8 Directed numbers

By studying this chapter you will be able to get a good understanding of,

* identification of directed numbers.
* marking directed numbers on a number line.
* addition of directed numbers.

A bird 50 cm above the level of water and a fish 40 cm below are shown in the figure. You have learned in Grade 6 that when the level of water is considered as " O " the values above it can be taken as positive

8. 1 Identification of directed numbers

Let us study further about the positions of the numbers marked on the number line above.

According to the positions of the points $A, B, C, D ; A=(-2)$
$C=(+1)$. Since B is halfway between 0 and $-1, B=\left(-{ }^{\overline{2}}\right)$ or $B=(-0.5)$
Similarly $D=+2^{\frac{1}{2}} \quad$ or $(D=+2.5)$

Accordingly it is clear to you that there are fractions and decimals too on a number line.

A and B marked on the above number line are values in the negative direction and as such they are values less than $0 . \mathrm{C}$ and D are values in the positive direction and as such they are considered as positive values.

Since all the numbers greater than 0 can be stated with a positive sign and all the numbers less than 0 , with a negative sign, they are called directed numbers.

All the positive numbers and the negative numbers are directed numbers.

Accordingly numbers such a $\frac{1}{2}$

$$
-3,-4.5,+5,+0.5,+2 \quad,+0.66 \text { are directed numbers. }
$$

Exercise 8.1

(1) Draw a number line and mark on it the positions of the following numbers.

$$
\mathrm{P}=3 \frac{1}{2}, \quad \mathrm{Q}=2, \quad \mathrm{R}=0.5, \quad \mathrm{~S}=-2, \mathrm{~T}=-3
$$

(2) Write the numbers represented by the points marked on the number line given below.

8.2 Comparison of directed numbers

The height of a few students of Grade 7 are given in the following table. Considering that the average height of a student as 125 cm the following table has been prepared. Observe it.

Name	Height (cm)	Number of cm greater than or less than the average height as directed numbers
Madhawa	130	+5
Hirushi	129	+4
Sanduni	127	+2
Indika	128	+3
Amal	126	+1
Torrin	125	0
Anjana	124	-1
Windya	123	-2
Roy	120	-5
Kumar	118	-7

Let us represent the directed numbers in that table on a number line as follows.

Accordingly we can present the following information.

- Hirushi is taller than Amal.
- Hirushi is on Amal's right on the number line. According to the values of the places they own on the number line,

$$
+1<+4
$$

- Amal is taller than Windya.
- On the number line Amal is on Windya's right. Accordingly $-2<+1$
- Similary, according to the number line, it can be shown that, $(-5)<(-1), \quad \mathrm{O}>(-2), \quad+1>(-4)$

The value of any number on a number line is greater than any number on the left of it.

The numbers $-1,-2,-3 \ldots$ are negative whole numbers.

The numbers $+1,+2,+3 \ldots$. are positive whole numbers.

Exercise 8.2

(1) Draw a number line and mark the following numbers.
(i) $\mathrm{A}=-3, \quad \mathrm{~B}=2 \frac{1}{2}, \quad \mathrm{C}=0, \quad \mathrm{D}=-0.75, \quad \mathrm{E}=1.5$
(ii) Arrange the numbers marked above in the ascending order and write them.
(2) Connect each of the following pairs of numbers using the signs " $>$ " or " $<$ " or" $=$ ".
(i) (-3) \square (-5)
(vi) (0) \square (-2)
(ii) (-7) \square (4)
(vii) (-14) \square (0)
(iii) $(2.5) \square\left(1 \frac{1}{2}\right)$ (viii) $(-23) \square$ (9) (iv) (4.5) \square (4.5)
(ix) (214) \square (-214)
(v) $(-2.3) \square\left(-2 \frac{3}{10}\right)$
(x) $(-19) \square(-22)$
(3) Insert the mark (\checkmark) in the bracket in front if the relation in each of the following pairs of numbers is correct and (\boldsymbol{x}) if incorrect.
(i) $(3)>(2.5)$
()
(ii) $(-2)<(-4)$
()
(iii) $(2.5)>(3.5)$
()
(iv) $+3.7=(3.7)$
()
(v) $0>(-2)$
()
(vi) $(-15)>(-10.5)$
()
(4) (i) Arrange the numbers in the set $\{34,0,-7,99,-56,-9,-33\}$ in the ascending order of values.
(ii) Arrange the numbers in the set $\{8,-999,12,0,-50,93,40,-66\}$ in the descending order of values.

Activity 8.1

* Cut out 10 equal square shapes out of a piece of card board.
* Remove equal circular parts from each square.

* Mark the sign (-) on each of the remaining parts of the squares,

* Study the following examples of adding directed numbers using the above shapes.

(The gaps of two squares can be fillect. One circle marked with sign + is left.)

$$
\therefore \quad(+3)+(-2)=(+102)
$$

(ii) $(+2)+(-4)$

(The gaps of two squares can be filled, what is left are two squares marked (-))

$$
\therefore(+2)+(-4)=(-2)
$$

(iii) $(+2)+(+1)$

(Squares completed with both parts cannot be made. Three circles marked (+) are left.)

$$
\therefore(+2)+(+1)=(+3)
$$

Engage in the following activity to understand the addition of directed numbers further.

Activity 8.2

$\star \quad$ You have Rs. 5. When you get another Rs. 3, what will be the total amount you have?

* You are Rs. 5 in debt. If another Rs. 3 has to be borrowed, what will be the total amount in debt?
$\star \quad$ You have Rs. 5. If you have to pay a debt of Rs. 3, what will be the amount of money remaining in your hand?
^ You are Rs 5 in debt. You have only Rs. 3 with you. When that is used to pay the debt, what will be the remaining debt.?

When the money you have is considered as $(+)$ and the debt as $(-)$, write the answers to the numerical relations relevant to each of the above statements.

8.3 Addition of directed numbers using the number line

Observe the following examples as to how the number line has been used for addition of directed numbers.

Example 1

$(+3)+(+2)$

- Starting from 0 displace 3 units to the right.
- From there displace 2 units again to the right.
- According to the direction of connecting 0 and the final point you will get the answer.

$$
(+3)+(+2)=+5
$$

- Starting from 0 , displace 3 units to the left.
- From there displace 2 units again to the left.
- According to the direction of connecting 0 and the final point you will get the answer. $(-3)+(-2)=\underline{\underline{-5}}$

Example 3

$$
(+3)+(-2)
$$

- Starting from 0 move 3 units to the right.
- From that point move 2 units to the left.
- According to the direction of connecting 0 and the final point you will get the answer.

$$
(+3)+(-2)=\underline{\underline{+1}}
$$

Example 4

- Starting from 0 move 3 units to the left.
- From that point move 2 units to the right.
- According to the direction of connecting 0 and the final point you will get the answer.
$(-3)+(+2)=(-1)$

Let us examine all the above results at the same time.

$(\overrightarrow{+3})+(\stackrel{\leftarrow}{-2})=(\overrightarrow{+1})$
$(\stackrel{-3}{\boxed{+}})+(\overrightarrow{+2})=(\stackrel{\leftarrow}{-1})$

* Displacements have taken place in the opposite directions.
* The differences of displacements are received as results.
* The direction of the result is the direction of the higher displacement.

Exercise 8.3

(1) Find the value of (-5) $+(-2)$ by using the circular shapes and the square shapes used in activity 1 .
(2) Add the following directed numbers using the number line.
(i) $(+3)+(+4)$
(vi) $(+5)+0$
(ii) $(-4)+(-1)$
(vii) $0+(-4)$
(iii) $\left(+2 \frac{1}{2}\right)+\left(-3 \frac{1}{2}\right)$
(viii) $(-3)+(+3)$
(iv) $(-3)+(+5)$
(ix) $\left(-2 \frac{1}{2}\right)+\left(2 \frac{1}{2}\right)$
(v) $(-6)+(+2)$
(x) $\quad(3.5)+(-3.5)$
(3) Fill in the blanks of the following statements using the knowledge of addition of directed numbers.

(i)	(-7)	+	(-2)	$=\ldots \ldots \ldots \ldots$.
(ii)	(5)	+	(-6)	$=\ldots \ldots \ldots .$.
(iii)	(-8)	+	$(\ldots \ldots)$.	$=(-6)$
(iv)	(-2.5)	+	(-4)	$=\ldots \ldots \ldots \ldots$
(v)	$(\ldots \ldots \ldots)$	+	0	$=(2.3)$
(vi)	$(\ldots \ldots \ldots)$	+	(-5)	$=+2.5$
(vii)	6	+	(-8)	$=\ldots \ldots \ldots .$.
(viii)	(-9)	+	$(\ldots \ldots \ldots)$	$=(+3)$
(ix) $(+7)$	+	$(\ldots \ldots \ldots)$	$=(-4)$	
(x) (-6)	+	$(\ldots \ldots \ldots)$.	$=(-10)$	

(4)Fill in the blanks of the following tables.
(i)

+	3	5	0	2
4				
6				
0				
8				

(ii)

+	-3	-5	0	-2
-6				
-7				
0				
-2				

(iii)

+	2	-3	-7	8	-9	0	5	4
-5								
-3								
2								
-1								
-4								

Summary

* Between two consecutive integers, there is a large number of fractions and decimals.
* All the positive numbers are greater than 0 and all the negative numbers are less than 0 .
* When two negative numbers are added the result is a negative number.
* When two positive numbers are added the result is a positive number.
* When two numbers with different signs are added the result can be either a positive number or a negative number or 0 .

