Grade 11

20 Algebraic Inequalities

At the end of this lesson you will be able to...

- Solve the inequalities of the form $\mathrm{a} x \pm \mathrm{b} \gtreqless \mathrm{c}, \mathrm{a} x+\mathrm{b} \gtreqless \mathrm{c} x+\mathrm{d}$ and represent the solutions on a number line.

Let us solve the equation $2 \mathrm{x}-3=5$

$$
2 x-3=5
$$

* By adding 3 to both sides to remove the (-3) in the left side of the equation,
$2 x-3+3=5+3$
$2 \mathrm{x}=8$ (because $-3+3=0$ and $5+3=8)$
* By dividing both sides by 2 to remove the $\times 2$ in the left side of
 the equation,

$$
\begin{aligned}
\frac{2 x}{2} & =\frac{8}{2} \\
x & =4
\end{aligned}
$$

$2 x-3=5$ is an equation. When applying sign of "<" or " $>$ " instead of the sign of "=" of the equation, it can be written as
$2 x-3<5$ or $2 x-3>5$.
Then,
$2 x-3<5$ is an inequality.
$2 x-3>5$ is an inequality.
These inequalities also can be solved as the above equation.
Let us solve the inequality $2 \mathrm{x}-3<5$.

$$
2 x-3<5
$$

* By adding 3 to both sides to remove the (-3) in the left side of the inequality,
$2 \mathrm{x}-3+3<5+3$
$2 \mathrm{x}<8$ (because $-3+3=0$ and $5+3=8$)
* By dividing both sides by 2 to remove the $\times 2$ in the left side of the inequality,
$\frac{2 \mathrm{x}}{2}<\frac{8}{2}$
$\mathrm{x}<4$
Let us solve the inequality $2 x-3>5$.
$2 x-3>5$
* By adding 3 to both sides to remove the (-3) in the left side of the inequality,
$2 x-3+3>5+3$
$2 x>8$ (because $-3+3=0$ and $5+3=8$)
* By dividing both sides by 2 to remove the $\times 2$ in the left side of the inequality,
$\frac{2 x}{2}>\frac{8}{2}$
$\mathrm{x}>4$

20.1 Solving the inequalities of the form $\mathbf{a x} \pm \mathbf{b} \gtreqless \mathbf{c}$

Example 01

Consider the inequality $2 \mathrm{x}-1>3$.
i. Solving the inequality.

By adding 1 to both sides to remove the (-1) in the left side of the inequality

$$
\begin{aligned}
& 2 \mathrm{x}-1+1>3+1 \\
& \quad 2 \mathrm{x}>4(\text { because }-1+1=0 \text { and } 3+1=4)
\end{aligned}
$$

By dividing both sides by 2 to remove the $\times 2$ in the left side of the inequality

$$
\begin{aligned}
\frac{2 x}{2} & >\frac{4}{2} \\
x & >2
\end{aligned}
$$

ii. Representing integer solutions on a number line.

Integers greater than 2 are relevant for the inequality $\mathrm{x}>2$, but 2 is not belongs to it. Therefore integers relevant for the inequality $\mathrm{x}>2$ are $3,4,5,6,7 \ldots$ etc. The above integer values can be represented on a number line as follows.

iii. Representing solutions on a number line.

In the inequality $\mathrm{x}>2$, x cannot take the value 2 . Therefore the point $\mathrm{x}=2$ is circled but not shaded (It is represented using the symbol " \bigcirc ') and the line is shades as follows. Then it represents all the values relevant to $\mathrm{x}>2$.

Example 02

Considering the inequality $5 \mathrm{x}+3<18$.
i. Solving the inequality $5 \mathrm{x}+3<18$.
$5 x+3-3<18-3$ (By subtracting 3 to both sides to remove the 3 in the left side of the inequality)

$$
5 x<15 \text { (because }+3-3=0 \text { and } 18-3=15)
$$

$\frac{5 x}{5}<\frac{15}{5}$ (By dividing both sides by 5 to remove the $\times 5$ in the left side of the inequality)
x <3
ii. Representing integer solutions on a number line.

Integers less than 3 are relevant for the inequality $\mathrm{x}<3$, but 3 is not belongs to it.
Therefore integers relevant for the inequality $\mathrm{x}<3$ are $2,1,0,-1,-2$, etc. The above integer values can be represented on a number line as follows.

iii. Representing solutions on a number line.

In the inequality $\mathrm{x}<3$, x cannot take the value 3 . Therefore the point $\mathrm{x}=3$ is circled but not shaded (It is represented using the symbol " \bigcirc ") and the line is shades as follows. Then it represents all the values relevant to $\mathrm{x}<3$.

Example 03

Considering the inequality $2-3 x \geq 5$.
i. Solving the inequality $2-3 x \geq 5$.
$2-3 x-2 \geq 5-2$ (By subtracting 2 to both sides to remove the 2 in the left side of the inequality)

$$
-3 x \geq 3
$$

$\frac{-3 \mathrm{x}}{-3} \leq \frac{3}{-3}$ (By dividing both sides by (-3) to remove the $\times(-3)$ in the left side of the inequality)

$$
x \leq-1
$$

* When both sides of inequality is multiplied or divided by a same negative number, the inequality sign should be changed. (It means the sign of " $>$ " is changed as "<" and the sign of "<" is changed as " >")
ii. Representing integer solutions on a number line.

In the inequality $\mathrm{x} \leq-1$, x can take -1 and the integers less than -1 .the value of -1 is included for this inequality. Therefore integers relevant for the inequality $\mathrm{x} \leq-1$ are -1 , $-2,-3$, etc. The above integer values can be represented on a number line as follows.

iii. Representing solutions on a number line.

In the inequality $\mathrm{x} \leq-1$, x can take -1 and the integers less than -1 . Therefore the point x $=-1$ is circled and shaded (It is represented using the symbol " $\%$) and the line is shaded as follows. Then it represents all the values relevant to $\mathrm{x} \leq-1$.

Example 04

Considering the inequality $\frac{x}{2}-3 \geq-4$.
i. Solving $\frac{x}{2}-3 \geq-4$.

By adding 3 to both sides to remove the (-3) in the left side of the inequality,
$\frac{x}{2}-3+3 \geq-4+3$
$\frac{x}{2} \geq-1 \quad$ (because $-3+3=0$ and $\left.-4+3=-1\right)$

$$
\begin{aligned}
& \frac{\mathrm{x} \times 2}{2} \geq-1 \times 2 \text { (By multiplying both sides by } 2 \text { to remove } \div 2 \text { in the left side of the } \\
& \quad \text { inequality) }
\end{aligned}
$$

$$
x \geq-2
$$

ii. Representing integer solutions on a number line.

In the inequality $\mathrm{x} \geq-2, \mathrm{x}$ can take the value -2 and the integers greater than -2 .
\therefore The integer values relevant for the inequality $\mathrm{x} \geq-2$ are $-2,-1,0,1,2,3 \ldots$ etc.
The above integer values can be represented on a number line as follows.

iii. Representing solutions on a number line.

The value of -2 is included for the inequality $x \geq-2$.Therefore $x=-2$ is circled and shaded (it is represented using the symbol " \odot ") and the line is shaded as follows.Then it represents all the values related to $\mathrm{x} \geq-2$.

Example 05

Considering the inequality $2-\frac{x}{5}<-4$.
i. Solving $2-\frac{x}{5}<-4$.
$2-\frac{x}{5}-2<-4-2$ (By subtracting 2 to both sides to remove the 2 in the left side of the inequality)
$-\frac{x}{5}<-6$ (because $2-2=0$ and $-4-2=-6$)
By multiplying both sides by (-5) to remove $\div(-5)$ in the left side of the inequality,
$\frac{-x}{5} \times(-5)>-6 \times(-5)$
$x>30$ (The inequality sign is changed because multiplied by a negative number.)
ii. Representing integer solutions on a number line.

iii. Representing solutions on a number line.

Exercise 01

Solve each of the following inequalities.
i. $\quad 5 x-1>9$
ii. $\quad 3-2 x>1$
iii. $\quad \frac{3 x}{4}+5 \leq 11$

Do the revision exercise in the text book.

20.1 Solving the inequalities of the form $\mathbf{a x}+\mathbf{b} \gtreqless \mathbf{c x}+\mathbf{d}$

Example 01

Considering the inequality $5 x-4<4 x$.
i. Solving.
$5 \mathrm{x}-4<4 \mathrm{x}$
By subtracting $4 x$ from both sides to remove $4 x$ in the right side of the inequality,
$5 \mathrm{x}-4-4 \mathrm{x}<4 \mathrm{x}-4 \mathrm{x}$
$x-4<0$ (because $4 x-4 x=0$ and $5 x-4 x=x$)
By adding 4 to both sides to remove -4 in the left side of the inequality,

$$
\begin{aligned}
x-4+4 & <0+4 \\
x & <4(\text { because }-4+4=0 \text { and } 0+4=4)
\end{aligned}
$$

ii. Representing integer solutions on a number line.

Integers less than 4 are relevant for the inequality $\mathrm{x}<4$, but 4 is not belongs to it.
Therefore the integers relevant for the inequality $\mathrm{x}<4$ are $3,2,1,0,-1 \ldots$ etc. The above integer values can be represented on a number line as follows.

iii. Representing solutions on a number line.

4 is not belongs to the set of solutions of the inequality $x<4$. Therefore the point $x=4$ is circled but not shaded (It is represented using the symbol " O ") and the line is shaded as follows.

Example 02

Considering the inequality $3 x-6 \geq 5 x$.
i. Solving $3 x-6 \geq 5 x$.

$$
3 x-6 \geq 5 x
$$

By subtracting 5 x from both sides to remove 5 x in the right side of the inequality,

$$
\begin{aligned}
3 x-6-5 x & \geq 5 x-5 x \\
-2 x-6 & \geq 0(\text { because } 5 x-5 x=0 \text { and } 3 x-5 x=-2 x)
\end{aligned}
$$

By adding 6 to both sides to remove -6 in the left side of the inequality,

$$
\begin{aligned}
-2 x-6+6 & \geq 0+6 \\
-2 x & \geq 6(\text { because }-6+6=0 \text { and } 0+6=6)
\end{aligned}
$$

By dividing both sides by (-2) to remove the $\times(-2)$ in the left side of the inequality,

$$
\frac{-2 \mathrm{x}}{-2} \leq \frac{6}{-2}
$$

When dividing by a negative number the inequality sign is changed.

$$
x \leq-3\left(\text { because } \frac{-2}{-2}=1 \text { and } \frac{6}{-2}=-3\right)
$$

ii. Representing integer solutions on a number line.

iii. Representing solutions on a number line.

Example 03

Considering the inequality $7-\mathrm{x} \leq 6 \mathrm{x}$.
i. Solving.

$$
7-x \leq 6 x
$$

By subtracting 6 x from both sides to remove 6 x in the right side of the inequality,
$7-x-6 x \leq 6 x-6 x$
$7-7 x \leq 0$ (because $6 x-6 x=0$ and $-x-6 x=-7 x$)
By subtracting 7 to both sides to remove the 7 in the left side of the inequality,
$7-7 x-7 \leq 0-7$
$-7 \mathrm{x} \leq-7$ (because $7-7=0$ and $0-7=-7$)
By dividing both sides by (-7),
$\frac{-7 x}{-7} \geq \frac{-7}{-7}$
When dividing by a negative number the inequality sign is changed.
$x \geq 1$ (because $\frac{-7}{-7}=1$)
ii. Representing integer solutions on a number line.

iii. Representing solutions on a number line.

Example 04

Considering the inequality $3 x-2>2 x+5$.
i. Solving.

$$
\begin{aligned}
3 x-2>2 x & +5 \\
3 x-2-2 x & >2 x+5-2 x(\text { By subtracting } 2 x \text { from both sides of the inequality) } \\
x-2 & >5 \quad \text { (because } 2 x-2 x=0 \text { and } 3 x-2 x=x) \\
x-2+2 & >5+2 \text { (adding } 2 \text { to both sides of the inequality) } \\
x & >7 \text { (because }-2+2=0 \text { and } 5+2=7)
\end{aligned}
$$

ii. Representing integer solutions on a number line.

iii. Representing solutions on a number line.

Example 05

Considering the inequality $4 \mathrm{x}+1 \leq 7 \mathrm{x}-8$.
i. Solving.

$$
\begin{aligned}
& 4 x+1 \leq 7 x-8 \\
& 4 x+1-1 \leq 7 x-8-1 \quad(\text { By subtracting }(-1) \text { from both sides of the inequality) } \\
& 4 x \leq 7 x-9 \text { (because }+1-1=0 \text { and }-8-1=-9) \\
& 4 x-7 x \leq 7 x-9-7 x \quad(\text { By subtracting } 7 x \text { from both sides of the inequality) } \\
& -3 x \leq-9 \text { (because } 4 x-7 x=-3 x \text { and } 7 x-7 x=0)
\end{aligned}
$$

$-3 x \leq-9$ (By dividing both sides of the inequality by (-3)),
$\frac{-3 x}{-3} \geq \frac{-9}{-3}$
When dividing by a negative number the inequality sign is changed.

$$
x \geq 3\left(\text { because } \frac{-9}{-3}=3\right)
$$

ii. Representing integer solutions on a number line.

iii. Representing solutions on a number line.

Exercise 02

* By solving each of the following inequalities represent the,
- Integer solutions on a number line.
- Solutions on a number line.
I. $2 x+9 \leq 11 x$
II. $7 x>-12+x$
III. $\quad 5 x+8 \geq 20-x$
IV. $x-2<3 x$
V. $\quad 12-3 x<9$
\# Do the exercise 20.1 in the text book.

