12 Equi - Angular Triangles

By studying this lesson you will acquire knowledge on the following :

- Using the theorem and it s converse that,a straight line drawn parallel to a side of a triangle divides the other two sides proportionally'.
- Corresponding sides of equi-angular triangles are proportional.

A portion of a gate is illustrated in the figure given above. There are various plane figures to be seen. Aboy who wants to find the length of wire used in the gate observed it carefully. Let's draw the triangle given in dark lines separately.

ABC is an equilateral triangle and D and E are the midpoints of AB and AC respectively. What can you say about DE and BC ? According to the mid point theorem you have learnt that $\mathrm{DE} / / \mathrm{BC}$ and

$$
\mathrm{DE}=\frac{1}{2} \mathrm{BC} .(\text { Mid point theorem })
$$

Thus, $\quad \frac{\mathrm{AD}}{\mathrm{DB}}=1 \quad$ and $\quad \frac{\mathrm{AE}}{\mathrm{EC}}=1$

$$
\therefore \quad \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}
$$

Theorem :

A straight line drawn parallel to a side of a triangle divides the other two sides proportionally.

Thus, in triangle LMN, where $\mathrm{XY} / / \mathrm{MN}$,

$$
\frac{L X}{X M}=\frac{L Y}{Y N}
$$

Activity 12.1

To verify the above theorem,first go through the activity given below.

Draw the triangle PQR slightly bigger in your exercise book. Mark a point L on $P Q$ and draw a line parallel to PR though L . By measuring the angles $Q \hat{L} M$ and $L \hat{P} R$ or by any other method, verify that PR and LM are parallel. Now measure the lengths $\mathrm{PL}, \mathrm{QL}, \mathrm{QM}, \mathrm{MR}$ and obtain the values of $\frac{\mathrm{QL}}{\mathrm{PL}}$ and
 $\frac{\mathrm{QM}}{\mathrm{RM}}$. Hence see whether the theorem is true. Repeat the same procedure with obtuse angled triangles, right angled triangles and acute angled triangles.

Now study the following example carefully.

Example 1

In the diagram $\mathrm{DE} / / \mathrm{BC}$. Find x.
In triangle $\mathrm{ABC}, \mathrm{BC} / / \mathrm{DE}$. According to the theorem that, a straight line drawn parallel to a side of a triangle divides the other two sides propotionally,

$$
\begin{aligned}
\frac{\mathrm{AD}}{\mathrm{DB}} & =\frac{\mathrm{AE}}{\mathrm{EC}} \\
\frac{6}{2} & =\frac{x}{1} \\
x & =\underline{3}
\end{aligned}
$$

Example 2

In the diagram $\mathrm{AB} / / \mathrm{QR}$. Find x using the given information

$$
\begin{aligned}
\frac{3}{2} & =\frac{10-x}{x} \quad \text { given } \\
3 x & =2(10-x) \\
3 x & =20-2 x \\
5 x & =20 \\
x & =\underline{4}
\end{aligned}
$$

Do the following exercises using this theorem.

Exercise 12.1

(1) Find the lengths of the line segments marked by x in the following triangles.

(2) In triangle $A B C, A B=12, A C=8$. Find $A D$.

(3) In triangle $\mathrm{ABC}, \mathrm{RS} / / \mathrm{BC}$. Prove that x can take only one value and find it.

(4) According to the information given in the diagram find $P B$ and $A R$.

Theorem :

A straight line drawn parallel to a side of a triangle divides the other two sides proportionally.

Proof of the Theorem

A line drawn parallel to one side of a triangle divides the other two sides proportionally.

Data : In triangle PQR

 AB//QRTo prove that : $\quad \frac{P A}{A Q}=\frac{P B}{B R}$
Construction : Join AR and BQ

Proof : As the triangles PAB and ABQ are of the same altitude,

$$
\frac{\mathrm{PAB} \Delta}{\mathrm{ABQ} \Delta}=\frac{\mathrm{PA}}{\mathrm{AQ}}
$$

Similarly, the triangles PAB and BRA have the same altitude,

$$
\frac{\operatorname{PAB} \Delta}{\operatorname{BRA} \Delta}=\frac{\mathrm{PB}}{\mathrm{BR}}
$$

But,

$$
\mathrm{ABQ} \Delta=\mathrm{BRA} \Delta \quad \text { (between the same pair of parallels } \mathrm{AB},
$$

$$
\therefore \underline{\mathrm{PAB} \Delta}=\underline{\mathrm{PAB} \Delta} \text { and } \mathrm{QR} \text {, and on the same base } \mathrm{AB} \text {) }
$$

$$
\therefore \frac{\mathrm{PA}}{\mathrm{AQ}}=\frac{\mathrm{PB}}{\mathrm{BR}}
$$

Converse of the Theorem :

If a straight line divides two sides of a triangle proportionally then it is parallel to the third side

That is, if

$$
\begin{aligned}
& \frac{\mathrm{AP}}{\mathrm{~PB}}=\frac{\mathrm{AQ}}{\mathrm{QC}} \\
& \text { then } \mathrm{PQ} / / \mathrm{BC} .
\end{aligned}
$$

12.2 Equi - Angular Triangles

Look at the two triangles PQR and LMN. You know thát these triangles are congruent.
\therefore in the two triangles PQR and LMN,

$$
\begin{aligned}
\hat{P} & =\hat{L} \\
\hat{Q} & =\hat{M} \\
\hat{R} & =\hat{N}
\end{aligned}
$$

If three angles of a triangle are equal to the three angles of another triangle, then, they are equi-angular triangles.
While the triangles PQR and LMN are congruent they are equi-angular too.
Accordingly congruent triangles are always equi-angular

Look at the two triangles ABC and XYZ . In these triangles,

$$
\begin{aligned}
& \hat{A}=\hat{X} \\
& \hat{B}=\hat{Y} \\
& \hat{C}=\hat{Z}
\end{aligned}
$$

The three angles of triangle $A B C$ are equal to the three angles of the triangle XYZ.

Are the two triangles congruent?
You can see that they are not congruent but they are equi-angular. They are equal in shape, but not congruent.

Equi-angular triangles are not always congruent

Theorem :

The corresponding sides of two equi-angular triangles are proportional

ABC and XYZ are equi-angular triangles.

$$
\frac{\mathrm{AB}}{\mathrm{XY}}=\frac{\mathrm{BC}}{\mathrm{YZ}}=\frac{\mathrm{AC}}{\mathrm{XZ}}
$$

Activity 12.2

To verify that the corresponding sides of two equi-angular triangles are proportional, go through the following activity.

Construct triangle ABC having the angles equal to the angles in the given triangle and $A C=4 \mathrm{~cm}$.

Constuct the triangle $X Y Z$ such that $Y Z=8 \mathrm{~cm}, \hat{Y}=\hat{C}=60^{\circ}$, and $\hat{Z}=\hat{A}=45^{0}$. By measuring the remaining angles in both triangles verify that the triangles ABC and XYZ are equi-angular.

Now, measure the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{XY}$ and XZ .
According to the construction, we know that, $\frac{\mathrm{AC}}{\mathrm{YZ}}=\frac{4}{8}$.
Now, finding the values of $\frac{A B}{X Z}$ and $\frac{B C}{X Y}$,test whether the above theorem is true. Try to verify this theorem further by drawing various types of equiangular triangles.

Converse of the theorem.

If the corresponding sides of two triangles are proportional, then the triangles are equi-angular.

Study carefully, the problems solved by using this theorem.

Example 3

In the diagram, $\mathrm{AB} / / \mathrm{CD}$. Find the length of CD .
In triangles APB and PDC,
$\mathrm{APB}=\mathrm{C} \hat{P D}$ (vertically opposite angles)
$\mathrm{A} \hat{\mathrm{B}} \mathrm{P}=\mathrm{P} \hat{\mathrm{CD}}$ (Alternate angles, $\mathrm{AB} / / \mathrm{CD}$)
$\therefore \hat{\mathrm{BA}}=\mathrm{P} \hat{\mathrm{DC}}$ (Remaining angles of the triangles)
\therefore Triangles APB and PDC are equi-angular.

$$
\frac{\mathrm{AP}}{\mathrm{PD}}=\frac{\mathrm{AB}}{\mathrm{CD}}=\frac{\mathrm{BP}}{\mathrm{PC}}
$$

$\mathrm{AP}=12 \mathrm{~cm}, \mathrm{PD}=10 \mathrm{~cm}, \mathrm{AB}=18 \mathrm{~cm}$

$$
\frac{12}{10}=\frac{18}{C D}
$$

$$
\mathrm{CD}=\frac{18 \times 10}{12}
$$

$=15 \mathrm{~cm}$

Example 4

F is a point on side $B C$ of the parallelogram $A B C D$.
AF and DC produced meet at E .
(i) Show that triangles ECF and ABF are equi-angular.
(ii) Show that $\mathrm{EC}: \mathrm{AB}=\mathrm{FC}: \mathrm{BF}$

Let us first draw a diagram to show this data.

In triangles, ABF and ECF ,
$\mathrm{A} \hat{\mathrm{F}} \mathrm{B}=\mathrm{C} \hat{\mathrm{F} E}$ (Vertically opposite angles)
$\hat{\mathrm{ABF}}=\mathrm{F} \hat{\mathrm{C} E}$ (Alternate angles, $\mathrm{AB} / / \mathrm{CE}$)
$\hat{\mathrm{BAF}}=\mathrm{F} \hat{\mathrm{E} C}$ (Alternate angles, $\mathrm{AB} / / \mathrm{CE}$)
\therefore Triangles ABF and ECF are equi-angular.
According to the above theorem,

$$
\begin{aligned}
& \frac{\mathrm{AB}}{\mathrm{EC}}=\frac{\mathrm{BF}}{\mathrm{FC}}=\frac{\mathrm{AF}}{\mathrm{FE}} \\
& \therefore \mathrm{EC}: \mathrm{AB}=\mathrm{FC}: \mathrm{BF}
\end{aligned}
$$

Let us prove the theorem that, the corresponding sides of two equi-angular triangles are proportional.

Data : In triangles $A B C$ and $P Q R$, $\hat{\mathrm{A}}=\hat{\mathrm{P}} ; \hat{\mathrm{B}}=\hat{\mathrm{Q}} ; \hat{\mathrm{C}}=\hat{\mathrm{R}}$

To prove that
: $\mathrm{AB}: \mathrm{PQ}=\mathrm{BC}: \mathrm{QR}=\mathrm{CA}: \mathrm{RP}$
Construction
: Mark the points X and Y on $A B$ and $A C$ respectively such that $A X=P Q$ and $A Y=P R$
Proof : In triangles $A X Y$ and $P Q R$

$$
\begin{aligned}
\hat{\mathrm{A}} & =\hat{\mathrm{P}}(\text { Data }) \\
\mathrm{AX} & =\mathrm{PQ}(\text { Construction }) \\
\mathrm{AY} & =\mathrm{PR}(\text { Construction }) \\
\therefore \triangle \mathrm{AXY} & \equiv \Delta \mathrm{PQR}(\mathrm{~S}, \mathrm{~A}, \mathrm{~S}) \\
\therefore \mathrm{A} \hat{X Y} & =\mathrm{PQ} \hat{\mathrm{Q}} \\
\text { But } \hat{P} \hat{Q} R & =\mathrm{A} \hat{B C}(\text { Data }) \\
\therefore \mathrm{A} \hat{X} Y & =\mathrm{AB} \mathrm{~B} C
\end{aligned}
$$

As they are corresponding angles
$\mathrm{XY} / / \mathrm{BC}$.

$$
\therefore \frac{\mathrm{BX}}{\mathrm{XA}}=\frac{\mathrm{CY}}{\mathrm{YA}}
$$

$$
\frac{\mathrm{BX}}{\mathrm{XA}}+1=\frac{\mathrm{CY}}{\mathrm{YA}}+1 \quad \text { (adding } 1 \text { to both sides) }
$$

$$
\frac{\mathrm{BX}+\mathrm{XA}}{\mathrm{XA}}=\frac{\mathrm{CY}+\mathrm{YA}}{\mathrm{YA}}
$$

$$
\frac{\mathrm{AB}}{\mathrm{AX}}=\frac{\mathrm{AC}}{\mathrm{YA}}
$$

But $\quad \mathrm{AX}=\mathrm{PQ}$ (Construction) $\mathrm{AY}=\mathrm{PR}$ (Construction)

$$
\therefore \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AC}}{\mathrm{PR}}
$$

Similarly $\quad \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}$

$$
\begin{aligned}
\therefore \frac{A B}{P Q} & =\frac{B C}{Q R}=\frac{C A}{R P} \\
\therefore A B: P Q & =B C: Q R=C A: R P
\end{aligned}
$$

Exercise 12.2

1. Choose and name the equiangular triangles from the triangles given below. Give reasons why they are equianguler.
(i)

(ii)

(iii)

2. In the diagram $A B / / C D$. Show that the triangles AEB and EDC are equiangular and find the lengths of $C D$ and $B E$.

3. In triangle $\mathrm{PQR}, \mathrm{PR}=36 \mathrm{~cm}$ and $\mathrm{PQ} / / \mathrm{XY}$. Find the lengths of XY and RX.

4. In the diagram $\mathrm{D} \hat{\mathrm{G}} \mathrm{H}=\hat{\mathrm{EFD}}$. Show that the triangles DGH and DFE are equiangular.
Find the lengths of the sides GE and EF

5. In the diagram $\mathrm{AB} / / \mathrm{DE}$ and $\mathrm{AC} / / \mathrm{DF}$. Show that the triangles ABC and DEF are equiangular and find the length of EC.

$$
\begin{array}{ll}
\mathrm{AB}=24 \mathrm{~cm} & \mathrm{BE}=11 \mathrm{~cm} \\
\mathrm{DE}=16 \mathrm{~cm} & \mathrm{CF}=6 \mathrm{~cm}
\end{array}
$$

6. In the diagram $\mathrm{ABC}=\mathrm{A} \hat{\mathrm{E}}=90^{\circ}$. Prove that the triangles AED and ABC are aqui-angular.
Show that $A E: A B=D E: B C$

7. AE is the perpendicular drawn from A to the diagonal BD of rectangle ABCD . Prove that $\mathrm{AD}: \mathrm{BD}=\mathrm{DE}: \mathrm{BC}$
8. A is a right angle in triangle ABC . The perpendicular drawn from A to BC is $A D$. Prove that $A B^{2}=B D \cdot B C$.
9. ABCD is a parallelogram. $\mathrm{AC} / / \mathrm{PQ}$. Prove that $\mathrm{AB} \cdot \mathrm{PQ}=\mathrm{AC} \cdot \mathrm{DQ}$

(10) In triangle $A B C, A B=B C$. P and Q are points on $A C$. The line drawn parallel to AB through P meets BC at S . The line drawn parallel to CB through Q meets PS at R . Prove that $A B: A C=P R: P Q$.

