6 Binomial Expressions

By studying this lesson you will acquire knowledge on the following :

- Expansion of $(a+b)^{3}$
- Expansion of $(a-b)^{3}$
- Use of cubic expressions.

6.1 Expansion of $(a+b)^{3}$

The length, breadth and height of a container, the shape of which is a cube of side $a \mathrm{~cm}$ are increased by $b \mathrm{~cm}$ each. Let us find the new volume.

$$
\begin{array}{ll}
\text { Initial volume } & =a \times a \times a \mathrm{~cm}^{3} \\
& =a^{3} \mathrm{~cm}^{3} \\
\text { Volume after increase in size } & =(a+\mathrm{b}) \times(a+\mathrm{b}) \times(a+\mathrm{b}) \mathrm{cm}^{3} \\
& =(a+\mathrm{b})^{3} \mathrm{~cm}^{3}
\end{array}
$$

To simplify the above expression, we should expand $(a+b)^{3}$.

$$
\begin{aligned}
(a+b)^{3}= & (a+b)(a+b)(a+b) \\
& \left(a^{2}+2 a b+b^{2}\right)(a+b) \\
= & a^{3}+2 a^{2} b+a b^{2}+a^{2} b+2 a b^{2}+b^{3} \\
= & a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}
\end{aligned}
$$

Accordingly, $\quad(x+a)^{3}=x^{3}+3 x^{2} a+3 x a^{2}+a^{3}$

6.2 Expansion of $(a-b)^{3}$

As above, let's get the expansion of $(a-b)^{3}$

$$
\begin{aligned}
(a-b)^{3} & =(a-b)(a-b)(a-b) \\
& =\left(a^{2}-2 a b+b^{2}\right)(a-b) \\
& =a^{3}-2 a^{2} b+a b^{2}-a^{2} b+2 a b^{2}-b^{3} \\
& =a^{3}-3 a^{2} b+3 a b^{2}-b^{3} \\
(a-b)^{3} & =a^{3}-3 a^{2} b+3 a b^{2}-b^{3}
\end{aligned}
$$

Accordingly $(y-n)^{3}=y^{3}-3 y^{2} n+3 y n^{2}-n^{3}$

Exercise 6.1

1. Copy the table given below and complete it

	Expansion of $(a+b)^{3}$	Expansion of $(a-b)^{3}$
number of terms
highest power of a
highest power of b
coefficient of a^{3}
coefficient of b^{3}
coefficient of $a^{2} b$
coefficient of $a b^{2}$
the pattern of the coefficients

2. Fill in the blanks.
(i) $(a+b)^{3}=a^{3}+\ldots \ldots+\ldots \ldots \ldots+b^{3}$
(ii) $(x+y)^{3}=\ldots \ldots+3 x^{2} y+3 x y^{2}+\ldots \ldots$.
(iii) $(p+q)^{3}=\ldots \ldots+\ldots \ldots \ldots+3 p q^{2}+\ldots .$.
(iv) $(m+n)^{3}=\ldots \ldots . .+3 m^{2} n+\ldots \ldots \ldots .+\ldots \ldots$
(v) $(l-m)^{3}=l^{3}-3 l^{2} m+\ldots \ldots-m^{3}$
(vi) $(x-y)^{3}=\ldots \ldots \ldots-\ldots \ldots \ldots . .+3 x y^{2}-\ldots \ldots$
3. Expand
(i) $(x+p)^{3}$
(ii) $(t+k)^{3}$
(iii) $(r+s)^{3}$
(iv) $(p-q)^{3}$
(iv) $(c-d)^{3}$
(iv) $(u-v)^{3}$
4. Obtain the expansion of $(x-y)^{3}$, by substituting $(-y)$ for y in the expansion of $(x+y)^{3}$
5. The length, breadth and height of a container, the shape of which is a cube of side $\boldsymbol{a} \mathrm{cm}$ is increased by $\boldsymbol{q} \mathrm{cm}$. Find the increase in volume caused by the change.

6.3 Application of the expansions of $(x+b)^{3}$ and $(x-b)^{3}$

The cube of a binomial expression can be expanded using the above method.
Example 1 Expand $(x+2)^{3}$

$$
\begin{aligned}
(x+2)^{3} & =x^{3}+3 x^{2} \times 2+3 x \times 2^{2}+2^{3} \\
& =\underline{\underline{x^{3}+6 x^{2}+12 x+8}}
\end{aligned}
$$

Example 2 Expand $(a-3)^{3}$

$$
\begin{aligned}
(a-3)^{3} & =a^{3}-3 a^{2} \cdot 3+3 \cdot a \cdot 3^{2}-3^{3} \\
& =\underline{\underline{a^{3}-9 a^{2}+27 a-27}}
\end{aligned}
$$

Example 3 Expand $(1-y)^{3}$

$$
\begin{aligned}
(1-y)^{3} & =1^{3}-3 \cdot 1^{2} \cdot \mathrm{y}+3 \cdot 1 \cdot \mathrm{y}^{2}-\mathrm{y}^{3} \\
& =\underline{\underline{1-3 y+3 \mathrm{y}^{2}-\mathrm{y}^{3}}}
\end{aligned}
$$

This method of expansion of a cube of a binomial expression can be used to find the third power of certain numbers.
Example 4 Find the value of 104^{3}

$$
\begin{aligned}
104^{3} & =(100+4)^{3} \\
& =100^{3}+3 \times 100^{2} \times 4+3 \times 100 \times 4^{2}+4^{3} \\
& =1000000+3 \times 10000 \times 4+3 \times 100 \times 16+64 \\
& =1000000+120000+4800+64 \\
& =\underline{\underline{1124864}}
\end{aligned}
$$

Example 5 Find the value of 47^{3}

$$
\begin{aligned}
47^{3} & =(50-3)^{3} \\
& =50^{3}-3.50^{2} .3+3.50 .3^{2}-3^{3} \\
& =125000-3 \times 2500 \times 3+3 \times 50 \times 9-27 \\
& =125000-22500+1350-27 \\
& =126350-22527 \\
& =\underline{\underline{103} 823}
\end{aligned}
$$

Exercise 6.2

01 Expand each of the expressions given below.
(i) $(x+3)^{3}$
(ii) $(a-2)^{3}$
(iii) $(b-5)^{3}$
(iv) $(4+t)^{3}$
(v) $(5-y)^{3}$
(vi) $(1+x)^{3}$
(vii) $(10-r)^{3}$
(viii) $(1-m n)^{3}$
02. Expand
(i) $\left(x+\frac{1}{x}\right)^{3}$
(ii) $\left(n-\frac{1}{n}\right)^{3}$
(iii) $\left(1-\frac{1}{a}\right)^{3}$
03. Evaluate using the expansion of the cube of a binomial expression.
(i) 102^{3}
(ii) 95^{3}
(iii) 53^{3} (iv) 96^{3}
04. If $a=5, b=2$ then find the value of,
(i) $a-b$
(iv) $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
(ii) $\left(a^{2}+a b+b^{2}\right)$
(v) $\quad(a+b)\left(a^{2}-a b+b^{2}\right)$
(iii) $(a-b)\left(a^{2}+a b+b^{2}\right)$
(vi) $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
05. i. If $(a+b)=5$ and $a b=6$, evaluate $a^{3}+b^{3}$
ii. If $(a-b)=6$ and $a b=7$, evaluate $a^{3}-b^{3}$
iii. If $\quad x-\frac{1}{x}=\frac{8}{3}$, find the value of $x^{3}-\frac{1}{x^{3}}$

I Study the expansion of gradually increasing powers of $(x+a)$ and the pattern $I_{\text {of their coefficients. }}$

By writing the next steps of the pattern shown on the right hand side,
(i) write the expansion of $(x+a)^{4}$
(ii) write the expansion of $(x+a)^{5}$

IStudy the following factorization.

$$
\begin{aligned}
(a+b)^{3} & =a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
a^{3}+b^{3} & =(a+b)^{3}-3 a^{2} b-3 a b^{2} \\
& =(a+b)^{3}-3 a b(a+b) \\
& =(a+b)\left[(a+b)^{2}-3 a b\right] \\
& =(a+b)\left[a^{2}+2 a b+b^{2}-3 a b\right] \\
& =(a+b)\left(a^{2}-a b+b^{2}\right)
\end{aligned}
$$

- By using the expression, $(a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}$ show that,

$$
a^{3}-b^{3}=(a-b)\left(a^{2}+a \mathrm{~b}+\mathrm{b}^{2}\right)
$$

