11 Mid Point Theorem

By studying this lesson you will acquire knowledge on the

 following:- The mid point theorem
- Proof of the mid point theorem
- Converse of the mid point theorem
- Proof of the converse of the mid point theorem
- Solving problems using the above two theorems

11.1 Introduction

There is a direct relationship between the line joining the mid points of two sides of a triangle and its third side.

11.2 Mid point theorem

The line joining the mid points of two sides of a triangle is parallel to the third side and is half the size of the third side.

D and E are the mid points of the sides
AB and AC respectively of the triangle
ABC . Then
$\mathrm{DE} / / \mathrm{BC}$ and $\mathrm{DE}=\frac{1}{2} \mathrm{BC}$.

Activity 11.1

(1) Draw a triangle $\mathrm{ABC}, \mathrm{AB} \equiv 6 \mathrm{~cm}, \mathrm{BC} \equiv 5 \mathrm{~cm}, \mathrm{AC} \equiv 4 \mathrm{~cm}$. Mark the mid points D and E of any two sides and join them. By measuring DE or by any other method, compare it with the other side.
(2) In a quadrilateral $\mathrm{ABCD}, \mathrm{AB} / / \mathrm{DC}$ and $\mathrm{AD} / / \mathrm{BC}$. What can you say about the quadrilateral ABCD ?
(3) In a quadrilateral $\mathrm{PQRS}, \mathrm{PS}=\mathrm{QR}$ and $\mathrm{PS} / / \mathrm{QR}$. What can you say about the quadrilateral PQRS ?

Exercise 11.1

(1)

(i)

(ii)

(iii)
(i) In triangle $\mathrm{ABC}, \mathrm{AB}=8 \mathrm{~cm}, \mathrm{BC}=7 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}$. D, E and F are the mid points of $A B, B C$, and CA respectively. Find the lengths of the sides of the triangle $D E F$.
(ii) In triangle $\mathrm{LMN}, \mathrm{LM}=8 \mathrm{~cm}, \mathrm{MN}=6 \mathrm{~cm}$ and $\mathrm{LM} \mathrm{N}=90^{\circ}$. X and Y are the mid points of $M N$ and $L N$ respectively. Find $Y \hat{X} N$ and $Y N$
(iii) In triangle $P Q R, S$ and T are the mid points of $Q R$ and $P Q$ respectively. $\mathrm{PR}=24 \mathrm{~cm}, \mathrm{QR}=13 \mathrm{~cm}$ and the perimeter of $\triangle \mathrm{PQR}$ is 52 cm . Find the lengths of QT and TS.
(2)

In the figure $\mathrm{LM} / / \mathrm{NR}, \mathrm{LR}$ and MN intersect at $\mathrm{O} . \mathrm{MO}=\mathrm{ON}$. Prove that the triangles LMO and NRO are congruent.

Hence write down the corresponding equal sides of the two triangles.

Example 1

Show that the triangle obtained by joining the mid points of the sides of an equilateral triangle, too is an equilateral triangle.

Data : ABC is an equilateral triangle

$$
\mathrm{AD}=\mathrm{DB}, \mathrm{BE}=\mathrm{EC} \text { and } \mathrm{AF}=\mathrm{FC}
$$

To prove that : DEF is an equilateral triangle
Proof : In the triangle $A B C$,

$$
\begin{align*}
& \mathrm{AD}=\mathrm{DB} \text { and } \mathrm{AF}=\mathrm{FC} . \quad(\text { Data }) \tag{Data}\\
& \therefore \mathrm{DF}=\frac{1}{2} \mathrm{BC} \quad \text { (1) }(\text { Mid point theorem })
\end{align*}
$$

In the triangle ABC ,
$\mathrm{AD}=\mathrm{DB}$ and $\mathrm{BE}=\mathrm{EC}$. (Data)
$\therefore \mathrm{DE}=\frac{1}{2} \mathrm{AC}$
(2) (Mid point theorem)

In the triangle ABC ,
$\mathrm{BE}=\mathrm{EC}$ and $\mathrm{AF}=\mathrm{FC}$.

$$
\therefore \mathrm{EF}=\frac{1}{2} \mathrm{AB} \quad \text { (3id point theorem) }
$$

$\mathrm{But} \mathrm{AB}=\mathrm{BC}=\mathrm{AC}(\mathrm{ABC}$ is an equilateral triangle $)$
From (1), (2) and (3): DF = DE = EF
Hence $\triangle \mathrm{DEF}$ is an equilateral triangle.

Example 2

$A B C D$ is a quadrilateral. P, Q, R and S are the mid points of $A B, B C, C D$ and DA respectively. Show that $P Q R S$ is a parallelogram.

Data : In the quadrilateral ABCD

$$
\begin{aligned}
& \mathrm{AP}=\mathrm{PB}, \mathrm{BQ}=\mathrm{QC}, \\
& \mathrm{CR}=\mathrm{RD} \text { and } \mathrm{AS}=\mathrm{DS}
\end{aligned}
$$

To prove that : PQRS is a parallelogram
Construction : Join A and C
Proof
: In triangle ADC

$$
\begin{gathered}
\mathrm{DS}=\mathrm{AS} \quad(\mathrm{~S} \text { is the mid point of } \mathrm{AD}) \\
\mathrm{DR}=\mathrm{RC} \quad(\mathrm{R} \text { is the mid point of } \mathrm{DC}) \\
\therefore \quad \mathrm{SR}=\frac{1}{2} \mathrm{AC} \cdots-(1) \text { (Mid point theorem) } \\
\mathrm{SR} / / \mathrm{AC} \cdots \quad \text { (2id point theorem) }
\end{gathered}
$$

In the triangle ABC
$\mathrm{AP}=\mathrm{BP}$
(P is the mid point of AB .)
$B Q=C Q$
(Q is the mid point of BC .)
$\therefore \quad P Q=\frac{1}{2} A C \cdots$
(3) (Mid point theorem)

And $\quad \mathrm{PQ} / / \mathrm{AC}$
(4) (Mid point theorem)

From(1) and (3): $\mathrm{PQ}=\mathrm{SR}$
From(2) and (4): $\mathrm{PQ} / / \mathrm{SR}$
Hence PQRS is a parallelogram.

Proof of the mid point theorem.
Data $\quad: \mathrm{ABC}$ is a triangle.D and E are the mid points of AB and AC respectively.

To prove that : $\mathrm{DE} / / \mathrm{BC}$ and

$$
\mathrm{DE}=\frac{1}{2} \mathrm{BC}
$$

Construction : Draw a line through C parallel to BA to meet DE produced at F

Proof : In triangles ADE and CEF ,

$$
\begin{aligned}
\mathrm{AE} & =\mathrm{EC} & & (\text { data }) \\
\mathrm{A} \hat{\mathrm{DE}} & =\mathrm{E} \hat{\mathrm{~F}} \mathrm{C} & & \text { (alternate angles, BA // } \mathrm{CF}) \\
\mathrm{A} \hat{\mathrm{ED}} & =\mathrm{C} \hat{\mathrm{EF}} & & (\text { vertically opposite angles }) \\
/ \triangle \mathrm{ADE} & \equiv \triangle \mathrm{CFE} & & (\mathrm{AAS})
\end{aligned}
$$

$$
\therefore \mathrm{AD}=\mathrm{CF} \text { and } \mathrm{DE}=\mathrm{EF}
$$

$$
\text { But } \mathrm{AD}=\mathrm{BD} ; \therefore \mathrm{BD}=\mathrm{CF} \text {. }
$$

$$
\text { In the quadrilateral } \mathrm{BDFC}, \mathrm{BD}=\mathrm{CF} \text { and } \mathrm{BD} / / \mathrm{CF}
$$

$\therefore \mathrm{BDFC}$ is a parallelogram.
/ $\mathrm{DF}=\mathrm{BC}$ and $\mathrm{DF} / / \mathrm{BC}$
But $\mathrm{DE}=\mathrm{EF}$ (corresponding sides of congruent triangles)
$\therefore \mathrm{DE}=\frac{1}{2} \mathrm{DF}$
$\therefore \mathrm{DE}=\frac{1}{2} \mathrm{BC}($ Since $\mathrm{DF}=\mathrm{BC})$
Hence $\mathrm{DE} / / \mathrm{BC}$
and $\underline{\underline{D E=\frac{1}{2}} \mathrm{BC}}$

Exercise 11.2

(1) $A B C$ is an isosceles triangle. P, Q and R are the mid points of $A B, B C$ and CA respectively.Show that PQR is an isosceles triangle.
(2) $A B C D$ is a rectangle. P, Q, R and S are the mid points of $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA respectively. Show that PQRS is a rhombus.

(3) ABCD is a square. $\mathrm{K}, \mathrm{L}, \mathrm{M}$ and N are the mid points of $A B, B C, C D$ and $D A$ respectively. Show that KLMN is a square.

(4) In a triangle $A B C, A B=A C . P, Q$ and R are the mid points of $A B, B C$ and $C A$ respectively. Show that $A P Q R$ is a rhombus.

Converse of the mid point theorem:

Theorem:

In a triangle a line drawn through the mid point of one side, parallel to another side bisects the third side.

In triangle ABC , if $\mathrm{AD}=\mathrm{BD}$ and $\mathrm{DE} / / \mathrm{BC}$ then $\mathrm{AE}=\mathrm{EC}$

Activity 11.2

(1) Draw triangle ABC , with $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=5 \mathrm{~cm}, \mathrm{AC}=4 \mathrm{~cm}$. Mark the mid point D of $A B$. Draw a line through D parallel to $B C$. Let the parallel line cut $A C$ at E. Measure the length $A E$ and find a relationship between $A E$ and $E C$.
(2) State the properties of a parallelogram
(3) In the figure, $\mathrm{PR} / / \mathrm{SQ}$ and $\mathrm{PR}=\mathrm{SQ} . \mathrm{PQ}$ and SR intersect at O . Prove that the triangles POR and SOQ are congruent. Hence write the corresponding sides of the two triangles.

Example 3

In a triangle $P Q R, S$ is the mid point of $Q R$ and T is the mid point of $P S$. The line drawn through T parallel to $P Q$ intersects $P R$ and $Q R$ at X and Y respectively.
Show that $X Y=\frac{3}{4} P Q$.

Data : In the triangle PQR , $\mathrm{QS}=\mathrm{SR}, \mathrm{PT}=\mathrm{TS}$ QP //YX.

To prove that : $\mathrm{XY}=\frac{3}{4} \mathrm{PQ}$.

Construction : Draw a line SZ, parallel to QP to meet PR at Z.
Proof : In triangle PSZ

$$
\begin{array}{r}
\mathrm{PT}=\mathrm{TS} \\
\text { and } \mathrm{TX} / / \mathrm{SZ} \\
\therefore \mathrm{PX}=\mathrm{XZ} \\
\text { and } \mathrm{TX}=\frac{1}{2} \mathrm{SZ} \tag{1}
\end{array}
$$

If $\mathrm{TX}=a$, then $\mathrm{SZ}=2 a$
In triangle PQR ,

$$
\mathrm{QS}=\mathrm{SR}
$$

$$
\text { and } \mathrm{QP} / / \mathrm{SZ}
$$

$\therefore \mathrm{PZ}=\mathrm{ZR} ; \mathrm{SZ}=\frac{1}{2} \mathrm{PQ}$
Since $\mathrm{SZ}=2 a, \mathrm{PQ}=4 a$

In triangle PQS ,

$$
\begin{aligned}
& \mathrm{PT}=\mathrm{TS} \text { and } \mathrm{YT} / / \mathrm{PQ} \\
& \therefore \mathrm{QY}=\mathrm{YS} \text { and } \mathrm{TY}=\frac{1}{2} \mathrm{PQ}
\end{aligned}
$$

$$
\begin{equation*}
\because \mathrm{PQ}=4 a, \mathrm{TY}=2 a \tag{3}
\end{equation*}
$$

$$
\begin{array}{rlr}
& \text { From(1),(2) and(3) } \\
& \mathrm{XY}=\mathrm{TX}+\mathrm{TY}=a+2 a=3 a, \\
& \mathrm{PQ}=4 a, \\
\therefore & \mathrm{XY}=\frac{3}{4} \mathrm{PQ}
\end{array} \quad \begin{aligned}
& X Y=3 a \\
& X Y=3 \frac{P Q}{4} \\
& X Y=\frac{3}{4} P Q
\end{aligned}
$$

Proof of the converse of the mid point theorem

Data

: In triangle
$\mathrm{ABC}, \mathrm{AD}=\mathrm{BD}$ and $\mathrm{DE} / / \mathrm{BC}$

To prove that : $\mathrm{AE}=\mathrm{EC}$

Construction : Draw a line through C parallel to DB to meet DE produced at F .

Proof : In the quadrilateral BCFD
BC // DF
$\mathrm{BD} / / \mathrm{CF}$
$\therefore \quad \mathrm{BCFD}$ is a parallelogram.
$\therefore \quad \mathrm{BD}=\mathrm{CF}$
But, $\mathrm{BD}=\mathrm{AD}$
$\therefore \quad \mathrm{AD}=\mathrm{CF}$.
In the triangles ADE and CFE

$$
\mathrm{AD}=\mathrm{CF}
$$

$\mathrm{A} \hat{D E}=\hat{\mathrm{EF}} \mathrm{C}$ (alternate angles, $\mathrm{DA} / / \mathrm{CF}$)

$$
\begin{aligned}
\mathrm{AED} & =\mathrm{CEF} \text { (vertically opposite angles) } \\
\therefore \triangle \mathrm{ADE} & \equiv \Delta \mathrm{CFE}(\mathrm{AAS}) \\
\therefore \mathrm{AE} & =\mathrm{EC}
\end{aligned}
$$

Exercise 11.3

(1) ABC is a triangle. D and E are the midpoints of $A B$ and $A C$ respectively. X is any point on BC . AX and DE intersect at Y . Show that $\mathrm{AY}=\mathrm{YX}$.

(2) ABC is a triangle. D, E, and F are the mid points of BC, CA and AB respectively. AD and FE intersect at M. Prove that
i. $\mathrm{AM}=\mathrm{MD}$ and
ii. $\quad \mathrm{FM}=\mathrm{ME}$.

(3) ABCD is a parallelogram. E and F are the mid points of BC and AD respectively. The diagonal AC meets BF and DE at G and H respectively. Prove that
i $\mathrm{BF} / / \mathrm{ED}$
ii. $\mathrm{AG}=\mathrm{GH}=\mathrm{HC}$.
(4) In a quadrilateral $\mathrm{ABCD}, \mathrm{E}, \mathrm{F}, \mathrm{G}$ and H are the mid points of $\mathrm{AD}, \mathrm{AC}, \mathrm{BD}$ and $B C$ respectively. If $A B=D C$, prove that EFHG is a rhombus and hence deduce that EH is perpendicular to FG .

(5) In triangle $A B C$, L is the mid point of BC. M is the mid point of AL. BM produced a meets AC at N. Prove that

$$
\mathrm{AN}=\frac{1}{3} \mathrm{AC}
$$

(6) ABC is a triangle and D is the midpoint of BC. Aline drawn through D, parallel to $C A$ meets $A B$ at E and a line drawn through D , parallel to BA meets CA at F. Prove that $\mathrm{EF}=\frac{1}{2} \mathrm{BC}$ and $\mathrm{DE}=\frac{1}{2} \mathrm{AC}$.

(7) In triangle ABC, P is the midpoint of $\mathrm{BC} . \mathrm{Q}$ is a point on AC such that $\mathrm{AQ}: \mathrm{QC}=1: 2$. AP and BQ intersect at R. Prove that $A R=R P$ and

$$
\mathrm{RQ}=\frac{1}{4} \mathrm{BQ}
$$

(8) In triangle $A B C, P$ and Q are the mid points of $A B$ and $A C$ respectively. R is the mid point of PQ . AR produced meets BC at S . Prove that $\mathrm{BS}=\mathrm{SC}$.

(9) ABCD is a parallelogram. The side CB is produced to E so that $\mathrm{CB}=\mathrm{BE}$. DE meets $A B$ at G. Prove that G is the midpoint of $A B$.

