m \in \mathbb{R}$ and l be the straight line passing through the point $A = (1, 2)$ with gradient m
8.	Let $m \in \mathbb{R}$ and l be the straight line passing through the point $A \equiv (1,2)$ with gradient m . Write down the equation of l in terms of m . It is given that the perpendicular distance from the point $B \equiv (2,3)$ to the line l is $\frac{1}{\sqrt{5}}$ units. Find the values of m .
8.	Write down the equation of l in terms of m . It is given that the perpendicular distance from the point $B \equiv (2,3)$ to the line l is $\frac{1}{\sqrt{5}}$ units.
8.	Write down the equation of l in terms of m . It is given that the perpendicular distance from the point $B \equiv (2,3)$ to the line l is $\frac{1}{\sqrt{5}}$ units. Find the values of m .
8.	Write down the equation of l in terms of m . It is given that the perpendicular distance from the point $B \equiv (2,3)$ to the line l is $\frac{1}{\sqrt{5}}$ units. Find the values of m .
8.	Write down the equation of l in terms of m . It is given that the perpendicular distance from the point $B \equiv (2,3)$ to the line l is $\frac{1}{\sqrt{5}}$ units. Find the values of m .
8.	Write down the equation of l in terms of m . It is given that the perpendicular distance from the point $B \equiv (2,3)$ to the line l is $\frac{1}{\sqrt{5}}$ units. Find the values of m .
8.	Write down the equation of l in terms of m . It is given that the perpendicular distance from the point $B \equiv (2,3)$ to the line l is $\frac{1}{\sqrt{5}}$ units. Find the values of m .
8.	Write down the equation of l in terms of m . It is given that the perpendicular distance from the point $B\equiv (2,3)$ to the line l is $\frac{1}{\sqrt{5}}$ units. Find the values of m .
6.	Write down the equation of l in terms of m . It is given that the perpendicular distance from the point $B\equiv (2,3)$ to the line l is $\frac{1}{\sqrt{5}}$ units. Find the values of m .
8.	Write down the equation of l in terms of m . It is given that the perpendicular distance from the point $B\equiv (2,3)$ to the line l is $\frac{1}{\sqrt{5}}$ units. Find the values of m .
8.	Write down the equation of l in terms of m . It is given that the perpendicular distance from the point $B\equiv (2,3)$ to the line l is $\frac{1}{\sqrt{5}}$ units. Find the values of m .
8.	Write down the equation of l in terms of m . It is given that the perpendicular distance from the point $B\equiv (2,3)$ to the line l is $\frac{1}{\sqrt{5}}$ units. Find the values of m .
8.	Write down the equation of l in terms of m . It is given that the perpendicular distance from the point $B\equiv (2,3)$ to the line l is $\frac{1}{\sqrt{5}}$ units. Find the values of m .
8.	Write down the equation of l in terms of m . It is given that the perpendicular distance from the point $B\equiv (2,3)$ to the line l is $\frac{1}{\sqrt{5}}$ units. Find the values of m .
8.	Write down the equation of l in terms of m . It is given that the perpendicular distance from the point $B\equiv (2,3)$ to the line l is $\frac{1}{\sqrt{5}}$ units. Find the values of m .

	Find the equation of the circle S having the centre at the point $(-2,0)$ and passing through the point $(-1, \sqrt{3})$. Write down the equation of the chord of contact of the tangents drawn from the point $A \equiv (1, -1)$ to the circle S. Hence, show that the x-coordinates of the points of contact of the tangents drawn to S from A satisfies the equation $5x^2 + 8x + 2 = 0$.
grot	· · · · · · · · · · · · · · · · · · ·
	•••••••••••••••••••••••••••••••••••••••
	\$
	,
10	
LV.	Let $\theta \neq (2n+1)\frac{\pi}{2}$ for $n \in \mathbb{Z}$. Using the identity $\cos^2 \theta + \sin^2 \theta = 1$, show that $\sec^2 \theta = 1 + \tan^2 \theta$. It is given that $\sec \theta + \tan \theta = \frac{4}{3}$. Deduce that $\sec \theta - \tan \theta = \frac{3}{4}$. Hence , show that $\cos \theta = \frac{24}{25}$.
LV.	Using the identity $\cos^2 \theta + \sin^2 \theta = 1$, show that $\sec^2 \theta = 1 + \tan^2 \theta$. It is given that $\sec \theta + \tan \theta = \frac{4}{3}$. Deduce that $\sec \theta - \tan \theta = \frac{3}{4}$.
LV.	Using the identity $\cos^2 \theta + \sin^2 \theta = 1$, show that $\sec^2 \theta = 1 + \tan^2 \theta$. It is given that $\sec \theta + \tan \theta = \frac{4}{3}$. Deduce that $\sec \theta - \tan \theta = \frac{3}{4}$.
LV.	Using the identity $\cos^2 \theta + \sin^2 \theta = 1$, show that $\sec^2 \theta = 1 + \tan^2 \theta$. It is given that $\sec \theta + \tan \theta = \frac{4}{3}$. Deduce that $\sec \theta - \tan \theta = \frac{3}{4}$.
LV.	Using the identity $\cos^2 \theta + \sin^2 \theta = 1$, show that $\sec^2 \theta = 1 + \tan^2 \theta$. It is given that $\sec \theta + \tan \theta = \frac{4}{3}$. Deduce that $\sec \theta - \tan \theta = \frac{3}{4}$.
LV.	Using the identity $\cos^2 \theta + \sin^2 \theta = 1$, show that $\sec^2 \theta = 1 + \tan^2 \theta$. It is given that $\sec \theta + \tan \theta = \frac{4}{3}$. Deduce that $\sec \theta - \tan \theta = \frac{3}{4}$.
LV.	Using the identity $\cos^2 \theta + \sin^2 \theta = 1$, show that $\sec^2 \theta = 1 + \tan^2 \theta$. It is given that $\sec \theta + \tan \theta = \frac{4}{3}$. Deduce that $\sec \theta - \tan \theta = \frac{3}{4}$.
LV.	Using the identity $\cos^2 \theta + \sin^2 \theta = 1$, show that $\sec^2 \theta = 1 + \tan^2 \theta$. It is given that $\sec \theta + \tan \theta = \frac{4}{3}$. Deduce that $\sec \theta - \tan \theta = \frac{3}{4}$.
LV.	Using the identity $\cos^2 \theta + \sin^2 \theta = 1$, show that $\sec^2 \theta = 1 + \tan^2 \theta$. It is given that $\sec \theta + \tan \theta = \frac{4}{3}$. Deduce that $\sec \theta - \tan \theta = \frac{3}{4}$.
LV.	Using the identity $\cos^2 \theta + \sin^2 \theta = 1$, show that $\sec^2 \theta = 1 + \tan^2 \theta$. It is given that $\sec \theta + \tan \theta = \frac{4}{3}$. Deduce that $\sec \theta - \tan \theta = \frac{3}{4}$.
LV.	Using the identity $\cos^2 \theta + \sin^2 \theta = 1$, show that $\sec^2 \theta = 1 + \tan^2 \theta$. It is given that $\sec \theta + \tan \theta = \frac{4}{3}$. Deduce that $\sec \theta - \tan \theta = \frac{3}{4}$.
LV.	Using the identity $\cos^2 \theta + \sin^2 \theta = 1$, show that $\sec^2 \theta = 1 + \tan^2 \theta$. It is given that $\sec \theta + \tan \theta = \frac{4}{3}$. Deduce that $\sec \theta - \tan \theta = \frac{3}{4}$.
LV.	Using the identity $\cos^2 \theta + \sin^2 \theta = 1$, show that $\sec^2 \theta = 1 + \tan^2 \theta$. It is given that $\sec \theta + \tan \theta = \frac{4}{3}$. Deduce that $\sec \theta - \tan \theta = \frac{3}{4}$.
LU.	Using the identity $\cos^2 \theta + \sin^2 \theta = 1$, show that $\sec^2 \theta = 1 + \tan^2 \theta$. It is given that $\sec \theta + \tan \theta = \frac{4}{3}$. Deduce that $\sec \theta - \tan \theta = \frac{3}{4}$.

සියලු ම හිමිකම් ඇවිරුම්/(ψ (ψ ப் பதிப்புரிமையுடையது/ $All\ Rights\ Reserved$)

(නව නිර්දේශය/பුதிய பாடத்திட்டம்/New Syllabus

இது நடித்து தொடுமுறேற்ற இடிக்காம் இலங்கைப் புடிக்கு இண்கைகளும் இலங்கைப் புடிக்கு இண்ககளும் இலங்கைப் புடிக்கு இணைக்களும் புடிக்கு இணைக்களும் இலங்கைப் புடிக்கு இனைக்கு இன்றனரும் இலங்கையில் இன்றனரும் இன்றனரும் புடிக்கு இன்றனரும் இன்றனர

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020

සංයුක්ත ගණිතය இணைந்த கணிதம் Combined Mathematics

Part B

- * Answer five questions only.
- 11.(a) Let $f(x) = x^2 + px + c$ and $g(x) = 2x^2 + qx + c$, where $p, q \in \mathbb{R}$ and c > 0. It is given that f(x) = 0 and g(x) = 0 have a common root α . Show that $\alpha = p q$.

Find c in terms of p and q, and deduce that

- (i) if p > 0, then p < q < 2p,
- (ii) the discriminant of f(x) = 0 is $(3p 2q)^2$.

Let β and γ be the other roots of f(x) = 0 and g(x) = 0 respectively. Show that $\beta = 2\gamma$.

Also, show that the quadratic equation whose roots are β and γ is given by

$$2x^2 + 3(2p - q)x + (2p - q)^2 = 0.$$

(b) Let $h(x) = x^3 + ax^2 + bx + c$, where $a, b, c \in \mathbb{R}$. It is given that $x^2 - 1$ is a factor of h(x). Show that b = -1.

It is also given that the remainder when h(x) is divided by $x^2 - 2x$ is 5x + k, where $k \in \mathbb{R}$. Find the value of k and show that h(x) can be written in the form $(x - \lambda)^2(x - \mu)$, where $\lambda, \mu \in \mathbb{R}$.

12.(a) It is required to select a musical group consisting of eleven members from among five pianists, five guitarists, three female singers and seven male singers such that it includes exactly two pianists and at least four guitarists. Find the number of different such musical groups that can be selected.

Find also the number of musical groups among these, having exactly two female singers.

(b) Let $U_r = \frac{3r-2}{r(r+1)(r+2)}$ and $V_r = \frac{A}{r+1} - \frac{B}{r}$ for $r \in \mathbb{Z}^+$, where $A, B \in \mathbb{R}$.

Find the values of A and B such that $U_r = V_r - V_{r+1}$ for $r \in \mathbb{Z}^+$.

Hence, show that $\sum_{r=1}^{n} U_r = \frac{n^2}{(n+1)(n+2)}$ for $n \in \mathbb{Z}^+$.

Show that the infinite series $\sum_{r=1}^{\infty} U_r$ is convergent and find its sum.

Now, let $W_r = U_{r+1} - 2U_r$ for $r \in \mathbb{Z}^+$. Show that $\sum_{r=1}^n W_r = U_{n+1} - U_1 - \sum_{r=1}^n U_r$.

Deduce that the infinite series $\sum_{r=1}^{\infty} W_r$ is convergent and find its sum.

13.(a) Let
$$A = \begin{pmatrix} a+1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ a & 2 \end{pmatrix}$ and $C = \begin{pmatrix} a & 1 \\ a & 2 \end{pmatrix}$, where $a \in \mathbb{R}$.

Show that $A^TB - I = C$; where I is the identity matrix of order 2.

Show also that C^{-1} exists if and only if $a \neq 0$.

Now, let a = 1. Write down \mathbb{C}^{-1} .

Find the matrix P such that CPC = 2I + C.

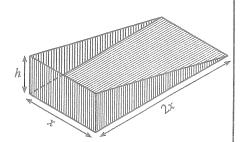
(b) Let $z, w \in \mathbb{C}$. Show that $|z|^2 = z\overline{z}$ and applying it to z - w,

show that $|z-w|^2 = |z|^2 - 2\operatorname{Re} z\overline{w} + |w|^2$.

Write a similar expression for $|1-z\overline{w}|^2$ and show that $|z-w|^2-|1-z\overline{w}|^2=-\left(1-|z|^2\right)\left(1-|w|^2\right)$. **Deduce** that if |w|=1 and $z\neq w$, then $\left|\frac{z-w}{1-z\overline{w}}\right|=1$.

- (c) Express $1+\sqrt{3}i$ in the form $r(\cos\theta+i\sin\theta)$, where r>0 and $0<\theta<\frac{\pi}{2}$. It is given that $(1+\sqrt{3}i)^m(1-\sqrt{3}i)^n=2^8$, where m and n are positive integers. Applying De Moivre's theorem, obtain equations sufficient to determine the values of m and n.
- 14.(a) Let $f(x) = \frac{x(2x-3)}{(x-3)^2}$ for $x \neq 3$.

Show that f'(x), the derivative of f(x), is given by $f'(x) = \frac{9(1-x)}{(x-3)^3}$ for $x \ne 3$.


Hence, find the interval on which f(x) is increasing and the intervals on which f(x) is decreasing. Also, find the coordinates of the turning point of f(x).

It is given that $f''(x) = \frac{18x}{(x-3)^4}$ for $x \ne 3$.

Find the coordinates of the point of inflection of the graph of y = f(x).

Sketch the graph of y = f(x) indicating the asymptotes, the turning point and the point of inflection.

(b) The adjoining figure shows the portion of a dust pan without its handle. Its dimensions in centimetres, are shown in the figure. It is given that its volume x^2h cm³ is 4500 cm³. Its surface area S cm² is given by $S = 2x^2 + 3xh$. Show that S is minimum when x = 15.

15.(a) It is given that there exist constants A and B such that

$$x^3 + 13x - 16 = A(x^2 + 9)(x + 1) + B(x^2 + 9) + 2(x + 1)^2$$
 for all $x \in \mathbb{R}$.

Find the values of A and B.

Hence, write down $\frac{x^3 + 13x - 16}{(x+1)^2(x^2+9)}$ in partial fractions and

find
$$\int \frac{x^3 + 13x - 16}{(x+1)^2 (x^2 + 9)} \, \mathrm{d}x .$$

- (b) Using integration by parts, evaluate $\int_{0}^{1} e^{x} \sin^{2} \pi x dx$.
- (c) Using the formula $\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx$, where a is a constant,

show that
$$\int_{0}^{\pi} x \cos^{6} x \sin^{3} x dx = \frac{\pi}{2} \int_{0}^{\pi} \cos^{6} x \sin^{3} x dx.$$

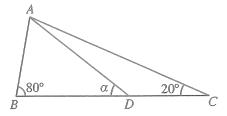
Hence, show that
$$\int_{0}^{\pi} x \cos^{6} x \sin^{3} x \, dx = \frac{2\pi}{63}.$$

16. Let $A \equiv (1, 2)$ and $B \equiv (3, 3)$.

Find the equation of the straight line l passing through the points A and B.

Find the equations of the straight lines l_1 and l_2 passing through A, each making an acute angle $\frac{\pi}{4}$ with l.

Show that the coordinates of any point on l can be written in the form (1+2t,2+t), where $t \in \mathbb{R}$. Show also that the equation of the circle C_1 lying entirely in the first quadrant with radius $\frac{\sqrt{10}}{2}$, touching both l_1 and l_2 , and its centre on l is $x^2+y^2-6x-6y+\frac{31}{2}=0$.


Write down the equation of the circle C_2 whose ends of a diameter are A and B.

Determine whether the circles C_1 and C_2 intersect orthogonally.

17.(a) Write down $\sin(A-B)$ in terms of $\sin A$, $\cos A$, $\sin B$ and $\cos B$.

Deduce that

- (i) $\sin(90^{\circ} \theta) = \cos \theta$, and
- (ii) $2 \sin 10^\circ = \cos 20^\circ \sqrt{3} \sin 20^\circ$.
- (b) In the usual notation, state the Sine Rule for a triangle ABC.

In the triangle ABC shown in the figure, $A\hat{B}C = 80^{\circ}$ and $A\hat{C}B = 20^{\circ}$. The point D lies on BC such that AB = DC. Let $A\hat{D}B = \alpha$.

Using the Sine Rule for suitable triangles, show that $\sin 80^{\circ} \sin (\alpha - 20^{\circ}) = \sin 20^{\circ} \sin \alpha$.

Explain why $\sin 80^\circ = \cos 10^\circ$ and hence, show that $\tan \alpha = \frac{\sin 20^\circ}{\cos 20^\circ - 2\sin 10^\circ}$.

Using the result in (a)(ii) above, **deduce** that $\alpha = 30^{\circ}$.

(c) Solve the equation $\tan^{-1}(\cos^2 x) + \tan^{-1}(\sin x) = \frac{\pi}{4}$.