සියලු හිමිකම ඇවිරිමේ / All Rights reserved විශ්ම පසුත් අධ්පාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP විශ්ම පසුත් අධ්පාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වශ්ම පසුත් අධ්පාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වශ්ම පසුත් අධ්පාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වශ්ම පසුත් අධ්පාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වශ්ම පසුත් අධ්පාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වශ්ම පසුත් අධ්පාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වශ්ම පසුත් අධ්පාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වශ්ම පසුත් අධ්පාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වශ්ම පසුත් අධ්පාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වශ්ම පසුත් අධ්පාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වශ්ම පසුත් අධ්පාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වශ්ම පසුත් අධ්පාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වශ්ම පසුත් අධ්පාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වශ්ම පසුත් අධ්පාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වශ්ම පසුත් අධ්පාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වශ්ම පසුත් අධ්පාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වශ්ම පසුත් අධ්පාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වශ්ම පසුත් අධ්පාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වශ්ම පසුත් අධ්පාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වශ් පසුත් අධ්පාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වශ්ම පසුත් අධ්පාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වශ්ම පසුත් අධ්පාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වශ්ම පසුත් අධ්පාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වශ්ම පසුත් අධ්පාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වශ්ම පසුත් අධ්පාපත පසුත් අධ

Second Term Test - Grade 13 - 2019

Index No:	Combined Mathematics I	Three hours only
-----------	------------------------	------------------

Instructions:

- * This question paper consists of two parts.

 Part A (Question 1 10) and Part B (Question 11 17)
- * Part A

 Answer all questions. Write your answers to each question in the space provided, you may use additional sheets if more space is needed.
- * Part B

Answer five questions only. Write your answers on the sheets provided.

- * At the end of the time allocated, tie the answers of the two parts together so that Part A is on top of part B before handing them over to the supervisor.
- * You are permitted to remove only Part B of the question paper from the Examination Hall.

For Examiner's Use only

		athematics I	Paper I	
Part	Question No	Marks Awarded	Paper II	
seperation .	1 24	Site of the house	Total	
	2	A CONTRACTOR OF THE PARTY OF TH	Final Marks	
. [3			
	4			
. [5			al Mar
A	6		In Numbers	
	7 ,		In Words	
[8			
	9 .			
	10]	
	Total		Marking Examine	r
	11		Marks Checked by	1
•	12		Iviai ks Checked by	2
į	13		Supervised by	
. [14			
В	15			
	16			
	17		P.	
ľ	Total		7	
Pana	r /1 total		-	

Combined Mathematics (Part A)

•••											
									•••••		
••••											
•••	••••••	•••••	••••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••
•••	••••••	••••••	••••••	••••••	••••••	••••••	•••••	••••••	•••••	••••••	••••••
•••	••••••	••••••	••••••		••••••	••••••	•••••	••••••	•••••	••••••	••••••
•••	•••••	•••••	•••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••
•••									•••••		
•••									•••••		
•••											
•••											
•••	•		••••••	•	••••••	••••••		••••••		••••••	••••••
•••	••••••	••••••	••••••	••••••	••••••	••••••	•••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••
•••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••		•••••	•••••	•••••	••••••	•••••	••••••	••••••
•••			•••••		•••••	••••••	•••••				•••••
 Fii	nd the set	of solut	ion of .	x satis	fying the	e inequali	ty $3-x$	$\leq 3x-1 $			
 Fin	nd the set	of solut	ion of	r satis	fying the	e inequali	ty 3-x:	$\leq 3x-1 $			
 Fin	nd the set	of solut	ion of	r satis	fying the	e inequali	ty 3-x:	$\leq 3x-1 $			
 Fii	nd the set	of solut	ion of	x satis	fying the	e inequali	ty 3-x	≤ 3 <i>x</i> −1			
Fin	nd the set	of solut	ion of 2	τ satis	fying the	e inequali	ty 3-x:	$\leq 3x-1 $			
Fii	nd the set	of solut	ion of :	x satis	fying the	e inequali	ty 3-x	≤ 3 <i>x</i> −1			
Fin	nd the set	of solut	ion of	r satis	fying the	e inequali	ty 3-x:	≤ 3 <i>x</i> −1			
											••••••

Evaluate _{x_1}	$\frac{1-\sin\left(\frac{x}{2}\right)}{(\pi-x)^2}$					
		•••••				
•••••		•••••	•••••			•••••
•••••		•••••	•••••	••••••	•••••	•••••
		•••••	•••••			
•••••						
•••••		•••••	•••••	•••••		•••••
8 men. Out o	of possible ways of these committee	s.		luding at leas	t 5 women ou	at of 7 wome
8 men. Out o	these committee	s. najority as wor	men?	luding at leas	t 5 women ou	at of 7 wome
8 men. Out o	these committee	s. najority as wor	men?	luding at leas	t 5 women ou	at of 7 wome
8 men. Out o	these committee	s. najority as wor	men?	luding at leas	t 5 women ou	nt of 7 wome
8 men. Out o	these committee	s. najority as wor	men?	luding at leas	t 5 women ou	t of 7 wome
8 men. Out o	these committee	s. najority as wor	men? n?			
8 men. Out o	these committee teams consists m teams consists m	s. najority as wor	men? n?			
8 men. Out o	these committee teams consists m teams consists m	s. najority as wor	men? n?			
8 men. Out o	these committee teams consists m teams consists m	s. najority as wor	men? n?			
8 men. Out o	these committee teams consists m teams consists m	s. najority as wor	men?			
8 men. Out o	these committee teams consists m teams consists m	s. najority as wor	men? n?			
8 men. Out o	these committee teams consists m teams consists m	s. najority as wor	men?			
8 men. Out o	these committee teams consists m teams consists m	s. najority as wor	men?			
8 men. Out o	these committee teams consists m teams consists m	s. najority as wor	men?			
8 men. Out o	these committee teams consists m teams consists m	s. najority as wor	men?			

05.	Write down r^{th} term Ur of the series $1^3 + 2^3 + 3^3 + \dots$
	If $f(r) = (r-1)^2 r^2$, show that $f(r+1) - f(r) = 4 Ur$. Hence evaluate $\sum_{r=1}^n Ur$.
06.	Find the volume generated by resolving the area enclosed by the curves $y = 3x$, $y = 0$ and $y = -x^2 + 4$ in the xy coordinate plane, through the x axis.

Find the grad	dient of t	he tange	ent drav	vn to th	e curve	at <i>t</i> — ∕l	Henc	e find t	he eana	ition o	of the to
			ent urav	vii to tii	e curve	at $i=4$. Helic	e iiia t	ne equa	uon (or the ta
drawn to the	curve at	t=4.									
	••••••	•••••	•••••	•••••	•••••	•••••	••••••	••••••	••••••	••••••	••••••
•••••	••••••	•••••	•••••	••••••	•••••	•••••	•••••	••••••	•••••	••••••	
•••••		•••••	•••••	••••••	••••••	•••••	•••••	••••••	•••••	•••••	
			•••••	•••••	•••••		•••••	•••••	•••••	•••••	•••••
•••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	
			•••••		•••••			•••••	•••••		
			•••••								
••••••	•••••••••	••••••	•••••	••••••	••••••	•••••	•••••	•••••••	••••••	••••••	••••••
•••••	••••••	•••••	•••••	••••••	••••••	•••••	•••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••		•••••	•••••	•••••	••••••	•••••	•••••	••••••	•••••	•••••	
			•••••		•••••		•••••	•••••	•••••	•••••	
Straight line	passes th	nrough (eets the		 at <i>A</i> and	 Y axi	s at <i>B</i> . 1	Prove th	nat the	e locus
			` ′	eets the	X axis a	nt A and	Y axi	s at <i>B</i> . 1	Prove th	nat the	e locus
			` ′	eets the	<i>X</i> axis a	nt A and	Y axi	s at <i>B</i> . 1	Prove th	nat the	e locus
			` ′	eets the	<i>X</i> axis a	nt A and	Y axi	s at <i>B</i> .	Prove th	nat the	e locus
Straight line midpoint of			` ′	eets the	X axis a	at A and	Y axi	s at <i>B</i> .	Prove th	nat the	e locus
			` ′	eets the	X axis a	at A and	Y axi	s at B.	Prove th	nat the	e locus
			` ′	eets the	X axis a	at A and	Y axi	s at <i>B</i> .	Prove th	nat the	e locus
			` ′	eets the	X axis a	at A and	Y axi	s at B.	Prove th	nat the	e locus
			` ′	eets the	X axis a	at A and	Y axi	s at B.	Prove th	nat the	e locus
			` ′	eets the	X axis a	at A and	Y axi	s at B.	Prove th	nat the	e locus
	AB is, 2	x + y - 2	2xy = 0								
midpoint of	AB is, 2	x + y - 2	2xy = 0								
midpoint of	AB is, 2	x + y - 2	2xy = 0								
midpoint of	AB is, 3	x + y - 2	2xy = 0								
midpoint of	AB is, 3	x + y - 2	2xy = 0								
midpoint of	AB is, 3	x + y - 2	2xy = 0								
midpoint of	AB is, 3	x + y - 2	2xy = 0								
midpoint of	AB is, 2	x + y - 2	2xy = 0								
midpoint of	AB is, 3	x + y - 2	2xy = 0								
midpoint of	AB is, 3	x + y - 2	2xy = 0								

••••••	•••••	•••••	••••••	•••••••	•••••	••••••	•••••	••••••	••••••
••••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••	••••••
•••••••		••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••	•••••	•••••••	•••••••
••••••	•••••	••••••	•••••	••••••	•••••	••••••	•••••	•••••••	••••••
••••••	•••••	••••••	•••••	••••••	•••••	••••••	•••••	•••••••	••••••
••••••	•••••	••••••	•••••	••••••	•••••	••••••	•••••	••••••••	••••••
•••••	•••••	••••••	••••••	••••••	•••••	••••••	•••••	•••••	••••••
•••••		••••••	•••••	••••••	•••••	••••••	•••••	••••••	••••••
•••••		••••••	•••••	••••••	•••••	••••••	•••••	••••••	••••••
•••••	•••••	••••••	•••••	••••••	•••••	••••••	•••••	•••••	••••••
•••••	•••••	••••••	•••••	••••••	•••••	•••••	•••••	••••••	•••••
•••••	•••••	••••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••
•••••		•••••	•••••	•••••	•••••	•••••	•••••		•••••
•••••		•••••		••••••	•••••	•••••	•••••	••••••	••••••
•••••		•••••		••••••	•••••		•••••	•••••	••••••
					•••••				
•••••			•••••		•••••		•••••	•••••	•••••
					•••••				
			••••••						
		$= \frac{2 \tan \theta}{1 + \tan^2 \theta}$	·. He	nce or	otherwise	e solve t	he equation	on sin 2 <i>6</i>	θ – $\tan \theta$ =
		$= \frac{2\tan\theta}{1+\tan^2\theta}$. Не	nce or	otherwise	e solve t	he equation	on sin 2 <i>6</i>	θ – $\tan \theta = 0$
		$= \frac{2\tan\theta}{1+\tan^2\theta}$. Не	nce or	otherwise	e solve t	he equation	on sin 2 <i>6</i>	? – tan θ = 1
		$= \frac{2 \tan \theta}{1 + \tan^2 \theta}$. Не	nce or	otherwise	e solve t	he equation	on sin 2 <i>0</i>	tan θ = 1
$0 \le \theta \le 2\pi$									
)≤θ≤2π.									
$0 \le \theta \le 2\pi$									
)≤θ≤2π.									
$0 \le \theta \le 2\pi$									
) ≤ θ ≤ 2π .									
Prove that $0 \le \theta \le 2\pi$.									
$0 \le \theta \le 2\pi$									
$0 \le \theta \le 2\pi$									
) ≤ θ ≤ 2π.									
0 ≤ θ ≤ 2π.									

Combined Mathematics 13 - I (Part B)

11. *a*. Find the value of λ such that both roots of the equation $\lambda(x^2 + x + 1) = 2x + 1$; to be real and positive. $\lambda \in R$

If α and β are the roots of the above equation when $\lambda = 1\frac{1}{9}$, find the equation whose roots are α^2 and β^2 .

Also find the equation whose roots are $\frac{1}{\alpha^2}$ and $\frac{1}{\beta^2}$.

- b. If α and β are the solutions of the equation $m^2(x^2-x)+2mx+3=0$ and if m_1 and m_2 are the values of m related to the relation $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{4}{3}$, show that the value of $\frac{m_1^2}{m_2}+\frac{m_2^2}{m_1}$ is $-\frac{68}{3}$
- c. Let $f(x)=2x^3+rx^2-12x-7$; $x \in R$, If $(x-\alpha)^2$ is a factor of f(x) show that $\alpha=-1$. $\alpha \in R$. Find the value of r and factorized f(x).
- 12. *a.* Prove that $1+r+r^2+....+r^n=\frac{(1-r^n)}{1-r}$. Hence prove that sum of *n* terms of the series $(1+x)+(1+x+x^2)+(1+x+x^2+x^3)+...$ is given by $\left(\frac{1}{1-x}\right)\left\{n-\frac{x^2(1-x^n)}{1-x}\right\}$.
 - b. r^{th} term of a series is given by $U_r = \frac{r^2 r 1}{(r+1)!}$.

Find the values of λ , μ , δ such that $U_r = \frac{\lambda}{(r-1)!} + \frac{\mu}{r!} + \frac{\delta}{(r+1)!}$, by substituting r = 1,2,3.

7

Verify results for r = 4.

Hence find, $\sum_{r=1}^{n} Ur$.

Is this series convergent? Justify your answer.

13. a. Find the number of permutations that can be prepared using all the letters of the word ANURADHAPURA.

Out of all these permutations, how many words contains all the four letters of A near by. How many of them are at the beginnings?

- b. In a programme of school annual variety entertainment, there were scheduled to perform 3 dramas, 6 songs, and 4 dancing items. However the chief guest had taken more time than the scheduled. So the organizers were decided to perform 2 dramas, 4 songs and 3 dancing items. Find the possible ways of arranging the scheduled,
 - i. If it is possible to arrange any items in any way.
 - ii. If it is possible to arrange any items in the same type in any way.
 - iii. If they can arrange same type of programs according to a scheduled and any order.
- c. Sketch the graph of the functions $y = x^2 + 5$ and y = |5x + 1| on a same coordinate plane. Hence find the set of solution of x satisfying the inequality $|5x + 1| < x^2 + 5$.

14. a.
$$f(x)$$
 is given as $f(x) = \frac{1}{(x-2)(x^2+1)}$ for $x \neq 2$

Show that
$$f'(x) = -\left\{ \frac{(3x-1)(x-1)}{(x-2)^2(x^2+1)^2} \right\}$$

Hence find the turning points. Find the intercept on *Y* axis. Sketch the graph of the function $f(x) = \frac{1}{(x-2)(x^2+1)}$ indicating turning points and asymptotes.

b. Using given amount of steal it is expected to prepare a solid semicircular cylinder as shown in the diagram. Taking radius of the semicircular part as r and height as h, write down expression volume (v) of the solid. Also write down expression for area (s) of the solid using given dimensions. Represent surface area (s) in terms of r and v and show that the ratio between r and h such that surface area is minimum is given by $\pi: \pi+2$.

15. a. Represent
$$\frac{1}{(t-4)(t-9)}$$
 as partial fraction and evaluate $\int \frac{1}{(t-4)(t-9)} dt$

Using substitution
$$x^2 = t$$
 evaluate $\int \frac{x}{(x^2 - 4)(x^2 - 9)} dx$

b. Show that
$$\int_{0}^{a} f(x)dx = \int_{0}^{a} f(a-x)dx$$
 Where a is a constant.

Let,
$$I = \int_{-\pi}^{\pi} \frac{\cos^2 x}{1 + a^x} dx$$
 and $J = \int_{-\pi}^{\pi} \frac{a^x \cos^2 x}{1 + a^x} dx$. Show that $I + J = \pi$

Using above result and considering another linear relationship between I and J find I and J.

Using above type method evaluate
$$\int_{-\pi}^{\pi} \frac{a^x \sin^2 x}{1 + a^x} dx$$
. Deduce the value of $\int_{-\pi}^{\pi} \frac{a^x}{1 + a^x} dx$.

c. Using integration by parts evaluate $\int x^2 \cos x \, dx$

Hence find the area enclosed by the curves $y = x^2 \cos x$, x = 0, $x = \frac{\pi}{2}$ and y = 0.

16. a. Show that ant point on a line which is perpendicular to the line l = ax + by + c = 0 and passing through point P(h, k) can be written in the form of (h + at, k + bt).

Equations of perpendicular bisectors of the sides AB and AC of triangle ABC are x - y + 5 = 0 and x + 2y = 0 respectively. Coordinate at A is (1, -2) Find the equation of side BC.

If O is the circumcenter of triangle ABC, find coordinates at O.

Find the equation of the circle passing through mid-points of sides AB, AC, and points A and O.

- b. Find the equations of the external tangents drawn to the two circles $x^2 + y^2 + 10y + 21 = 0$ and $x^2 + y^2 10y 39 = 0$. Find the coordinates of the two intersecting points of these tangents and the second circle.
- 17. *a*. State and prove the sine rule for any triangle in the standard notation. Also state the cosine rule. Let D is the midpoint of side BC of the triangle ABC and $AD \perp AC$.

Applying sine rule for the triangles ABD and ADC respectively, show that, $AD = -\frac{a \sin B}{2 \cos A}$ and

$$AD = \frac{a}{2}\sin C$$

Hence prove that $3b^2 = a^2 - c^2$

Also show that $\cos A \cos C = \frac{2(c^2 - a^2)}{3ac}$

b. Prove that,
$$\tan 3\theta = \frac{3\tan \theta - \tan^3 \theta}{1 - 3\tan^2 \theta}$$

Hence, solve the equation $\tan \theta + \tan \left(\theta + \frac{\pi}{3}\right) + \tan \left(\theta + \frac{2\pi}{3}\right) = 3$

සියලු හිමිකම් ඇවිරිණි / All Rights reserved

වයඹ පළාත් අධ්යාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයඹ පළාත් අධ්යාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයඹ පළාත් අධ්යාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයඹ පළාත් අධ්යාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයඹ පළාත් අධ්යාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයඹ පළාත් අධ්යාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයඹ පළාත් අධ්යාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයඹ පළාත් අධ්යාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයඹ පළාත් අධ්යාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයඹ පළාත් අධ්යාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයඹ පළාත් අධ්යාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයඹ පළාත් අධ්යාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයඹ පළාත් අධ්යාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයඹ පළාත් අධ්යාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයඹ පළාත් අධ්යාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයඹ පළාත් අධ්යාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වියම් පළාත් අධ්යාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වියම් පළාත් අධ්යාපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වියම් පළාත් අධ්යාපත වේ වියක්ෂ අධ්යාපත වෙන්න අධ්යාපත වෙන්න අධ්යාපත වෙන්න අධ්යාපත වෙන්න අධ්යාපත වෙන්න අධ්යාපත වෙන්නේ අධ්යාපත ව

වයක පළාත් අධ්වාත දෙවර්තමේත්ව Provincial Department of Education - NWP වයක පළාත් අධ්වාත දෙවර්තමේත්ව Provincial Department of Education - NWP වයක පළාත් අධ්වාත දෙවර්තමේත්ව Provincial Department of Education - NWP වයක පළාත් අධ්වාතන දෙවර්තමේත්ව Provincial Department of Education - NWP වයක පළාත් අධ්වාතන දෙවර්තමේත්ව Provincial Department of Education - NWP වයක පළාත් අධ්වාතන දෙවර්තමේත්ව Provincial Department of Education - NWP වයක පළාත් අධ්වාතන දෙවර්තමේත්ව Provincial Department of Education - NWP වයක පළාත් අධ්වාතන දෙවර්තමේත්ව Provincial Department of Education - NWP වයක පළාත් අධ්වාතන දෙවර්තමේත්ව Provincial Department of Education - NWP වයක පළාත් අධ්වාතන දෙවර්තමේත්ව Provincial Department of Education - NWP වයක පළාත් අධ්වාතන දෙවර්තමේත්ව Provincial Department of Education - NWP වයක පළාත් අධ්වාතන දෙවර්තමේත්ව Provincial Department of Education - NWP වයක පළාත් අධ්වාතන දෙවර්තමේත්ව Provincial Department of Education - NWP වයක පළාත් අධ්වාතන දෙවර්තමේත්ව Provincial Department of Education - NWP වයක පළාත් අධ්වාතන දෙවර්තමේත්ව Provincial Department of Education - NWP වයක පළාත් අධ්වාතන දෙවර්තමේත්ව Provincial Department of Education - NWP වයක පළාත් අධ්වාතන දෙවර්තමේත්ව Provincial Department of Education - NWP වයක පළාත් අධ්වාතන දෙවර්තමේත්ව Provincial Department of Education - NWP වයක පළාත් අධ්වාතන දෙවර්තමේත්ව Provincial Department of Education - NWP වයක පළාත් අධ්වාතන දෙවර්තමේත්ව Provincial Department of Education - NWP වයක පළාත් අධ්වාතන දෙවර්තමේත්ව Provincial Department of Education - NWP වන පළාත් අධ්වාතන දෙවර්තමේත්ව Provincial Department of Education - NWP වන පළාත් අධ්වාතන දෙවර්තමේත්ව Provincial Department of Education - NWP වන පළාත් අධ්වාතන දෙවර්තමේත්ව Provincial Department of Education - NWP වන පළාත් අධ්වාතන දෙවර්තමේත්ව Provincial Department of Education - NWP වන පළාත් අධ්වාතන දෙවර්තමේත්ව Provincial Department of Education - NWP වන පළාත් අධ්වාත වන පළාත්ව Provincial Department of Education - NWP වන පළාත්ව Provincial Department of Education - NWP වන පළාත්ව Provincial Department of Education - NWP වන පළාත්ව Provincial Department of Edu

වයඹ පළාත් අධ්නපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයඹ පළාත් අධ්නපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP

Second Term Test - Grade 13 - 2019

Index No:.....

Combined Mathematics II

Three hours only

Instructions:

- * This question paper consists of two parts.
 - Part A (Question 1 10) and Part B (Question 11 17)

Answer all questions. Write your answers to each question in the space provided, you may use additional sheets if more space is needed.

- * Part B
 - Answer five questions only. Write your answers on the sheets provided.
- * At the end of the time allocated, tie the answers of the two parts together so that Part A is on top of part B before handing them over to the supervisor.
- * You are permitted to remove only Part B of the question paper from the Examination Hall.

For Examiner's Use only

Part	Question No	Marks Awarded
	1 -14/2	· Committee Committee
	2	The second second
. [3	
	4	
. [5	
^ [6	
	7 .	
	. 8	
	9	
Γ	10	
Γ	Total	
	11	
1	12	
	13	
	14	9
в	15	
	16	
	17	
	Total	
Pape	r /1 total	

Paper I)
Paper II				
Total		7		
Final Marks				

Final Marks

In Numbers	*	
In Words		

Marking Examiner	
Marks Checked by 1	
Supervised by	

(Part A)

O1) A body A of mass m is attached to one end of a light inextensible string of length l and the other end of the string is attached to a fixed point O on the ceiling and the system is kept in equilibrium such that A is vertically below O. A body B of mass m with horizontal velocity u collides directly with A, If the

coefficient of restitution between A and B is e (0 < e < 1), show that the velocity of A after the collision is $\frac{u}{2}(1+e)$. After the collision, if the mass A moves a maximum distance $\frac{l}{2}$ vertically below the ceiling, show that the velocity of A after the collision is \sqrt{gl} .

If $u = \frac{4}{3} \sqrt{gl}$ show that $e = \frac{1}{2}$.

O2) A particle is projected with a velocity u and angle of elevation 60° from a point O, at a vertical height H from the ground. The particle hits the ground at a point A which is at a horizontal distance a from O. Show that $u^2 = \frac{2 g a^2}{\sqrt{3} a + H}$ and the maximum height reached by the particle from the horizontal level O is $\frac{3 a^2}{4 (\sqrt{3} a + H)}$.

J3)	A light inextensible string passing around a small smooth pulley, fixed to a horizontal ceiling at O is shown in the figure. A mass M is attached to one end of the string and a child of mass m is hung in the other end of the string and he moves along the string. If the child moves up with an uniform acceleration f relative to the string Write down equations necessary to calculate acceleration of the string. Hence find the acceleration of the string.	
		M O n
04)	A motor car of mass $M kg$ travels along a level road with constant speed $V ms^{-1}$	
.,	of the engine $H kw$. After that the motor car travels with the same power we velocity $\frac{v}{3} ms^{-1}$ along a road with inclination α to the horizontal. Then the resist motor car is twice as the resistance of the level road. Show that $1000H = Mgvsi$ g is the acceleration due to gravity.	vith constant

	escribe how to						
						•••••	
	•••••	•••••		•••••	•••••	••••••	•••••
An uniform	rod AB of l	t O , which is length $4l$ and	at a horiz	contal distan	ce 3a f	rom a sm	nooth verti
An uniform A is in cont	rod AB of l	t <i>O</i> , which is length 4 <i>l</i> and wall. If the 1	at a horiz	contal distan	ce 3a f	rom a sm	nooth verti
An uniform A is in cont	rod AB of l	t <i>O</i> , which is length 4 <i>l</i> and wall. If the 1	s at a horiz weight 2V rod makes	contal distan	ce $3a$ for the first f	from a sm on the peg $<\frac{\pi}{2}$ with	nooth vertig such that
An uniform A is in cont	rod AB of l	t <i>O</i> , which is length 4 <i>l</i> and wall. If the 1	s at a horiz weight 2V rod makes	contal distan V is in equil an angle θ	ce $3a$ for the first f	from a sm on the peg $<\frac{\pi}{2}$ with	nooth vertig such that
An uniform A is in cont	rod AB of l	t <i>O</i> , which is length 4 <i>l</i> and wall. If the 1	s at a horiz weight 2V rod makes	contal distan V is in equil an angle θ	ce $3a$ for the first f	from a sm on the peg $<\frac{\pi}{2}$ with	nooth vertig such that
An uniform A is in cont	rod AB of l	t <i>O</i> , which is length 4 <i>l</i> and wall. If the 1	s at a horiz weight 2V rod makes	contal distan V is in equil an angle θ	ce $3a$ for the first f	from a sm on the peg $<\frac{\pi}{2}$ with	nooth vertig such that
An uniform A is in contact that $\sin \theta =$	arod AB of leact with the $\left(\frac{3a}{2l}\right)^{\frac{1}{3}}$. (3a)	t <i>O</i> , which is length 4 <i>l</i> and wall. If the 1	s at a horiz weight 2V rod makes	contal distan V is in equil an angle θ	ce $3a$ filibrium o $0 < \theta$	from a sm on the peg $<\frac{\pi}{2}$ with	nooth verting such that
An uniform A is in contact that $\sin \theta =$	and AB of leact with the $\left(\frac{3a}{2l}\right)^{\frac{1}{3}}$. (3a)	t O , which is length $4l$ and wall. If the in $a < 2l$	s at a horiz weight 21 rod makes	contal distan V is in equil an angle θ	ce $3a$ filibrium o $0 < \theta$	from a sm on the peg $<\frac{\pi}{2}$ with the peg $<\frac{\pi}{2}$ with the peg $<\frac{\pi}{2}$ or $\frac{\pi}{2}$ or	nooth verti
An uniform A is in contact that $\sin \theta =$	and AB of leact with the $\left(\frac{3a}{2l}\right)^{\frac{1}{3}}$. (3a)	t O , which is length $4l$ and wall. If the in $a < 2l$	s at a horiz weight 21 rod makes	contal distan V is in equil an angle θ	ce $3a$ filibrium o $0 < \theta$	from a sm on the peg $<\frac{\pi}{2}$ with the peg $<\frac{\pi}{2}$ with the peg $<\frac{\pi}{2}$ or $\frac{\pi}{2}$ or	nooth verti
An uniform A is in contact that $\sin \theta =$	arod AB of leact with the $\left(\frac{3a}{2l}\right)^{\frac{1}{3}}$. (3a)	t O , which is length $4l$ and wall. If the in $a < 2l$	s at a horiz weight 2V rod makes	contal distan V is in equil an angle θ	ce $3a$ filibrium of $0 < \theta$	from a sm on the peg $<\frac{\pi}{2}$ with the peg $<\frac{\pi}{2}$ with the peg $<\frac{\pi}{2}$ or $\frac{\pi}{2}$ and $\frac{\pi}{2}$ or $\frac{\pi}{2}$ o	nooth verting such that

)7)	Velocities of the particle which experience simple harmony motion, at a distance \boldsymbol{a} from ordered and the center are $\sqrt{6g\boldsymbol{a}}$ and $\sqrt{8g\boldsymbol{a}}$ respectively. Find the amplitude and period of tin of the motion.
(8)	Let A and B are any two events in the sample space Ω . If $P(A \cap B') = \frac{5}{12}$, $P(A') = P(B) = \frac{1}{2}$, find $P(A \cap B)$ and $P(A \cup B)$.
8)	12
08)	$P(B) = \frac{1}{2}$, find $P(A \cap B)$ and $P(A \cup B)$.
98)	$P(B) = \frac{1}{2}$, find $P(A \cap B)$ and $P(A \cup B)$.
08)	$P(B) = \frac{1}{2}$, find $P(A \cap B)$ and $P(A \cup B)$.
08)	$P(B) = \frac{1}{2}$, find $P(A \cap B)$ and $P(A \cup B)$.
98)	$P(B) = \frac{1}{2}$, find $P(A \cap B)$ and $P(A \cup B)$.
98)	Let A and B are any two events in the sample space Ω . If $P(A \cap B') = \frac{5}{12}$, $P(A') = P(B) = \frac{1}{2}$, find $P(A \cap B)$ and $P(A \cup B)$.
8)	$P(B) = \frac{1}{2}$, find $P(A \cap B)$ and $P(A \cup B)$.
98)	$P(B) = \frac{1}{2}$, find $P(A \cap B)$ and $P(A \cup B)$.
98)	$P(B) = \frac{1}{2}$, find $P(A \cap B)$ and $P(A \cup B)$.

09)	Two uniform rods AB , BC each of weight W are freely jointed at B and end A is smoothly and freely hinged to a fixed point. A horizontal force of W is applied at the end C , such that it is in the same plane ABC . If α is the inclination of the rod BC to the downward vertical at the position of equilibrium, show that $\alpha = \tan^{-1}(2)$, Also show that the magnitude of the reaction at B on the rod BC is $\sqrt{2}W$.	Ва	C
10)	A composite solid body composed of a solid cone of radius a and height $4a$ and uniform cylinder of radius $2a$ and heeight $4a$ as shown in the figure. Show that the centre of mass of the body lies at a distance $\frac{75 a}{13}$ from the vertex O		
	of the cone on its axis of symmetry.		4a

Combined Mathematics 13 - II (Part B)

- In a motor car race, two motor cars A and B start their motion with velocities u, 2u and maintain uniform accelerations 2a and a respectively, through the race until finished the race without wining or loss. If the maximum possible distance between two vehicles occurs in the race after time T from the beginning, draw corresponding velocity time graphs for the motion of two motor cars A and B on the same coordinate plane. Hence show that,
 - i. $T = \frac{u}{a}$
 - ii. If the time taken to finish the race is t, t = 2T
 - iii. The distance travelled by two cars (the length of the track) is $\frac{6u^2}{a}$.
 - (b) Two motor vehicles P and Q are moving along two straight roads towards point O, where two roads meet each other. Motor vehicles P is travelling due East from West with velocity $v \, ms^{-1}$ and motor vehicles Q is travelling with velocity $14 \, ms^{-1} (< v)$, in the direction of angle 30° West of South. If the motor vehicle Q travels a distance $12\sqrt{79}$ during 6 seconds relative to the motor car P, using a velocity triangle show that v, satisfies the equation $v^2 14v 120 = 0$. Hence find the value of v. Show that the direction which the motor car Q should travels relative to the motor car P is at an angle of $tan^{-1}\left(\frac{7\sqrt{3}}{13}\right)$ North of West.
 - 12) (a) The triangle ABC in the figure represents a vertical cross section through the centre of gravity of an uniform smooth wedge of mass M. The line AB is a line of greatest slope and $A\hat{B}C = \alpha$, $A\hat{C}B = \frac{\pi}{2}$. The wedge is kept on due smooth horizontal wide stage of a lift such that the side BC is on the bottom of the lift. The lift travels upwards with uniform acceleration f, and a particle of mass 2m is kept at the point A on the line AB and released gently. Obtain

equations which are sufficient to determine acceleration of the particle with respect to the wedge until particle leaves the wedge. Using the above equations, show that,

- i. acceleration of the wedge is, $F = \frac{2m(g+f)\sin\alpha\cos\beta}{(M+2m\sin^2\alpha)}$ and
- ii. The acceleration of the particle relative to the wedge is, $\frac{(g+f)\sin\alpha(m+2m)}{(M+2m\sin^2\alpha)}$

(Consider that the wedge can moves horizontally on the bottom of the stage.)

(b) A smooth circular road which is connected with a smooth straight road made for an adventure game is shown in the figure. The length of the straight part AB is and $\sqrt{3} r$ and it is inclined 30° to the horizontal and the radius of the semicircular surface BCD, connected to it is r. The parts AB and BCD are fixed in the same vertical plane such that the diameter of the circular part is perpendicular to the straight

line part. A child with mass m starts to travel downwards from the stage A and travels in the same vertical plane through the parth ABCD. If V is the velocity of the boy when he is in a position on the circular surface making an angle θ with the vertical at the centre,

- Show that $V^2 = 2 \operatorname{grcos} \theta$. i.
- Show that the total distance travelled along the path before reversing his motion is, ii.

$$\frac{r}{3}\left[2\pi+3\sqrt{3}\right].$$

Show that this motion is protective along the circular path.

- 13) One end of an light elastic string of natural length l is attached to a fixed point O on a (a) ceiling and a bin of mass m is attached to the other end. A monkey with mass m is inside the bin and the system is in equilibrium at a vertical height $\frac{3l}{2}$ from O.
 - Show that the modules of elasticity of the string is 4mg.
 - After that the monkey gets down from the bin gently. In the subsequent motion when the bin is at a distance x > (l) below O, show that the distance x satisfies the equation $\ddot{x} + \frac{4g}{l} \left[x - \frac{5l}{4} \right] = 0$ Now, let $x - \frac{5l}{4} = X$

Now, let
$$x - \frac{5l}{4} = X$$

Then show that the above motion is in the form $\ddot{X} + \omega^2 X = 0$. Hence show that the motion is simple harmonic.

iii. Find the centre and the amplitude of the motion and show that this is a complete simple harmonic motion.

- iv. Show that the period of the motion is $\pi \sqrt{\frac{l}{a}}$.
- v. The monkey takes the bin and comes to the point O and jump vertically downwards with the bin with velocity $\sqrt{2gl}$ such that it moves under gravity. When the monkey is at a distance y(y > 1) below 0, show that the distance y satisfies the equation $l\dot{y}^2 + 2g(y-l)^2 - 2gyl - 2gl^2 = 0$
- vi. Using the above equation, show that the maximum distance reached by the monkey with the bin from 0 is 3l.

14) (a) Let the position vectors of the points A and B relative to a point D are \underline{a} and \underline{b} respectively. The point D is on AB such that AD:DB=1:3. The line D is produced to D such that DD:DE=1:2.

Show that $\overrightarrow{DE} = \frac{3\underline{a} + \underline{b}}{2}$ and $\overrightarrow{AE} = \frac{5\underline{a} + 3\underline{b}}{4}$.

Now a line is drawn through B parallel to OE. It meets the produced line AE at F.

Taking $\overrightarrow{BF} = \lambda \overrightarrow{OE}$ and $\overrightarrow{AF} = \mu \overrightarrow{AE}$, show that $\lambda = \frac{8}{3}$ and $\mu = 4$.

Hence find the ratio AE : EF. Also find \overrightarrow{BF} .

(b) $A \equiv (8,0), B \equiv (8,6), C \equiv (0,6)$ are three points on the *OXY* plane. *O* is the origin. Force of magnitudes P, Q, R and S newton's act along the sides OA, AB, CB and OC in the order of the letters respectively. All the distances here are measured in meters. The line of action of this system of forces reduces to a single force along the line. 2x - 3y - 6 = 0. The anticlockwise moment of the system of forces about the origin O is AB = 0. If AB = 0 independently the magnitude of the forces AB = 0 independently the magnitude of the forces AB = 0.

Now by adding an additional force to the system of forces, the new system reduces to a couple of anticlockwise moment $70 \, Nm$. Find the magnitude, direction and the line of action of the additional force.

15) (a) Frame work ABCDE consisting of 7 light roads is given in the figure. The weights w are attached at the joints A and D. B and C are two smooth supports and the frame work is kept in equilibrium in a vertical plane. BC = BE = EC and AB = CD and EA = ED. $A\hat{E}B = C\hat{E}D = 30^{\circ}$ and $A\hat{C}D = A\hat{B}E = 90^{\circ}$. Find the reactions at B and C and find the stress on the rods classifying them in to tensions or thrusts.

(b) The length of an uniform rod AB is 2a and it is hinged smoothy at A. The rod is kept such that the rod touch the circular surface of an uniform semicircular disc of radius a and weight

w at C and $AC = \sqrt{3} a$. The system is kept in equilibrium such that the base of the semicircular disc is on a rough horizontal floor and the surface at C is smooth. If the coefficient of friction between the floor and the plane base is μ show that $\mu \geq \frac{4-\sqrt{3}}{13}$.

Using integration show that the centre of mass of an uniform solid hemisphere of radius a lies at a distance $\frac{3}{8}a$ from its centre.

A solid right circular cylinder part of radius a and height 2a is removed from an uniform solid hemisphere of radius 3a and density σ . Now a cylinder of radius a, height 3a and density $k\sigma$ is attached at point C of the above remaining part such that their symmetic axis coinside with each other. Now

show that the centre of mass of the solid body R is at a distance axis of symmetry.

 $\frac{(73+54K) a}{4(16+3k)}$ from *O*, on the

Then the solid body R is kept in equilibrium by touching surface containing AOB on a rough plane, inclined at an angle α ($0 < \alpha < \frac{\pi}{2}$) to horizontal with line AOB is along the line of greatest slope.

If the coefficient of friction between the body R and the plane is μ .

Show that $\mu \ge \tan \alpha$ and show that $\tan \alpha < \frac{12(16+3k)}{73+54k}$.

- 17) (a) A and B are any two events in the sample space S. Define what is meant by each of the followings given below.
 - i. A and B are exhaustive events.
 - ii. A are B are mutually exclusive events.
 - (b) Let A and B are any two events in a sample space. A' and B' are the complementary events of A and B respectively. Show that,
 - i. P(A') = 1 P(A)
 - ii. $P(A) = P(A \cap B) + P(A \cap B')$
 - iii. $P(A \cup B) = P(A) + P(B) P(A \cap B)$ If $P(A) = \frac{2}{5}$, $P(B') = \frac{3}{10}$, $P(A' \cup B') = \frac{17}{20}$ find, $P(A' \cap B')$, $P(A \cup B)$ and $P(A' \cap B)$.
 - (c) In a box there are 3 blue, 4 red and 5 green identical balls. Three balls are taken randomly, one by one, one at a time from the box without replacement. Find the probabilities of,
 - i. All the 3 balls are in the same colour.
 - ii. Getting blue, red and green balls respectively.
 - iii. Not getting any red ball.
 - iv. Getting at least one red ball.

Second Term Test - 2019

Combined Mathematics I - Part A - Grade 13

Part A.

1. When
$$n=1$$
, $LHS=13^n-4^n$

Therefore, it is true for $n=1$. (5)

Take any $p \in \mathbb{Z}^t$, assuming that the result is true for $n=p$.

i.e. $13^p-4^p=9K$; $K\in \mathbb{N}$. (5)

When $n=p+1$, $13^{p+1}-4^{p+1}$

$$= 13^p\times13-4^p$$

$$= (4^p+9K)\times13-4^p+1$$

$$= 4^p\times13-4^p\times4+13\times9K$$

$$= 4^p\times9+13\times9K$$

$$= 9(4^p+13K)$$

$$= 9Y; Y\in \mathbb{Z}$$

Hence, if the result is true for $n=p$, then it is also true for $n=p+1$. There fore by using the principle of Mathematical Induction, the result is true for $n=p+1$.

02.
$$3-x \in |3x-1|$$

$$|3x-1| = \int_{-3x+1}^{3x-1} |x| = \frac{1}{3}$$

$$x = 1$$

$$x \in [-1, 1]$$
 (5)

3.
$$z \xrightarrow{\lim} \frac{1-\sin\frac{\pi}{2}}{(\pi-x)^2}$$

Let $z-\pi = \theta$. Then,

$$z \xrightarrow{\lim} \frac{1-\sin\frac{\pi}{2}}{(\pi-x)^2} = e^{\lim} \frac{1-\sin(\frac{\pi}{2}+\frac{\theta}{2})}{(-\theta)^2}$$

$$= e^{\lim} \frac{1-\cos\frac{\theta}{2}}{e^2} = e^{\lim} \frac{1-\cos\frac{\theta}{2}}{e^$$

04. Women
$$-7$$
 $\xrightarrow{7}$ $\rightarrow 12$ men -8 $\xrightarrow{12}$

$$7_{C5} \times {}^{8}C_{7} = \frac{7!}{2!5!} \times \frac{8!}{1!7!} = \frac{7 \times 4}{2} \times 8$$

$$= 21 \times 8$$

$$= 168$$

$$7_{C_{6}} \times {}^{8}C_{6} = \frac{7!}{1!6!} \times \frac{8!}{2!6!} = 7 \times \frac{4 \times 7}{2}$$

$$= 49 \times 4$$

$$= 196$$

$$7_{C_{7}} \times {}^{8}C_{5} = \frac{7!}{0!7!} \times \frac{8!}{3! \times 5!} = 1 \times \frac{8 \times 7 \times 4}{3 \times 2}$$

: The number of permutations of
$$\frac{7}{3} = 168 + 196 + 56$$

commettees with 12 members $= 420 \ (6)$

5.
$$U_r = \frac{r^3}{6}$$

$$f_{(r+1)} - f_{(r)} = r^2 (r+1)^2 - (r-1)^2 r^2$$

$$= r^2 \left\{ r^2 + 2r + 1 - r^2 + 2r - 1 \right\}$$

$$= r^2 (4r)$$

$$= 4r^3$$

$$= 4ur = 6$$

$$\therefore f_{(r+1)} - f_{(r)} = 4ur$$

when $r = 1$ $f_{(2)} - f_{(1)} = 4u_1$

$$r = 2 \quad f_{(2)} - f_{(2)} = 4u_2 \quad (5)$$

$$r = 3 \quad f_{(2)} - f_{(3)} = 4u_3$$

$$\vdots \quad \vdots \quad \vdots$$

$$r = n - 1 \quad f_{(n)} - f_{(n-1)} = 4u_n \quad (7n + 1) - f_{(n)} = 4u_n$$

$$f_{(n+1)} - f_{(1)} = 4 \int_{r=1}^{n} u_r \quad (7n + 1)^2 \quad ($$

y = 3x $y = -x^2 + 4$

Volume

generated =
$$\int \pi (3x)^2 dx + \int \pi (-x^2 + 4)^2 dx$$

= $9\pi \left[\frac{x^3}{3}\right]_0^1 + \pi \left[\frac{x^5}{5} - 8\frac{x^3}{3} + 16x\right]_0^2$

= $9\pi \left[\frac{1}{3} + \pi \left(\frac{32}{5} - \frac{64}{3} + 32 - \frac{1}{5} + \frac{8}{3} - 16\right)\right]$

= $3\pi + \pi \left(\frac{31}{5} - \frac{56}{3} + 16\right)$

= $\pi \left(\frac{93 - 280 + 19 \times 15}{15}\right)$

= $\pi \left(\frac{93 - 280 + 19 \times 15}{15}\right)$

= $\pi \left(\frac{93 - 280 + 285}{15}\right)$

= $\pi \left(\frac{93 - 280 + 285}{15}\right)$

07.
$$x = \sqrt{1} \implies \frac{dx}{dt} = \frac{1}{2}t^{-\frac{1}{2}} = \frac{1}{2\sqrt{t}}$$
 $y = t + \frac{1}{2} \implies \frac{dy}{dt} = 1 + \frac{1}{2}t^{-\frac{3}{2}} = 1 - \frac{1}{2t\sqrt{t}}$

$$\frac{dy}{dn} = \frac{2t\sqrt{t} - 1}{2t\sqrt{t}} \times \frac{2\sqrt{t}}{1} = 2\sqrt{t} - \frac{1}{t} = \frac{1}{2t\sqrt{t}}$$

When $t = 4$; $\frac{dy}{dx} = 2x^2 - \frac{1}{4} = 3\frac{3}{4} = \frac{3}{4} = \frac{3}{4$

08.

Let P(h,k) be the mrd-point of line segment AB passing through the paint (1,D. segment AB meets the coordinate Let the line segment AB meets the coordinate axes at the points A (a,o) and B (0,b) respectively.

 $M = -\frac{1}{a}$

$$\frac{y-o}{x-a} = \frac{-b}{a} \Rightarrow ay = -bx + ab$$

$$bx + ay = ab \Rightarrow \frac{\alpha}{a} + \frac{y}{b} = 1 - 0$$

Since it passes through (1,1) $\frac{1}{a} + \frac{1}{b} = 1 \implies a+b = ab = 0$

But P(h, k) = P(3, 2)

: a = 2h and b = 2k 3

Substituting these values in 1 2h+2k=4hk

Since h, k are variable, let h=x any kzy

Then $9x+2y = 24xy \Rightarrow x+y = 2xy = 0$

$$r = \frac{4r + 3r - 6}{\sqrt{4^2 + 3^2}}$$

$$\pm r = \frac{7r - 6}{5}$$

The eq of circles are.;

$$\frac{(x-3)^{2} + (y-3)^{2} = 3^{2}}{(x-\frac{1}{2})^{2} + (y-\frac{1}{2})^{2} = (\frac{1}{2})^{2}}$$
 and

10.
$$Sin 2\theta = \frac{2 \tan \theta}{1 + \tan^2 \theta}$$
 (5)

$$L: H: S = Sin 2\theta = \frac{2 \sin \theta \cdot \cos \theta}{\cos^2 \theta + \sin^2 \theta}$$

$$= \frac{2 \sin \theta}{\cos^2 \theta} + \frac{\cos \theta}{\cos^2 \theta}$$

$$= \frac{2 \tan \theta}{\cos^2 \theta} = R: H: Si$$

$$= \frac{2 \tan \theta}{1 + \tan^2 \theta} = \tan \theta$$

$$= \tan \theta \left[\frac{2 - 1 - \tan^2 \theta}{1 + \tan^2 \theta} \right]$$

$$= \tan \theta \left[\frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} \right]$$

$$= \tan \theta \left[\frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} \right] = 0$$

$$1 + \tan^2 \theta > 0.$$

$$\therefore \tan \theta = \tan \theta, \tan \theta = \tan \theta$$

$$\therefore \theta = \ln 1 \cdot \ln 2 = \tan \theta$$

$$\therefore \theta = \ln 1 \cdot \ln 2 = \tan \theta$$

$$\Rightarrow \sinh \theta = 0, \tan \theta = \tan \theta$$

$$\Rightarrow \sinh \theta = 0, \tan \theta = -\frac{1}{4} \cdot \ln 2 = \cot \theta$$

$$\Rightarrow \sinh \theta = 0, \tan \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0, \sin \theta = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot 8 = 0$$

$$\Rightarrow \sinh \theta = 0 \cdot$$

(i) a)
$$n(x^2+x+1)=2x+1$$

 $nx^2+(n-2)x+n-1=0$
When the roots are real and positive,
 $\Delta \geqslant 0$, $\alpha+\beta \geqslant 0$, $\alpha\beta \geqslant 0$ (5)
 $(n-2)^2-4n(n-1)\geqslant 0$
 $n^2-4n+4-4n^2+4n\geqslant 0$
 $-3n^2+4\geqslant 0$
 $3n^2-4\leqslant 0$
 $(\sqrt{3}n-2)(\sqrt{3}n+2):\leqslant 0$

$$(\overline{I3}, -2)(\overline{I3}, +2) + (\overline{I3}, -2)(\overline{I3}, +2)$$

$$(\overline{I3}, -2)(\overline{I3}, +2) + (\overline{I3}, -2)(\overline{I3},$$

$$-\frac{(3-2)}{3}>0$$

$$\frac{(3-2)}{3}<0$$

$$\begin{array}{c|cccc} & (-\omega,0) & (0,2) & (2,\omega) \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$$

$$\frac{n-1}{n} > 0$$

$$\frac{n(n-1)}{n^2} > 0$$

(-0,0)	(0,1)	(1,00)	
\oplus	305 50	(

$$\eta \in (-\infty,0) \cup (1,\infty) \longrightarrow \mathcal{O}.$$
 \bigcirc

$$\beta \in \left(1, \frac{2}{\sqrt{3}}\right) \cdot 5$$

When
$$n=1\frac{1}{9}=\frac{10}{9}$$

$$\alpha + \beta = \frac{9-2}{9} = \left(\frac{10}{9} - 2\right) \div \frac{10}{9}$$

$$= \frac{-8}{9} \times \frac{9}{10}$$

b)
$$m^{2}(a^{2}-a) + 2m\alpha + 3 = 0$$

 $m^{2}\alpha^{2} - m^{2}\alpha + 2m\alpha + 3 = 0$
 $m^{2}\alpha^{2} + (2m - m^{2})\alpha + 3 = 0$
 $\alpha + \beta = \frac{(2m - m^{2})}{m^{2}} = \frac{m - 2}{m}$ (5)
 $\alpha \beta = \frac{3}{m^{2}}$ (5)
 $\frac{d}{\beta} + \frac{\beta}{\alpha} = \frac{4}{3} \Rightarrow \frac{a^{2} + \beta^{2}}{\alpha \beta} = \frac{4}{3}$
 $3(a^{2} + \beta^{2}) = 4\alpha\beta$.
 $3(a + \beta)^{2} - 6\alpha^{2}\beta = 4\alpha\beta$ (7)
 $3(a + \beta)^{2} - 10\alpha\beta = 6$ (5)
 $3(a + \beta)^{2} - 10\alpha\beta = 6$ (5)
 $m^{2} + 4m - 6 = 0$ (5)
 $m^{1} + m_{2} = 4$ and $m_{1}m_{2} = -6$ (9)
 $\frac{m_{1}^{2}}{m_{2}} + \frac{m_{2}^{2}}{m_{1}} = \frac{m_{1}^{3} + m_{2}^{3}}{m_{1}m_{2}}$
 $= (m_{1} + m_{2})^{3} - 3m_{1}m_{2}(m_{1} + m_{2})$ (6)

$$= \frac{4^{\frac{3}{-3}}(-6)^{\frac{4}{-6}}}{-6}$$

c)
$$f(x) = 2x^{3} + xx^{2} - 12x - 7$$

 $= (x - \alpha)^{2} (2x + A).$ (10)
 $= (x^{2} - 2\alpha x + \alpha^{2}) (2x + A).$
 $= 2x^{3} + 9x^{2} - 4\alpha x^{2} - 28\alpha x + 2\alpha^{2}x + \alpha^{2}A$
 $= 2x^{3} + (x - 4\alpha)x^{2} + (2\alpha^{2} - 28\alpha)x + \alpha^{2}B$

$$2^{2} \Rightarrow A - 4d = r - 0$$
 $2^{2} \Rightarrow 2^{2} - 2Ad = -12 - 0$
 $2^{2} \Rightarrow 2^{2} \Rightarrow 2^{2} \Rightarrow 0$

Constant on
$$\alpha^2 = -7 - 3$$

$$f(x) = \frac{f(x) = \frac{(x-1)^2(2x-7)}{6}$$

12. q. Let
$$S_n = 1 + r + r^2 + \cdots + r^n$$

$$+ S_n = r + r^2 + r^3 + \cdots + r^{n+1}$$

$$S_n(r-1) = r^{n+1} - 1$$

$$S_n = \frac{r^{n+1} - 1}{r - 1}$$

$$= \frac{1 - r^{n+1}}{1 - r} = 1$$

$$(1+x)_{+}(1+x+x^{2})_{+}(1+x^{2}+x^{2}+x^{3})_{+}....$$

$$= \frac{1-x^{2}}{1-x}_{+} + \frac{1-x^{3}}{1-x}_{+} + \frac{1-x^{4}}{1-x}_{+} +$$

$$= \left(\frac{1}{1-x}\right)_{+} \left\{n - \left(x^{2}+x^{3}+x^{4}+...x^{n+1}\right)_{+}^{7}\right\}$$

$$= \left(\frac{1}{1-x}\right)_{+} \left\{n - x^{2}\left(2+x+x^{2}+...x^{n+1}\right)_{+}^{7}\right\}$$

$$= \left(\frac{1}{1-x}\right)_{+} \left\{n - x^{2}\left(1-x^{n}\right)_{+}^{7}\right\} \qquad (25)$$

b.
$$U_1 = \frac{1^2 - 1 - 1}{(HI)!} = \frac{1}{2}$$

$$U_2 = \frac{2^2 - 2 - 1}{(2 + 1)!} = \frac{1}{6}$$

$$U_3 = \frac{3^2 - 3 - 1}{(3 + 1)!} = \frac{5}{4 \times 3 \times 2} = \frac{5}{24}$$

$$U_4 = \frac{4^2 - 4 - 1}{(4 + 1)!} = \frac{11}{5 \times 24} = \frac{11}{120}$$

Also,
$$U_{1} = \frac{2}{0!} + \frac{M}{1!} + \frac{8}{2!}$$
 $-\frac{1}{2} = \frac{2}{7!} + \frac{M}{1!} + \frac{8}{2!}$
 $-1 = 227 + 2M + 8 - 0$
 $U_{2} = \frac{2}{7!} + \frac{M}{2!} + \frac{8}{2!}$
 $\frac{1}{6} = \frac{2}{7!} + \frac{M}{2!} + \frac{8}{6!}$
 $1 = 627 + \frac{M}{2!} + \frac{8}{4!}$
 $\frac{5}{24!} = \frac{2}{2!} + \frac{M}{6!} + \frac{8}{24}$
 $\frac{3}{2!} = \frac{2}{2!} + \frac{M}{6!} + \frac{8}{24}$
 $\frac{3}{2!} = \frac{2}{2!} + \frac{2}{4!} + \frac{1}{4!}$
 $\frac{3}{2!} = \frac{2}{2!} + \frac{1}{4!} + \frac{1}{5!}$
 $\frac{3}{2!} = \frac{2}{2!} + \frac{1}{4!} + \frac{1}{5!}$
 $\frac{3}{2!} = \frac{2}{4!} + \frac{1}{5!}$
 $\frac{3}{2!} = \frac{2}{4!} + \frac{1}{5!}$
 $\frac{3}{2!} = \frac{2}{4!} + \frac{1}{5!}$

$$\int_{r=1}^{n} u_{r} = \frac{-n}{n! (n+1)} = \frac{-1}{n!} \left(\frac{n}{n+1}\right)$$

$$= \frac{-1}{n!} \left(\frac{1}{1+\frac{1}{n}}\right)$$

$$= 0 \times 1$$

$$= 0$$
(6)

: the series is convergent. (5)

13. WANDRADHAPURA

$$\frac{12!}{4!2!2!} = \frac{3}{12 \times 11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4!}$$

$$\frac{9!}{2!2!} = \frac{9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2!}{2! \times 2}$$

$$= \frac{90720}{20} = \frac{1000}{20} = \frac{1000}{2$$

(ii)
$$3/ \times 2/ \times 4/ \times 3/ = 36 \times 48$$

= 1728 (15)

(ii)
$$3! = 6 (5)$$

$$-5x-1 = x^{2}+5$$

$$x^{2}+5x+6 = 0$$

$$x=-3, x=-2$$

$$5x+1 = x^{2}+5$$

 $x^{2}-5x+4=0$
 $(x-4)(x-1)=0$
 $x=4, x=1$

$$(-\infty, -3) \cup (-2, 1) \cup (4, \infty) (15)$$

14) a) for
$$x \neq 2$$
; $f(x) = \frac{1}{(x-2)(x^2+1)}$

$$\frac{dy}{dx} = \frac{(x-2)(x^2+1)x0 - 1 \{(x-2)2x + (x^2+1)^2\}}{(x-2)^2(x^2+1)^2}$$

$$\frac{dy}{dx} = \frac{-2x^2 + 4x + x^2 - 1}{(x^2-2)^2(x^2+1)^2}$$

$$\frac{dy}{dx} = \frac{-3x^2 + 4x - 1}{(x-2)^2(x^2+1)^2}$$

$$= -\frac{\{(3x-1)(x-1)\}}{(x-2)^2(x^2+1)^2}$$
When $x = \frac{1}{3}$ and $x = \frac{1}{3}$; $f(x) = 0$

Then $f(x) = \frac{1}{3}$

$$f(\frac{1}{3}) = \frac{-2\pi}{30}$$

$$f(0) = -\frac{1}{2}$$

$$f(\frac{1}{3}, -\frac{2\pi}{3c})$$
 and $f(0, -\frac{1}{3})$ are turning points.

There is a verticle asymptote; x=2. (5)

b)
$$V = \frac{1}{2}\pi r^{2}h$$

$$S = \pi r^{2} + 2rh + 2\pi rh$$

$$= \pi r^{2} + 2rh + \pi rh$$

$$= \pi r^{2} + (2+\pi)r \cdot \frac{2V}{\pi r^{2}}$$

$$= \pi r^{2} + (2+\pi)r \cdot \frac{2V}{\pi r}$$

$$= \pi r^{2} + (2+\pi)r \cdot \frac{2V}{\pi r}$$

$$= \pi r^{2} + (2+\pi)r \cdot \frac{2V}{\pi r}$$

$$= 2\pi r + \frac{2(2+\pi)r}{\pi} \cdot (-1)r^{2}$$

$$= 2\pi r + \frac{2V(2+\pi)r}{\pi} \cdot (-1)r^{2}$$

For maximum or minimum s

$$\frac{dz}{dr} = 0$$

$$2\pi r - \frac{2V(2+\pi)}{\pi r^2} = 0.$$

$$2\pi r = \frac{2V(2+\pi)}{\pi r^2}$$

$$r^3 = \frac{V(2+\pi)}{\pi^2}$$

$$V = \frac{x^{2}r^{3}}{(2+\pi)}$$

$$\frac{\pi^{2}r^{3}}{(2+\pi)} = \frac{\pi r^{2}h}{2}$$

$$\frac{\pi r}{(2+\pi)} = \frac{h^{2}}{2}$$

$$\frac{r}{h} = \frac{2+\pi}{2\pi}$$

$$r: h = (2+\pi): 2\pi$$

(t-9)(t-4) =
$$\frac{A}{t-9} + \frac{B}{t-4}$$
 (5)

$$J = B(-5)$$

$$B = -\frac{1}{5}.$$

$$B = -\frac{1}{5}$$
 $A = \frac{1}{5}$ (10)

$$\frac{1}{(t-9)(t-4)} = \frac{1}{5(t-9)} - \frac{1}{5(t-4)}$$

$$\int \frac{1}{(t-q)(t-4)} dt = \int \frac{1}{5(t-q)} dt - \int \frac{1}{5(t-4)} dt$$

$$= \frac{1}{5} / n / t - 9 / \frac{1}{5} / n / t - 4 / - \frac{1}{5} / \frac{$$

$$=\frac{1}{5}\ln\left|\frac{t-9}{t-4}\right|+0$$

When
$$t=x^2$$

$$\frac{dt}{dx} = 2x$$

$$\int \frac{1}{(x^2 - 9)(x^2 - 4)} \cdot 2x \, dx = \frac{1}{5} / n / \frac{x^2 - 9}{x^2 - 4} / t$$

$$2 \int \frac{x}{(x^2-9)(x^2-4)} dx = \frac{1}{5} \ln \left| \frac{x^2-9}{x^2-4} \right|.$$

$$\int \frac{\alpha}{(\alpha^2 - q)(\alpha^2 - 4)} d\alpha = \frac{1}{10} \ln \left| \frac{\alpha^2 - q}{\alpha^2 - 4} \right| + \left(\frac{15}{15} \right)$$

b)
$$\int_{0}^{q} f(x) dx = \int_{0}^{q} f(a-x) dn$$
. $\int_{0}^{\infty} \int_{0}^{\infty} f(x) dx = \int_{0}^{\infty} f(a-x) dn$. $\int_{0}^{\infty} \int_{0}^{\infty} \frac{x}{1+a^{2}} dx$

$$I = \int_{0}^{\pi} \frac{x}{1+a^{2}} dx \qquad J = \int_{0}^{\pi} \frac{x}{1+a^{2}} dx$$

$$I + J = \int_{0}^{\pi} \frac{\cos^{2}x}{1+a^{2}} dx + \int_{0}^{\pi} \frac{x}{1+a^{2}} dx$$

$$I + J = \int_{0}^{\pi} \frac{\cos^{2}x}{1+a^{2}} dx + \int_{0}^{\pi} \frac{x}{1+a^{2}} dx$$

$$I + J = \int_{0}^{\pi} \frac{\cos^{2}x}{1+a^{2}} dx + \int_{0}^{\pi} \frac{x}{1+a^{2}} dx$$

$$I + J = \int_{0}^{\pi} \frac{(1+a^{2})(5)}{(1+a^{2})(5)} dx$$

$$I = \int_{0}^{\pi} \frac{(1+a^{2})(5)}{(1+a^{2})(5)} dx + \int_{0}^{\pi} \frac{x}{1+a^{2}} dx$$

$$I = \int_{0}^{\pi} \frac{\cos^{2}(-x)}{1+a^{2}} dx = J. (5)$$

$$I = \int_{0}^{\pi} \frac{\cos^{2}(-x)}{1+a^{2}} dx = J. (5)$$

(1) and (2)
$$I=J=\frac{\pi}{2}$$
 (5)

$$I_1 = \int \frac{\pi}{1+a^2} \frac{5m^2\pi}{1+a^2} dx$$
 $J_1 = \int \frac{\pi}{a^2 5m^2\pi} \frac{dx}{1+a^2} dx$.

$$I_1 + J_1 = \int_{-\pi}^{\pi} \sin^2 x \, dx.$$

$$= \int_{-\pi}^{\pi} \frac{1 - \cos 2x}{2} \, dx$$

$$= \frac{1}{2} \left\{ 2 - \frac{5m2n}{2} \right\}_{-1}^{1}$$

$$= \int_{-1}^{1} \left\{ 2 - \frac{5m2n}{2} \right\}_{-1}^{1}$$

$$= \int_{-1}^{1} \left\{ 2 - \frac{5m2n}{2} \right\}_{-1}^{1}$$

$$=\frac{1}{2}\left\{\left(\pi-\frac{5m9i}{2}\right)-\left[\left(-1\right)-\frac{5m9i}{2}\right]\right\}$$

$$I_{1} = \int \frac{\pi}{5m^{2}n} dx$$

$$I_{1} = \int \frac{\pi}{1+a^{2}} dx$$

$$-\pi = \int \frac{\int \frac{Sm^{2}(-x)}{1+a^{-x}} dn}{1+a^{-x}}$$

$$=\int_{-\pi}^{\pi} \frac{a^2 \sin^2 n}{1+a^2} dx$$

(3) and (2)

$$T_{1} = J_{1} = \frac{\pi}{2} \quad (3)^{2}$$

$$\int_{-\pi}^{\pi} \frac{a^{2} \cos^{2} a}{1 + a^{2}} dn = \frac{\pi}{2} \int_{-\pi}^{\pi} (4)^{2} dn$$

$$\int_{-\pi}^{\pi} \frac{a^{2} \cos^{2} a}{1 + a^{2}} dn = \frac{\pi}{2} \int_{-\pi}^{\pi} (4)^{2} dn = \pi$$

$$\int_{-\pi}^{\pi} \frac{a^{2} (\sin^{2} a + \cos^{2} a)}{1 + a^{2}} dn = \pi$$

$$\int_{-\pi}^{\pi} \frac{a^{2} (\sin^{2} a + \cos^{2} a)}{1 + a^{2}} dn = \pi$$

$$\int_{-\pi}^{\pi} \frac{a^{2} (\sin^{2} a + \cos^{2} a)}{1 + a^{2}} dn = \pi$$

$$\int_{-\pi}^{\pi} \frac{a^{2} (\sin^{2} a + \cos^{2} a)}{1 + a^{2}} dn = \pi$$

$$\int_{-\pi}^{\pi} \frac{a^{2} (\sin^{2} a + \cos^{2} a)}{1 + a^{2}} dn = \pi$$

$$\int_{-\pi}^{\pi} \frac{a^{2} (\sin^{2} a + \cos^{2} a)}{1 + a^{2}} dn = \pi$$

$$\int_{-\pi}^{\pi} \frac{a^{2} (\sin^{2} a + \cos^{2} a)}{1 + a^{2}} dn = \pi$$

$$\int_{-\pi}^{\pi} \frac{a^{2} (\sin^{2} a + \cos^{2} a)}{1 + a^{2}} dn = \pi$$

$$\int_{-\pi}^{\pi} \frac{a^{2} (\sin^{2} a + \cos^{2} a)}{1 + a^{2}} dn = \pi$$

$$\int_{-\pi}^{\pi} \frac{a^{2} (\sin^{2} a + \cos^{2} a)}{1 + a^{2}} dn = \pi$$

$$\int_{-\pi}^{\pi} \frac{a^{2} (\sin^{2} a + \cos^{2} a)}{1 + a^{2}} dn = \pi$$

$$\int_{-\pi}^{\pi} \frac{a^{2} (\sin^{2} a + \cos^{2} a)}{1 + a^{2}} dn = \pi$$

$$\int_{-\pi}^{\pi} \frac{a^{2} (\sin^{2} a + \cos^{2} a)}{1 + a^{2}} dn = \pi$$

$$\int_{-\pi}^{\pi} \frac{a^{2} (\sin^{2} a + \cos^{2} a)}{1 + a^{2}} dn = \pi$$

$$\int_{-\pi}^{\pi} \frac{a^{2} (\sin^{2} a + \cos^{2} a)}{1 + a^{2}} dn = \pi$$

$$\int_{-\pi}^{\pi} \frac{a^{2} (\sin^{2} a + \cos^{2} a)}{1 + a^{2}} dn = \pi$$

$$\int_{-\pi}^{\pi} \frac{a^{2} (\sin^{2} a + \cos^{2} a)}{1 + a^{2}} dn = \pi$$

$$\int_{-\pi}^{\pi} \frac{a^{2} (\sin^{2} a + \cos^{2} a)}{1 + a^{2}} dn = \pi$$

$$\int_{-\pi}^{\pi} \frac{a^{2} (\sin^{2} a + \cos^{2} a)}{1 + a^{2}} dn = \pi$$

$$\int_{-\pi}^{\pi} \frac{a^{2} (\sin^{2} a + \cos^{2} a)}{1 + a^{2}} dn = \pi$$

$$\int_{-\pi}^{\pi} \frac{a^{2} (\sin^{2} a + \cos^{2} a)}{1 + a^{2}} dn = \pi$$

$$\int_{-\pi}^{\pi} \frac{a^{2} (\sin^{2} a + \cos^{2} a)}{1 + a^{2}} dn = \pi$$

$$\int_{-\pi}^{\pi} \frac{a^{2} (\sin^{2} a + \cos^{2} a)}{1 + a^{2}} dn = \pi$$

$$\int_{-\pi}^{\pi} \frac{a^{2} (\sin^{2} a + \cos^{2} a)}{1 + a^{2}} dn = \pi$$

$$\int_{-\pi}^{\pi} \frac{a^{2} (\sin^{2} a + \cos^{2} a)}{1 + a^{2}} dn = \pi$$

$$\int_{-\pi}^{\pi} \frac{a^{2} (\sin^{2} a + \cos^{2} a)}{1 + a^{2}} dn = \pi$$

$$\int_{-\pi}^{\pi} \frac{a^{2} (\sin^{2} a + \cos^{2} a)}{1 + a^{2}} dn = \pi$$

$$\int_{-\pi}^{\pi} \frac{a^{2} (\sin^{2} a)}{1 + a^{2}} dn = \pi$$

$$\int_{-\pi}^{\pi} \frac{a^{2} (\sin^{2} a)}{1 + a^{2}} dn = \pi$$

$$\int_{-\pi}^{\pi} \frac{a^{2} (\sin^{2} a)}{1 + a^{2}} dn = \pi$$

$$\int_{-\pi}^{\pi} \frac{a^{2} (\sin^{2} a)}{1 + a^{2}} dn = \pi$$

$$\int_{-\pi}^{\pi} \frac{a^{2}$$

(16) (a).
$$P(h,k)$$

$$= \frac{b}{a}$$

$$= m_1 = -\frac{a}{b}$$

$$\frac{\overline{y}-h}{\overline{x}-h} = \frac{b}{a} \implies \frac{\overline{y}-k}{b} = \frac{\overline{z}-h}{a} = t$$

where t is a parametre.

Then
$$\bar{x} = at + h$$
 and $\bar{y} = bt + k$

$$(\overline{z},\overline{g}) = (a+h,b+k)$$

is given as (at+h, b++k)

Any point on AB can be written as (t+1, -t-2). When it is the mid-point of AB, it satisfies the equation x-y+5=0.

$$\begin{array}{ccc}
(700) & t+1+t+2+5 &= 0 \implies 2t=8 \\
\Rightarrow & t=-4. \\
\therefore & M = (-3,2)
\end{array}$$

In the same manner, any point on AC can be written as (t+1, 2t-2). When it is the mid-point (N) of AC, it satisfies the equation x+2y=0.

Now, let's find B. Let
$$B = (x_B, y_B)$$

Then, $(-3,2) = \left(\frac{1+x_B}{2}, -\frac{2+y_B}{2}\right)$
 $x_B = -b-1$ $y_B = A+2$
 $= -7$ $= 6$

Let's find
$$C$$
; let $C = (\chi_c, y_c)$.
Then $(\frac{3}{5}, \frac{-4}{5}) = (\frac{1+\chi_c}{2}, \frac{-2+y_c}{2})$
 $\Rightarrow 16 = 5 + 5 \times c$ $-8 = -10 + 5 \times c$
 $\Rightarrow \chi_c = \frac{11}{5}$ $\Rightarrow y_c = \frac{2}{5}$
 $\therefore C = (\frac{11}{5}, \frac{2}{5})$

Then equation of BC is
$$\frac{y-6}{z+7} = \left(\frac{6-\frac{2}{5}}{-7-\frac{11}{5}}\right) = \left(\frac{\frac{25}{5}}{-\frac{46}{5}}\right)$$

$$= -\frac{28}{46} = -\frac{14}{23}$$

$$939 - 138 = -14 \times -98$$

$$14 \times +239 - 40 = 0$$

Coordinates of 0, x+2y = x-y+5 $\Rightarrow 3y = 5 \Rightarrow y = \frac{5}{3}$ Then, $x = -2^{\infty}\frac{5}{3} = \frac{-10}{3}$ $\therefore 0 = (-\frac{10}{3}, \frac{5}{3})$

The centre I of the circle passing through A, M,O and N is the mid-point of AO.

$$I = \left(\frac{1 - \frac{10}{3}}{2}, \frac{-2 + \frac{5}{3}}{2}\right) = \left(\frac{-7}{6}, \frac{-1}{6}\right)$$

Radius (r) of this circle is \$ OA.

$$\begin{array}{l}
\text{Radius (1)} \\
\text{IIII (1)} \\
\text{IIII$$

The equation of that circle is $(x+\frac{7}{6})^2 + (y+\frac{1}{6})^2 = \frac{290}{36} = \frac{145}{18}$ $x^2 + \frac{7}{3}x + \frac{49}{36} + y^2 + \frac{1}{3}y + \frac{1}{36} = \frac{145}{18}$ $x^2 + y^2 + \frac{7}{3}x + \frac{1}{3}y + \frac{25}{18} - \frac{145}{18} = 0$ $x^2 + y^2 + \frac{7}{3}x + \frac{1}{3}y - \frac{120}{18} = 0$ $x^2 + y^2 + \frac{7}{3}x + \frac{1}{3}y - \frac{120}{18} = 0$ $x^2 + y^2 + \frac{7}{3}x + \frac{1}{3}y - \frac{20}{3} = 0$

$$x^{2}+y^{2}-10y-39=0$$
 $(0,5)-(enter)$
 $r=\sqrt{5^{2}+39}$
 $=8$

$$\frac{8}{2} = \frac{10+d}{d}$$

$$4d = \frac{10+d}{d}$$

$$d = \frac{10}{3}$$

$$x^{2}+y^{2}+10y+21=c$$
 $(0,-5)-(enter)$
 $r=\sqrt{5^{2}-21}$
= 2.

$$\cos x = \frac{8}{10 + \frac{10}{3}} = \frac{8 \times 3}{40} = \frac{3}{5}$$

$$21 = 5 - 8\cos K$$

$$= 5 - 8x \frac{3}{5}$$

$$= \frac{1}{5}$$

$$= \frac{1}{5}$$

$$A = \left(\frac{32}{5}, \frac{1}{5}\right)$$

$$B = \left(-\frac{32}{5}, \frac{1}{5}\right)$$

$$B = \left(-\frac{32}{5}, \frac{1}{5}\right)$$

17)a.Sin rule

In DABD, by sine formula
$$\frac{AD}{SinB} = \frac{BD}{Sin(A-90)}$$

$$AD = \frac{-aSinB}{2cosA} = \frac{1}{a}$$

In
$$\Delta ADC$$
, $=\frac{AD}{DC} = SinC$

$$AD = \frac{9}{2}SinC - 9$$

$$0=0 \quad \frac{a\sin b}{2\cos a} = \frac{a\sin c}{2}$$

$$5inc\cos a = -\sin b$$

$$ck\left(\frac{b^2+c^2-a^2}{2bc}\right) = -kb$$

$$b^2+c^2-a^2 = -2b^2$$

$$3b^2=a^2-c^2$$

$$\begin{aligned} \cos A \cos B &= \left(\frac{b^2 + c^2 - a^2}{2bc}\right) \left(\frac{a^2 + c^2 - b^2}{2ac}\right) \\ &= \frac{1}{4abc^2} \left(\frac{b^2 - 3b^2}{2ac}\right) \left(\frac{b^2 + 3b^2}{2ac}\right) \\ &= \frac{-2b^2}{ac} = \frac{-2}{ac} \left(\frac{a^2 - c^2}{3}\right) = \frac{2(c^2 - a^2)}{3ac} \\ &= \frac{3ac}{3ac} = \frac{3ac}{3ac} =$$

b)
$$tan 30 = \frac{3tan 0 - tan^3 0}{1 - 3tan^2 0}$$

$$tane + tan \left(e + \frac{\pi}{3}\right) + tan \left(e + \frac{2\pi}{3}\right) = 3$$

$$ton \theta + \frac{tan \theta + \sqrt{3}}{1 - \sqrt{3} tan \theta} + \frac{tan \theta - \sqrt{3}}{1 + \sqrt{3} tan \theta} = 3$$

$$\frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta} = 1$$

$$\theta = \frac{n\pi}{3} + \frac{\pi}{12} ; n \in \mathcal{A}$$

Combined Mathematics II - Part A - Grade 13

Part A

By the principle of Conservation of linear momentum. $m\sqrt{2} + m\sqrt{1} = mu$ $\sqrt{2} + \sqrt{1} = u$ Newton's Law of restitution

$$mV_2 + mV_1 = mU$$

$$V_2 + V_1 = u$$

$$V_2 - V_1 = -e[o-u]$$

 $V_2 - V_1 = eu$ (5)

$$V_2 = \frac{u}{2}(1+e)$$

Using the principle of : Conservation of energy

$$\frac{1}{2}mV_2^2 - mgl = -mg \frac{1}{2}$$

$$\frac{1}{2}V_{2}^{2} = gV_{2}$$

$$2 = \sqrt{91}$$

$$U = \frac{4}{3} \sqrt{9l}$$

$$\frac{4}{3}$$
 $\frac{91}{2}$ $\times \frac{1}{2}$ $(1+e) = 91$

$$2 + 1e = 3$$

$$2 + 1e = 3$$
 $2e = 1$
 $e = \frac{1}{2}$ (5)

$$S = ut$$

$$a = ut \Rightarrow t = u$$

$$S = ut \Rightarrow t = u$$

$$-H = U_{\frac{3}{2}} \times \frac{2a}{u} - \frac{1}{2}g + \frac{4a^2}{u^2}$$
 (5)

$$A -H = J3a - \frac{2ga^2}{u^2}$$

$$u^2 = \frac{2ga^2}{5a+H}$$
 5

From 0
$$h$$
 $V^2 = u^2 + 2as$

$$0 = u^2 \times \frac{3}{4} - 2gh$$

$$h = \frac{3u^2}{8g}$$

$$h = \frac{3}{8g} \left(\frac{2ga^2}{\sqrt{3a} + H} \right)$$

$$h = \frac{3a^2}{4(\sqrt{3a} + H)}$$

$$5$$

Child - C
String - R

$$a_{R,E} = \uparrow a$$

 $a_{c,R} = \uparrow f$
 $a_{c,E} = a_{cR} + a_{R,E}$
 $a_{c,E} = a_{cR} + a_{R,E}$
 $a_{c,E} = a_{cR} + a_{cR}$
 $a_{c,E} = a_{cR}$
 $a_{c,E} =$

$$\begin{array}{c}
\text{T-ma} \\
\text{M} & \text{T-Mg=Ma} & -0 \\
\text{Mg-T=m} & (a-f) & -2 \\
\end{array}$$

$$0+2 \qquad \text{mg} - \text{Mg} = (\text{M+m}) \ a - \text{mf} \qquad 5$$

$$\frac{(\text{m} - \text{M}) \ g + \text{mf}}{\text{M} + \text{m}} = a \qquad 6$$

F-R = 0

$$R = 1000 \text{ H N } \text{ S}$$

$$P = 2000 \text{ H + Mg sin } \text{ Mg}$$

$$P = FV$$

$$1000 \text{ H = } F^{1}V$$

$$1000 \text{ H = } MgV \text{ sin } \text{ Mg}$$

05

| a|=|b|...

ABC is an equilateral triangle.

Angle between a and b

Ps 120°:

(S)

angle between a and b is 60°

7 R sin
$$\theta = 2W$$

Sin $\theta = \frac{3a}{J}$
 $R = \frac{2W}{\sin \theta}$
A R x 3a

$$\begin{array}{ccc}
\uparrow & R & \sin \phi = 2W \\
R & = \frac{2W}{\sin \phi} & \frac{3a}{d}
\end{array}$$

 $\frac{1}{2} + \frac{3a}{\sin \theta} = 2W \times 2l \sin \theta = \frac{10}{10}$

 $\frac{2W}{sm}$ o $\times \frac{3a}{sm}$ o = 4wl sin o

 $\sin^3 \theta = \frac{3a}{24} \quad (5)$ $\sin \varphi = \left(\frac{3a}{2.1}\right)^{\frac{1}{3}}$

7. mg
$$\frac{1}{2} \frac{m \cdot 3gl}{5} = \frac{1}{2} \frac{m \dot{\chi}^{2}}{1} + \frac{1}{2} \frac{mg(x-1)^{2}}{1} + mg \chi$$

$$\frac{3gl}{5} = \dot{\chi}^{2} + g (x-1)^{2} + 2g \chi \quad (5)$$

$$\dot{\chi}^{2} = 3gl - g (x-1)^{2} - 2g \chi \quad (5)$$

108.
$$P(A \cap B') = P(A) - P(A \cap B)$$
 (5)
$$\frac{5}{12} = \frac{2}{3} - P(A \cap B)$$

$$P(A \cap B) = \frac{2}{3} - \frac{5}{12} = \frac{3}{12} = \frac{1}{4}$$

$$P(AUB) = P(A) + P(B) - P(A \cap B)$$

$$= \frac{2}{3} + \frac{1}{2} - \frac{1}{4}$$

$$P(AUB) = \frac{11}{12}$$

B)
$$W \times 2a \cos x - Wa \sin x = 0$$

$$2 \cot x = \sin x$$

$$2 = + an x = 5$$

λ
25

liO.	Body	mass	distance to the centre
	Cone	13xa24ap	of mass from 0
	Cylinder	x (2a)2 4al	6a (S)
	composite	<u>52</u> πα ³ ρ	\$\overline{\pi}\$

$$\frac{52 \, \pi a^{3} \rho \, \bar{\chi}}{3} = \frac{4}{3} \, \pi a^{3} \rho \times 3a + 16 \, \pi a^{3} \rho \times 6a \quad (0)$$

$$\widehat{x} = 100 \text{ a } \times \frac{3}{59}$$

$$\hat{x} = 75 a$$
 §

$$\tan d = \alpha$$

$$\alpha = \frac{V_2 - 2u}{t}$$
 (5)

 $\tan \beta = 2a$

$$\frac{v_1-u}{t}=2a$$
 (5)

$$V_2 = 2u + at$$

$$V_1 = u + 2at$$

$$\tan d = \frac{V_0 - 2u}{T}$$
 (5)

$$a = V_{0-2u}$$

$$T = \frac{u}{a}$$

Since the distances travelled by both cars within the time are equal.

$$\frac{1}{2} \quad \mathsf{UT} = \frac{1}{2} \left(\mathsf{V}_1 - \mathsf{V}_2 \right) \left(\mathsf{t} - \mathsf{T} \right) \quad \text{(10)}$$

$$uT = (u+2at-2u-at)(t-T)$$

$$uT = (at-u)(t-T)$$

$$uT = at^2 - at T - at + uT$$

$$t = u + aT$$

b)
$$V_{P,E} = \frac{1}{\sqrt{2}}$$
 $V_{Q,P} = V_{Q,E} + V_{E,P}$
 $V_{Q,P} = V_{Q,E} + V_{Q,E}$
 $V_$

$$PR^{2} = V^{2} + 14^{2} - 2V \times 14 \cos 60^{\circ}$$
 (b)

$$PR = V^{2} - 14V + 196$$
 (5)

Time =
$$\frac{12\sqrt{79}}{PR}$$
 (5)

 $PR = \frac{12\sqrt{79}}{C} = 2\sqrt{79}$

$$\int V^{2}-14V+196 = 2\sqrt{19} \text{ (5)}$$

$$V^{2}-14V-120=0 \text{ (5)}$$

$$(v-20)(v+6)=0$$

$$V=20, V\neq -6 \text{ (5)}$$

$$\tan \theta = \frac{MR}{MP} = \frac{14 \text{ sm } \frac{\pi}{13}}{20 - 14 \cos \frac{\pi}{13}} = \frac{\sqrt{3}}{13}$$

$$\theta = \tan^{-1}\left(\frac{\sqrt{3}}{13}\right) \stackrel{\text{(S)}}{\text{(S)}}$$

$$\tan \theta = \frac{MR}{MP}$$

$$= \frac{14 \sin \frac{\pi}{3}}{20 - 14 \cos \frac{\pi}{3}}$$

$$\tan \theta = \frac{713}{13}$$

$$\theta = \tan^{-1} \left(\frac{713}{13}\right)$$

$$a_{L,E} = Af$$
 $a_{M,L} = A$ $a_{2m,M} = A$

$$a_{M,E} = a_{M,L} + a_{L,E}$$

$$= \sum_{m=1}^{\infty} a_{2m,E} = a_{2m}, m + a_{M,E}$$

$$= \sum_{m=1}^{\infty} a_{2m,E} = a_{2m}, m + a_{M,E}$$

$$= \sum_{m=1}^{\infty} a_{2m,E} + \sum_{m=1}^{\infty} a_{2m}$$

For the wedge and the particle
$$\longrightarrow$$
 $F=ma$ $0=MF+2m [F-acos \times] \longrightarrow (6)$

by ②,
$$(9+f) \sin \alpha = F(M+2m) - F \cos \alpha$$
 $2m(g+f) \sin \alpha (\cos \alpha) = F(M+2m) - 2m \cos^2 \alpha]$
 $2m(g+f) \sin \alpha (\cos \alpha) = F(M+2m \sin^2 \alpha)$
 $F = 2m (g+f) \sin \alpha (\cos \alpha)$
 $M+2m \sin^2 \alpha$
 $a = 2m (g+f) \sin \alpha (\cos \alpha)$
 $(M+2m \sin^2 \alpha) = 2m (o \cos \alpha) = 2m (o \cos \alpha)$
 $(M+2m \sin^2 \alpha) = 2m (o \cos \alpha) =$

$$F=ma$$
 $p=ma$ (0) 6

$$R = mg \cos \phi + m \left[u^2 - J3gr + 2gr \cos \phi \right]$$

When V=0, $\Phi=\Theta_{\mathbf{X}}$

$$\cos \Phi_2 = \frac{\text{Egr} - u^2}{2\text{gr}} \odot$$

$$U^{2} = J39r$$
, $\cos \Theta_{2} = 0$
 $\Theta_{2} = \frac{\pi}{2}$

when
$$V=0$$
, $R=mg \cos \frac{\pi}{2}$
 $R=0$

.. When v=0, R=0. .. The particle doesn't leave tha Surface. The maximum distance travelled by the in the circular path is 2xt.

$$T = 2mg$$

$$\lambda = 4mg$$

$$T' = mg(x-l)$$

$$F = ma$$

$$\psi mg - T' = m\ddot{n}$$

$$\tilde{n} = -4g \left[x - 4l - \frac{1}{4}\right]$$

$$\tilde{n} = -4g \left[x - 4l - \frac{1}{4}\right]$$

$$T'=mg\left(x-l\right)$$

$$\ddot{x} = -\frac{49}{4} \left[x - 44 - \frac{1}{4} \right]$$
 $\ddot{x} = -\frac{49}{4} \left[x - \frac{51}{4} \right]$

$$\ddot{x} = -\frac{49}{4} \left[x - \frac{51}{4} \right]$$

$$\chi - 5\underline{l} = X \qquad \omega = 2 \int_{\theta}^{\theta}$$

$$w \cdot r \cdot t \cdot t , \quad \dot{\chi} = \dot{\chi} \quad (s)$$

$$\dot{X} = -49 X$$

$$\dot{x} = -\omega^2 \times \qquad :$$

$$x = 0, \quad x = 0 \qquad x - 5l = 0$$
Centre
$$x - 5l = 0$$

centre
$$x = \frac{51}{4}$$

The amplitude of the
$$3\frac{1}{2} - \frac{51}{4}$$

$$= 31 - 51$$

since the amplitude of the motion is \$1/4

$$\frac{1}{N} \quad \text{Period} = \frac{2x}{N} = \frac{2x}{\sqrt{3}} = x \sqrt{\frac{1}{3}} \quad \text{S}$$

$$V$$
. $P = 0$

By the principle of Conservation of Energy

$$\frac{1}{2} \times \frac{2m}{3} = \frac{1}{2} \times \frac{4mg(y-l)^{2}}{l} - \frac{2mgy + \frac{1}{2}}{m\dot{y}^{2}}$$

$$\frac{1}{2} \times \frac{2m}{3} = \frac{1}{2} \times \frac{4mg(y-l)^{2}}{l} - \frac{2mgy + \frac{1}{2}}{m\dot{y}^{2}}$$

$$\frac{2gl^{2}}{l} = 2g(y-l) = \frac{2gyl}{l} + l\dot{y}^{2}$$

$$(4)^{2} + 29(y-1)^{2} - 29y(-29)^{2} = 0$$

25

vi when $\dot{y} = 0$, §

$$29 (y-1)^2 - 29y1 - 291^2 = 0$$

$$y^2 - 2y + \ell^2 - y\ell - \ell^2 = 0$$

$$y=0$$
 or $y=31$

1s\

VII

 $(4y^2 + 2g(y-e)^2 - 2gy(1-2g)^2 = 0$ differentiating w.r.t.t,

$$2\dot{y} \neq 0$$
, $\ddot{y} + 2g(y-1) - \xi g = 0$

$$\ddot{y} = -29 \left[y - \frac{3}{2} \right]$$

When y=0, y=3

The Centre is at a distance 31 from 0.

$$\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{AD} \qquad \overrightarrow{S}$$

$$= \underline{a} + \underline{1} + \overrightarrow{AB}$$

$$= \underline{a} + \underline{1} + \underline{1} + \underline{1}$$

$$= \underline{3a + b} + \underline{1} + \underline{1}$$

$$= \underline{3a + b} + \underline{1}$$

$$\overrightarrow{AE} = \overrightarrow{AD} + \overrightarrow{DE} = \underbrace{\frac{1}{4}(\underline{b} - \underline{a}) + 3\underline{a} + \underline{b}}_{2}$$

$$\overrightarrow{AE} = \underbrace{5\underline{a} + 3\underline{b}}_{4}$$

$$\overrightarrow{BF} = \overrightarrow{BA} + \overrightarrow{AF}$$

$$\lambda \left(3\overrightarrow{a}\right) = \underline{a} - \underline{b} + \mu \left(5\underline{a} + 3\underline{b}\right)$$

$$3\lambda\left(\frac{3\alpha+b}{4}\right) = \left(\frac{4+5\mu}{4}\right) + \left(\frac{3\mu-4}{4}\right) = \left(\frac{3\alpha+b}{4}\right)$$

$$5\mu + 4 = 9\lambda$$
 © $3\mu - 4 = 3\lambda$ © $9\lambda - 5\mu = 4 - 0$ $3\lambda - 3\mu = -4 - 0$

$$9\lambda - 5\mu = 4 - 0$$

$$\overrightarrow{AF} = \mu \overrightarrow{AE}$$
 $\overrightarrow{AF} = 4 \overrightarrow{AE}$
 $\overrightarrow{AE} : \overrightarrow{EF} = 1:3$

$$\overrightarrow{BF} = \lambda \overrightarrow{OE}$$

$$= 3\lambda \left(\frac{3\alpha + b}{4} \right)$$

$$= 3 \times \frac{8}{3} \left(\frac{3\alpha + b}{4} \right) (S)$$

$$\overrightarrow{BF} = 2 \left(\underline{b} + 3\alpha \right)$$

When a force (-21, -14) 15 (9) added at the point $F(-a_{1}0)$ $(a_{2}0)$ it is equivalent to a couple

(a+3) 14 = 70 3

Additional force, makes an angle α with the negative direction of the α -axis, is α -axis, α -axis,

i. The equiation of the line of action is

$$3y - 2x + 4 = 0$$

(40)

15) a)

The System is symmetric about FE.

$$DE = AE$$
 $BA = CD$
 C
 $EB = EC$

$$\frac{W}{2} = 3 \oplus \frac{1}{2}$$

$$23 \cos 33 = 30 \cos 60 + 90$$

$$\frac{1}{2} - \frac{1}{3} \times \frac{1}{2} = 00$$

$$\frac{6W - 2W}{4\beta} = \frac{4W}{4\beta}$$

Rod	stresses		Magnitude	
	Thrust	Tension	Magnituse	
cD (BA	V		₩	(1
DELAE	_	V	W	0
EC EB		_	WIB	(là
ВС	u	_	M113	(10

b)

$$O = 0 \in 20 \quad \text{Normal of } 20 = 0$$

$$O = 0 \in 20 \quad \text{Normal of } 20 = 0$$

$$O = 0 \in 20 \quad \text{Normal of } 20 = 0$$

$$\Rightarrow S \cos 60 - F = 0$$

$$F = \frac{W}{4}$$

50

For the equilibrium

$$M \ge \left(\frac{E}{R}\right)$$

$$M \ge \left(\frac{E}$$

$$M \ge \frac{4-\sqrt{3}}{16-3}$$
 $M \ge \frac{4-\sqrt{3}}{13}$
(10)

20

By Symmetry the centre of mass lies on the

$$\delta m = \pi (a^2 - \chi^2) \delta \chi \delta^2$$

$$\delta M = \pi (a^{2} - \chi^{2}) \delta \chi \delta^{2}$$

$$\bar{N} = \int_{0}^{a} \pi (a^{2} - \chi^{2}) \delta \chi d\chi = \int_{0}^{a} \frac{(a^{2} \chi - \chi^{3}) d\chi}{(a^{2} - \chi^{2}) d\chi} = \int_{0}^{a} \frac{(a^{2} \chi - \chi^{3}) d\chi}{(a^{2} - \chi^{2}) d\chi} = \int_{0}^{a} \frac{(a^{2} \chi - \chi^{3}) d\chi}{(a^{2} - \chi^{2}) d\chi} = \int_{0}^{a} \frac{(a^{2} \chi - \chi^{3}) d\chi}{(a^{2} - \chi^{2}) d\chi} = \int_{0}^{a} \frac{(a^{2} \chi - \chi^{3}) d\chi}{(a^{2} - \chi^{2}) d\chi} = \int_{0}^{a} \frac{(a^{2} \chi - \chi^{3}) d\chi}{(a^{2} - \chi^{2}) d\chi} = \int_{0}^{a} \frac{(a^{2} \chi - \chi^{3}) d\chi}{(a^{2} - \chi^{2}) d\chi} = \int_{0}^{a} \frac{(a^{2} \chi - \chi^{3}) d\chi}{(a^{2} - \chi^{2}) d\chi} = \int_{0}^{a} \frac{(a^{2} \chi - \chi^{3}) d\chi}{(a^{2} - \chi^{2}) d\chi} = \int_{0}^{a} \frac{(a^{2} \chi - \chi^{3}) d\chi}{(a^{2} - \chi^{2}) d\chi} = \int_{0}^{a} \frac{(a^{2} \chi - \chi^{3}) d\chi}{(a^{2} - \chi^{2}) d\chi} = \int_{0}^{a} \frac{(a^{2} \chi - \chi^{3}) d\chi}{(a^{2} - \chi^{2}) d\chi} = \int_{0}^{a} \frac{(a^{2} \chi - \chi^{3}) d\chi}{(a^{2} - \chi^{2}) d\chi} = \int_{0}^{a} \frac{(a^{2} \chi - \chi^{3}) d\chi}{(a^{2} - \chi^{2}) d\chi} = \int_{0}^{a} \frac{(a^{2} \chi - \chi^{3}) d\chi}{(a^{2} - \chi^{2}) d\chi} = \int_{0}^{a} \frac{(a^{2} \chi - \chi^{3}) d\chi}{(a^{2} - \chi^{2}) d\chi} = \int_{0}^{a} \frac{(a^{2} \chi - \chi^{3}) d\chi}{(a^{2} - \chi^{2}) d\chi} = \int_{0}^{a} \frac{(a^{2} \chi - \chi^{3}) d\chi}{(a^{2} - \chi^{2}) d\chi} = \int_{0}^{a} \frac{(a^{2} \chi - \chi^{3}) d\chi}{(a^{2} - \chi^{2}) d\chi} = \int_{0}^{a} \frac{(a^{2} \chi - \chi^{3}) d\chi}{(a^{2} - \chi^{2}) d\chi} = \int_{0}^{a} \frac{(a^{2} \chi - \chi^{3}) d\chi}{(a^{2} - \chi^{2}) d\chi} = \int_{0}^{a} \frac{(a^{2} \chi - \chi^{3}) d\chi}{(a^{2} - \chi^{2}) d\chi} = \int_{0}^{a} \frac{(a^{2} \chi - \chi^{3}) d\chi}{(a^{2} - \chi^{2}) d\chi} = \int_{0}^{a} \frac{(a^{2} \chi - \chi^{3}) d\chi}{(a^{2} - \chi^{2}) d\chi} = \int_{0}^{a} \frac{(a^{2} \chi - \chi^{3}) d\chi}{(a^{2} - \chi^{2}) d\chi} = \int_{0}^{a} \frac{(a^{2} \chi - \chi^{3}) d\chi}{(a^{2} - \chi^{2}) d\chi} = \int_{0}^{a} \frac{(a^{2} \chi - \chi^{3}) d\chi}{(a^{2} - \chi^{2}) d\chi} = \int_{0}^{a} \frac{(a^{2} \chi - \chi^{3}) d\chi}{(a^{2} - \chi^{2}) d\chi} = \int_{0}^{a} \frac{(a^{2} \chi - \chi^{3}) d\chi}{(a^{2} - \chi^{2}) d\chi} = \int_{0}^{a} \frac{(a^{2} \chi - \chi^{3}) d\chi}{(a^{2} - \chi^{2}) d\chi} = \int_{0}^{a} \frac{(a^{2} \chi - \chi^{3}) d\chi}{(a^{2} - \chi^{2}) d\chi} = \int_{0}^{a} \frac{(a^{2} \chi - \chi^{3}) d\chi}{(a^{2} - \chi^{3}) d\chi} = \int_{0}^{a} \frac{(a^{2} \chi - \chi^{3}) d\chi}{(a^{2} - \chi^{3}) d\chi} = \int_{0}^{a} \frac{(a^{2} \chi - \chi^{3}) d\chi}{(a^{2} - \chi^{3}) d\chi} = \int_{0}^{a} \frac{(a^{2} \chi - \chi^{3}) d\chi}{(a^{2} - \chi^{3}) d\chi} = \int_{0$$

$$\int_{0}^{q} \frac{(a^{2}x - x^{3}) dy}{(a^{2}x^{2}) dy}$$

$$=\frac{a^{2}x^{2}-x^{4}}{a^{2}x-x^{3}}\Big|_{o}^{a}$$

By symmetry the centre of mass lies on the symmetric axis.,

Body Mass distance to the centre of mass of the body The state of the centre of the centre of the centre of the body The state of the body The state of the centre of	W.13. 1		
$\frac{2}{3} \times 27a^{3}b^{2} = 18 \times a^{3}b^{3}$ $\frac{9}{8} a \boxed{5}$ $2 \times a^{3}b \boxed{5}$ $3 \times a^{3}k \boxed{5}$ $\frac{9a}{2} \boxed{5}$	Body	mass	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			with the moon
$3 \times a^3 \times 6 \boxed{9} \boxed{9} \boxed{3}$ $Composite (11 + 31) \times a^3 \boxed{9}$		= 78xap	9 a 3
Composite (11 124) 7630		27036 (5)	a (\$)
Composite (16+3K) Ta300 7	0	3×03×6 3	9a 3
	Composite body	(16+3K) Ra303	a 40

$$(16+3k)$$
 $\pi a^3 \sigma \bar{\chi} = 18\pi a^3 \sigma \times 9 a - 2\pi a^3 \sigma \times a + 3\pi a^3 k \sigma \times 9 a$

$$(16 + 3k) \bar{\chi} = \frac{81a}{4} - 2a + \frac{27}{2} ka$$

$$\frac{7}{4} = \frac{(73+5k k) a}{4 (16+3k)}$$

$$F = W \sin d$$

Since it is in equilibrium,

$$M \geq \frac{|F|}{R_1 + R_2}$$

$$M \ge \frac{W \sin \alpha}{W \cos \alpha}$$

M > tan d

 $3a > \bar{x} + an d$

$$3a > \frac{(3+54k)}{4(16+3k)}$$
 a tan 4

$$\frac{12(16+3K)}{73+54K}$$
 > $\frac{1}{7}$ > $\frac{1}{7}$

17) a); If
$$AUB = S$$
, A and B are exhaustive events

ii If
$$A \cap B = \emptyset$$
, A and B are mutually exclusive events.

b) i)
$$A \cup A^{\dagger} = \neg - \bigcirc$$

 $P(A \cup A^{\dagger}) = P(\neg - \bigcirc)$
 $P(A) + P(A^{\dagger}) = 1 \quad (A \cap A^{\dagger}) = \emptyset$
 $P(A^{\dagger}) = 1 - P(A) \quad \bigcirc$

MUB = BU (ANB')
$$\bigcirc$$

$$p(AUB) = p(B) + p(ANB') - \bigcirc$$

$$E' = Bn(ANB') = \emptyset$$
by \bigcirc

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A'UB') = P(A') + P(B') - P(A'NB')$$
 \bigcirc

$$\frac{17}{39} = \frac{3}{5} + \frac{3}{19} - P(A'NB')$$

$$P(A^{1} \cap B^{1}) = \frac{1}{20}$$

$$P(AUB) = 1 - P(AUB) = 1 - \frac{1}{20} = \frac{19}{20}$$

$$P(A \cap B) = 1 - P(A \cap B)^{T} = 1 - \frac{17}{20} = \frac{3}{20}$$

$$P(A' \cap B) = P(B) - P(A \cap B) = \frac{7}{10} - \frac{3}{20} = \frac{11}{20}$$

c) i)
$$A = All$$
 the three balls are in the same color. $P(A) = P(BBB) + P(RRR) + P(GGG)$

$$= \frac{3}{12} \times \frac{2}{11} \times \frac{1}{10} + \frac{4}{12} \times \frac{3}{11} \times \frac{2}{10} + \frac{5}{12} \times \frac{4}{11} \times \frac{3}{10}$$

$$= \frac{9}{132} = \frac{3}{144}$$

ii)
$$P(B,R,G) = \frac{3}{12} \times \frac{4}{11} \times \frac{5}{10} = \frac{1}{22}$$

P(B) =
$$\frac{3}{12} \times \frac{4}{11} \times \frac{5}{10} \times \frac{6}{5} = \frac{3}{11} \times \frac{3$$

$$P(R',R',R') = \frac{8}{12} \times \frac{7}{11} \times \frac{6}{10} = \frac{14}{55}$$

$$V = (-p(r|r|r')) = 1 - \frac{14}{55} = \frac{41}{55}$$

