Database

In this chapter you will learn;

- definition of database
- advantages of using a database
- special characteristics of a database
- using fields to create tables
- identifying key fields
- relational databases
- relationships between tables
- using queries to get data
- using data forms
- using reports to furnish information

9.1 Database Concept

Chapter one included a description on what data and information are. This chapter covers saving data in an organized manner.

Higher the amount of data it becomes difficult to keep in our memory. On such occasions writing these data is one method. That is called manual database. The other method is to maintain the data on an electronic medium. This is called an electronic database. Data can be retrieved efficiently when needed if it is saved on a database in a systematic way. Hence, the database is needed to save a large amount of data and to retrieve them very efficiently.

Examples

It would be easy for you to remember names of your friends, but it would be difficult to retain all their phone numbers in your memory. You can get these details easily when needed if you write names and phone numbers in a book (Figure 9.1) or save them in a mobile phone (Figure 9.2). Thus, the phone book can be considered a simple database.

Figure 9.1 – telephone numbers (manual)

Figure 9.2 – telephone numbers (electronic)

Defining a Database - Collection of organized data can be defined as a database

9.1.1 Advantages of Databases

More efficient in retriving information.

Required information can be found very quickly as data is properly organized in tables in a database.

Easy to obtain copies.

Electronic databases can be copied very easily.

Smaller physical space to store data.

Though more physical space is needed to maintain a manual database, a small space is sufficient to save data on an electronic medium.

Data analysis can be carried out efficiently.

Only the necessary data can be selected and processed.

Data can be shared.

The same database can be used in different application software.

Independence of data.

Though and software connected. database database are tables can be updated without changes to the application software. Therefore, data and software are independent.

9.1.2 Features of a Database

• Minimal data redundancy

If the same data is stored in several tables, this is called data redundancy.

For instance, the name of a student may be recorded separately in the admission card and the library membership card. When a name is changed, that name should be edited separately in all documents. Given below is an example where the name 'Firosa Lai' is changed as 'Firosa Rafeeq'.

Table 9.1 - Admission table

Student Number	Name	Date of Birth	Date of Admission	Name of the Guardian
100	Manoj Dayarathne	2/9/2008	1/1/2014	G. Dayarathne
101	Firosa-Lai Rafeeq	4/2/2008	1/1/2014	K. Fais

Table 9.2 - Library table

Student Name	Name of the Book	Borrowed Date	Return Date
Firosa Lai Rafeeqa	Folk Songs	2/9/2014	16/9/2014
Manoj Dayarathne	Drama	3/9/2014	17/9/2014
Firosa Lai Rafeeq	Basic Maths Concept	3/9/2014	17/9/2014
Manoj Dayarathne	Drama	4/9/2014	18/9/2014

However, by storing related database in tables, data redundancy can be minimized. In the following table, a student name is recorded only in one table.

Table 9.3 - Relational Database

Student Number	Name	Date of Birth	Date of Admission	Name of the Guardian
100	Manoj Dayarathne	2/9/2008	1/1/2014	G. Dayarathne
101	Firosa Lai Rafeeq	4/2/2008	1/1/2014	K. Fais

Student	tudent Book Borrowed		Return Date
Number	Number	Date	
101	2222	2/9/2014	16/9/2014
100	3333	3/9/2014	17/9/2014
101	1111	3/9/2014	17/9/2014
100	3333—	4/9/2014	18/9/2014

Book	Title	Author's Name
Number		
1111	Basic Maths	Sivathasan
	Concept	Ramanathana
2222	Folk Songs	Jayantha Bandara
	Drama	Padmamali Menike
3333		

consistency: By minimizing data redundancy, Data same data being saved in various tables can be reduced or prevented. This enables to maintenance of data consistency.

If you consider the example above, student data, data about books and usage of books are saved separately in different tables. As such data such as name of a student or a book should be recorded only once. Thus, data consistency is maintained.

Increases efficiency: Since database tables are properly organized, saving and reading data can be carried out efficiently. Hence, efficiency is higher.

As per example above, let us consider the change of name from Firosa Lai to Firosa Rafeeq. If the same data (Firosa Lai) are recorded in different tables, more time is spent to find all these places. This leads to inefficiency. However, in related databases data consistency increases speed. Hence, efficiency is increased.

Increases accuracy: Since data redundancy can be minimized in a database, data consistency is maintained. This increases accuracy.

Let us consider the example above where Firosa Lai is changed to Firosa Rafeeq. If several places are corrected, one mistake would lead to inaccurate information.

However, in the above database only one table is need to be updated to change Firosa Lai to Firosa Rafeeq. This ensures data consistency. Therefore, the accuracy of data is very high.

• **Increases validity:** Properties of fields can be assigned when a database is planned. Validity can be checked at the data entry stage. This increases the validity of the database.

For instance, field attributes can be imposed as fees to be indicated in two decimals with minimum fees being 1000 which is mandatory.

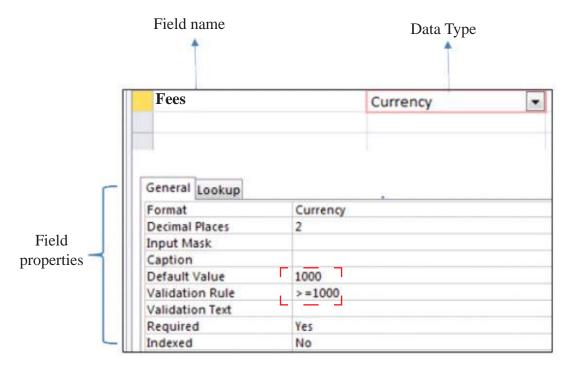


Figure 9.3 - Properties of data type

• **Security**: Unauthorized access can be controlled by using a password and encypting the database. This increases security.

Data encrypting is translating data in such a way that unauthorized personnel cannot read it. In the following figure 9.4, data available in Employee table are encripted so as it cannot be understood by an unauthorized person.

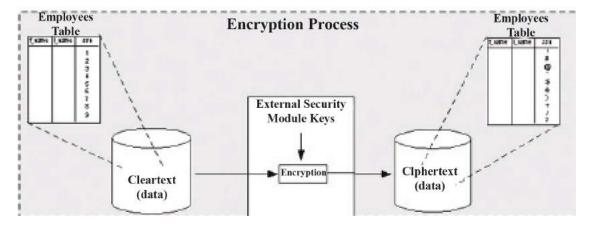
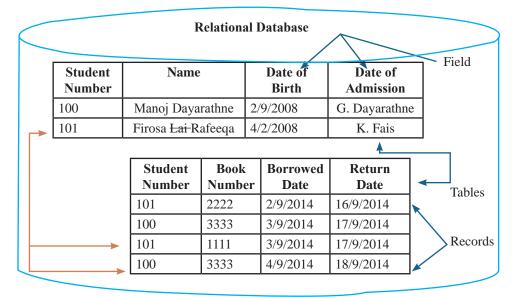


Figure 9.4 - Data Encription

9.1.3 Electronic and Manual Databases

In an electronic database, data can be saved in a very small space which consists of an audio or video medium. Given below is a comparison of electronic and manual databases. (Table 9.4)

Table 9.4 – comparison of manual and electronic database


Manual Database	Electronic Database
Less efficient	More efficient
Less accurate	More accurate
Less credible	More credible
Difficult to analyse data	Easy to analyse data
Should present in the order of input	Can change the data input order
Difficult to delete unnecessary data	Easy to delete unnecessary data
Difficult to update data	Easy to update data
More space is needed to save data	A very small space is needed to save data
More man power is needed	Less man power is needed

9.1.4 Introduction to Relational Database

A collection of fields related to one person or object is called a record.

A collection of records is called a data table.

A collection of related tables is called a relational database.

Let us learn how a related database is built step by step. A collection of fields make a record, a collection of records make a table and a collection of tables make a relational database.

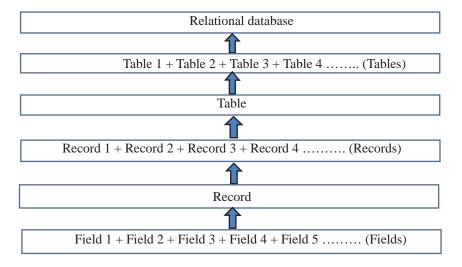


Figure 9.5

Example

Student record book is a very important document for every student. Biodata of a student and the marks obtained for each subject with the rank in all three terms in all grades are included.

Table 9.5 – Biodata form

Admission No : 1426	Admission No : 1427	Admission No : 1428
Name : Kavindu	Name: Meenadevi	Name: Mohommad
Prabashwara	Ramanathan	Malikkar
Date of Birth: 2005.05.23	Date of Birth: 2005.08.12	Date of Birth: 2005.02.07
Gender : Male	Gender : Female	Gender : Male
Tel No: 0352287571	Tel No: 035 22 35696	Tel No: 0352815402

Five details related to each student are given above. Thus, data such as Kavindu Prabashwara, Meenadevi Ramanathan, Mohommad Malikkar represent one field. To name such a field, a 'field name' is used.

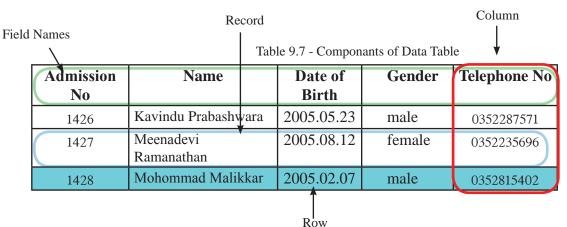

Let us create a table recording details under each field name. (Table 9.6)

Table 9.6 - Student Records

Admission No	Name	Date of Birth	Gender	Student Phone Numbers
1426	Kavindu Prabashwara	2005.05.23	male	0352287571
1427	Meenadevi Ramanathan	2005.08.12	female	0352235696
1428	Mohommad Malikkar	2005.02.07	male	0352815402

A column of the table represents one field. Thus, the above table consists of five fields. They are admission number, Name, Data or Birth, Gender and Telephone number.

A collection of fields makes a record. Hence, the above table has three records.

There is the possibility of entering the same data again in the columns such as Name, Date of Birth, Gender and Tel No. However, a datum entered in the column of Admission No will not be repeated. Hence, the field Admission No is more suitable to uniquely identify a record.

What are the books borrowed by Firosa Rafeeq? Let us learn how this is found in relevent tables.

Table 9.6 Student Name Date of Name of the Date of Guardian Number Birth Admission Manoj Dayarathne G. Dayarathne 100 2/9/2008 1/1/2014 Firosa Rafeeq K. Fais 101 4/2/2008 1/1/2014

	Student Number	Book Number	Date Borrowed	Date Returned
	101	2222	2/9/2014	16/9/2014
	100	3333	3/9/2014	17/9/2014
—	101	1111	3/9/2014	17/9/2014
	100	3333	4/9/2014	18/9/2014

	Book Number	Title	Author's Name
	1111	Basic Maths Concept	Sivathasan Ramanathan
Ļ	> 2222	Folk Songs	Jayantha Bandara
	3333	Drama	Padmamali Menike

9.1.5 Primary Key

A column (or a combination of columns) which enables to identify a record uniquely is called primary key.

Figure 9.6

observation

Special attributes of a primary key

- Should not be empty (data being there is mandatory)
- No duplicate values (same values do not exist)

For instance, study the table given below which consists of data on a few books.

Accession No	Title	Author's Name	Price of Book	Number of Books
2131	Let's Access Internet	Mahesh Gankanda	Rs.275.00	10
2132	Computer Studies	Suranimala Basnayaka	Rs.300.00	5
2133	Essay Writing	Nimali Bogoda	Rs. 225.00	12
2134	Education Psychology	Dayanath Jayasekara	Rs.400.00	6
2135	Tamil Language Learning	Raj Sudakaran	Rs.225.00	8
2136	Computer Studies	Mohommad Niyas	Rs.150.00	4
2137	Sinhala Tamil Dictionary	Raj Sudakaran	Rs.325.00	6

In this table,

- Accession numbers do not have duplicates (unique)
- Both authors Suranimala Basnayaka and Mohommad Niyas have authored Computer Studies.
- Raj Sudakaran has authored both Tamil Language Learning and Sinhala Tamil Dictionary.

- The price of both books Essay Writing and Tamil Language Learning is the same.
- Both books Education Psychology and Sinhala Tamil Dictionary have six copies.

According to these details, the Accession Number is the most suitable fields for the primary key.

Note: The Primary key of a table is underlined to identify as unique. (table 9.8)

Table 9.8

Accession Number	Title	Author's Name	Price of the Book	Number of Copies

9.1.6 Composite Primary Key

The primary key which consists of two or more columns of a table uniquely identifies a record is called Composite Primary Key.

Example

Look at the table given below about the captain and vice captain of a school.

Table 9.9 – Sports Table

Year	Sport	Captain	Vice Captain
2013	Cricket	Rashmi	Mubharak Husein
		Senarathne	
2013	Football	Jaliya Saranga	Vinothen Raj
2013	Volleyball	Ahammed Nawas	Sudesh Tharanga
2014	Cricket	Mubharak Husein	Bhanu Dayarathne
2014	Football	Jaliya Saranga	Ahammed Nawas
2014	Volleyball	Bhathiya Gamlath	Sudesh Tharanga

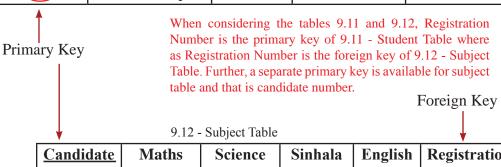
Composite Key

Both the year and sport are needed to uniquely identify a record.

Since the column data of this table containes duplicate. There is no single column to uniquely identify records. There should be a definite captain and a vice captain for a sport in a year. Hence, as far as the combination of two columns; year and sport is considered, identity of records exists. Hence, combination of both fields 'year' and 'sport' can be considered as the primary key. The composite key made of the combination of these two columns is suitable for the primary key in this table. When indicating the composite primary key, fields are separately underlined. (Refer Table 9.10)

Table 9.10

<u>Year</u>	<u>Sport</u>	Captain	Vice Captain


The composite primary key of this table = Year + Sport

9.1.7 Foreign Key

If a field (or a combination of fields) of one table can be used to uniquely identify rows of another table, this/these field/s is/are called the foreign key. This key builds connection of two tables.

Table 9.11 – Student Table

Registration Number	Name	Date of Birth	Date of Admission	Name of the Guardian
100	Manoj Dayarathne	2/9/2014	1/1/2014	G. Dayarathne
101	Firosa Rafeeq	4/2/2014	1/1/2014	K. Fais

observation

Special features of a foreign key

- Builds a connection between two tables.
- The related data of the primary key field exist in the other table.
- Foreign key of one table is the primary key of the other table.

Example

Given below in Table 9.13 are ICT subject marks of three students scored in the first term.

Admission No	Name	Date of Birth	Marks	Term	Year
1426	Kavindu Prabashwara	2005.05.23	69	1	2014
1427	Meenadevi Ramanathan	2005.08.12	82	1	2014
1428	Mohommad Malikkar	2005.02.07	47	1	2014

Table 9.13 – First term marks

When entering marks of these students scored in the second term, the fields such as admission number, name and date of birth should be entered again. (Refer Table 9.14)

Admission	Name	Date of	Marks	Term	Year
No		Birth			
1426	Kavindu Prabashwara	2005.05.23	69	1	2014
1427	Meenadevi Ramanathan	2005.08.12	82	1	2014
1428	Mohommad Malikkar	2005.02.07	47	1	2014
1426	Kavindu Prabashwara	2005.05.23	79	2	2014
1427	Meenadevi Ramanathan	2005.08.12	68	2	2014
1428	Mohommad Malikkar	2005.02.07	66	2	2014

Table 9.14 – Second term marks

Recording column data repeatedly is called data duplication.

Disadvantages of data duplication

- (i) Inability to select a primary key field to maintain identity of records.
- (ii) Inability to analyse data properly.

Though the number of students who have scored above 60 marks is 5 as per the above table, the actual number of students in the class is 3. Hence, a proper data analysis cannot be done.

(iii) Reduced efficiency

When entering marks of several years in the above table, more time is spent to enter the admission number, name and date of birth of the same student. This reduces efficiency.

(iv) Possibility to get inaccurate data is high.

There can be errors in entering the same data repeatedly. Mohommad Malikkar can be recorded as Mohommad Malakkar in another place. These mismatches can lead to inaccurate data. Hence, accuracy becomes low.

(v) Difficult to input data.

To enter the marks of a student, his/her name and date of birth should be entered repeatedly.

(vi) Possibility to make errors in deleting data.

As there are several records related to a student, there can be errors in deleting data.

(vii) Difficult to update data.

As there are several records related to one student, attention should be paid to each record in updating it.

These difficulties are created as all data are stored in one table. Hence, to minimize such difficulties, a table can be divided into several tables.

Let us create two tables: Student Table and Marks Table, by removing the fields which cause data duplication.

Let us create Student Table (Table 9.15) which consists of Admission Number, Name and Date of Birth.

In the Student Table, there is the possibility of data in Name and Date of Birth fields being duplicated. However, data does not duplicate under Admission Number. Hence, Admission Number is more suitable to identify records uniquely. Therefore, the primary key of the Student Table is the Admission Number.

Admission No	Name	Date of Birth
1426	Kavindu Prabashwara	2005.05.23
1427	Meenadevi Ramanathan	2005.08.12
1428	Mohommad Malikkar	2005.02.07

Table 9.15 – Student Table

Let us create a Marks Table (Table 9.16) which consists of the Admission Number, Marks, Term and Year.

Admission No	Marks	Term	Year
1426	69	1	2014
1427	82	1	2014
1428	47	1	2014
1426	79	2	2014
1427	68	2	2014
1428	66	2	2014

Table 9.16 – Marks Table

There is only one datum in the Student Table related to Admission Number of Marks Table.

Hence, the field of the Admission Number is the primary key of the Student Table and foreign key of the Marks Table.

9.2 Creating a Simple Database Manually

Data type: a type of data related to one field is called a data type. Let us learn about some commonly used data type.

- Numeric: used for calculations. Exists in several forms.
 - * Integer: plus or minus whole numeric figures.

E.g.: 12, -23

* Real: plus or minus numbers with decimal places.

E.g.: 8.125, -2.64, 4.00

• text: composed of letters, numbers or special characters (Eg- %, *, -). Though numbers are used, it is not used for calculations.

E.g.: National identity card number -889534731V Telephone number -0112785123, 0112 - 985123

• Currency: used to indicate monetary values.

E.g.: \$12.45, Rs.35.00

• Date / Time: indicates dates and time

E.g.: 12/23/2013, 7.35 a.m

• Boolean: there are only two Boolean (logical) values; True and False.

The size of a field can be changed according to the data type and number of data input to that field.

E.g.: Field Name (Column Name) **Number of fields (Column Width)**

Subject Name 15 Subject Code 5

Data type related to the field should be identified when the table is created.

Field Name	Data Type
Accession number of the book	Text
Title	Text
Author's Name	Text
Price of Book	Currency
Number of Books	Number

Activity

- (1) Tabulate details of 10 books in your library under the fields mentioned above.
 - (2) Create a table which is suitable to enter marks scored by the students in your class. Include Admission Number, Name and the Marks for subjects you study in this table.

Mention the most suitable data type for the fields in Table 9.17 given below.

Table 9.17

Field	Data Type
Admission Number	
Date of Admission	
Subject Code	
Doctor's Fee	
Department Name	
Number of Passengers	
Is Registered?	

(3) Explain with examples the importance of selecting the most suitable data type for fields

9.3 Converting a Manual Database to an Electronic Medium

Let us learn electronic databases with the purpose of converting a manual database to an electronic medium.

Definition

A collection of objects which facilitates planning and maintenance of the database to the user is called a Database Management System (DBMS). This consists of several objects like tables, queries, forms and reports. (Refer Figure 9.7)

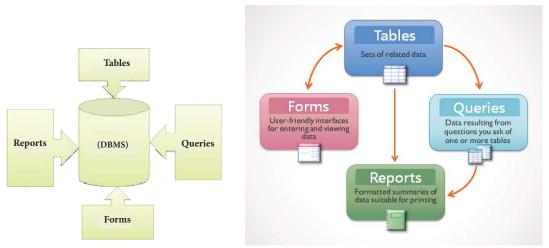


Figure 9.7 – Objects of a Database Management system

9.3.1 Database Management System Software

Given below in Table 9.18 are some DBMS software manufactured by various companies.

Software	Manufacturing Company
Access	Microsoft Company
Base	The Document Foundation
Oracle	Oracle Cooperation

Table 9.18 – Various database management systems and manufacturing companies

9.3.2 Using of Database Management System Software

In this unit, only Microsoft Office Access and LibreOffice Base software are discussed.

1. Starting DBMS software

Please note that the commands used to run software can be different according to the operating system.

For Microsoft OfficeAccess...

```
Start→ Programs → Microsoft Office
→ Microsoft Office Access → Blank
Database → Select Folder and Type
 Name → Create
```

For LibreOffice Base...

 $Start \rightarrow Programs \rightarrow LibreOffice \rightarrow$ LibreOfficeBase → Create a new database → Next → Finish → Select Folder and Type Name \rightarrow Save

2. Planning a Data Table

Open database software and plan a table with the fields and data types as given in 9.8. Name the table as 'Library'.

For Microsoft OfficeAccess...

Create \rightarrow Table Design \rightarrow Give the field name and data type \rightarrow Design properies \rightarrow Save the table

Design View

For LibreOffice Base...

Select 'Table' in Design View → Give the field name and data type \rightarrow Design Properties \rightarrow Save the table.

Field Name	Data Type
Accession_Number	Text
Title	Text
Auther	Text
Price	Currency
Number of books	Number

Figure 9.8 – Fields and data types of 'Library' table.

3. Creating the Primary Key for a Data Table

Data should not be duplicated to uniquely identify rows of a table. Identity of records can be maintained by using a column or a combination of columns of a table as a primary key field. Convert the field of 'Accession Number' in the above figure 9.8 to the primary key field.

For Microsoft OfficeAccess...

Give field name and data type \rightarrow Select the row/ rows that should be made as Primary key \rightarrow Click on Primary key \rightarrow save the table.

Primary Key

For LibreOffice Base

Give field name and data type adjust properties \rightarrow Right click on the line which contains the field need making primary key \rightarrow Select Primary key \rightarrow save the table.

	Field Name	Data Type
3	Accession_Number	Text
	Title	Text
	Auther	Text
	Price	Currency
	Number of books	Number

Figure 9.9 - Library Table with the Primary Key

4. Entering Data to the Table

The table view should be changed to input data to a prepared table.

For Microsoft Office Access...

Select the table from 'All Access Objects' window \rightarrow Select' Data Sheet View' \rightarrow Enter data \rightarrow Close the table.

For LibreOffice Base...

Double click the table under Tables or select Open by clicking the right button \rightarrow Enter data \rightarrow Close the table.

Enter data into the Library Table as shown in Figure 9.10

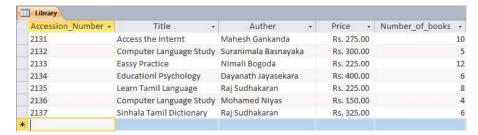


Figure 9.10 - Records of Library Table

9.4 Creating a Relational Database

You have studied the Primary Key and Foreign Key of a table in unit 9.1. Rather than keeping all the data in a single table, it is easier, more efficient and productive to input, update and delete data if those are recorded separately in different tables. Hence, let us study this section well to break a data table into several simple tables and to build relationships between these.

When creating a relational databases, several type of relations can exist among tables. They are known as one-to-one, one-to-many and many-to-many.

9.4.2 One-to-one Relationship

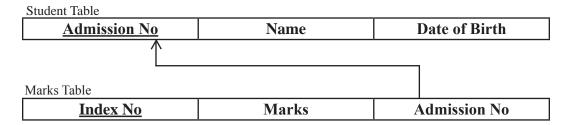
If only a row of a table is related to a row of another table, it is called a one-to-one relationship.

Two tables exist as A and B. A row in table A is related to one row in Table B and a row in Table B is related to one row in Table A.

Example

Given below is Table 9.19 which includes the marks students scored of the Grade 5 scholarship exam.

Admission No	Name	Date of Birth	Index No	Marks	
1426	Kavindu Prabashwara	2005.05.23	23234	151	
1427	Meenadevi Ramanathan	2005.08.12	23876	186	
1428	Mohommad Malikkar	2005.02.07	23758	172	
1429	Rashmi Janodara	2005.06.16	23765	193	


Table 9.19– Scholarship Marks

Let us tabulate data in Table 9.19 into two tables: Table 9.20 – Student Table and Table 9.21 – Marks Table. Table 9.21 – Marks Table

Table 9	9.20 – Stude	nt Table	Admission	Name	Date of
Index No	Marks	Admission	No	1 (4111)	Birth
		No	1426	Kavindu	2005.05.23
23234	151	1426 -)	Prabashwara	
23876	186	1427 _	1427	Meenadevi	2005.08.12
23758	172	(1428)		Ramanathan	
23765	193	1429	 1428	Mohommad Malikkar	2005.02.07
			1429	Rashmi	2005.06.16
				Janodara	

A record of the Marks Table is related to only one record of the Student Table. A record of the Student Table is related to only one record of the Marks Table as well.

The primary key of the Student Table is the Admission Number and it is the foreign key of the Marks Table. The Primary key of the Marks Table is the Index Number. The relationship built between these two tables through the foreign key is one-to-one. (Figure 9.11)

An arrow is drawn from the foreign key to the primary key to indicate the relationship.

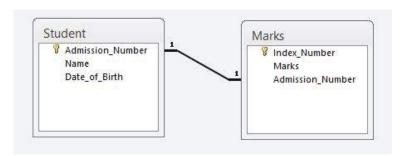


Figure 9.11 – Indicating one-to-one relationship

9.4.2 One-to-many Relationship

If each record of a table is related to several records of the other table, this is called a one-to-many relationship.

If the tables are A and B, and if B is the related table, the following Table 9.22 shows one-to-many relationship.

Table 9.22 – Features of a one-to-many relationship

Table A	Table B (Related table)
A record in Table A can be related to several records in Table B.	A record in Table B can be related to only one record in Table A.
There can be records which are not related to records of Table B.	There cannot be records which are not related to records of Table A.
Data in the column which includes the primary key cannot duplicate.	Data in the column which includes the foreign key can duplicate.
Having a record in Table B related to a record in Table A is not mandatory.	It is mandatory to have at least one row in Table A which is related to Table B.

Example

Refer Table 9.23 given below which includes personal data of students and payments of service and facility fees.

Admission Name **Payment** Date of Receipt Fees No Birth Number **Date** Kavindu 2005.05.23 1426 1000 2014.01.04 40.00 Prabashwara Meenadevi 1427 2005.08.12 **→**R Ramanathan Mohommad 1428 2005.02.07 1001 2014.01.06 120.00 Malikkar Kavindu 1426 2005,05,23 1002 2014.01.12 80.00 Prabashwara

Table 9.23 - service and facility fees

In this table, the fields 'Payment Date' and 'Fees' depend on the Field Receipt Number. Further, data is unique in the Receipt Number Field. The reason for this is that receipt numbers will not be same. Anyway, there can be incomplete records in the table as receipts should be issued in the order of payment. (Indicated as R in the table) Further, data duplication can also be seen here.

Hence, let us break this table into two tables: Table 9.24 – Student Table and 9.25 – Fees Table.

The Receipt Number is the primary key of the Fees Table. Admission Number is the primary key of the Student Table and the Foreign Key of the Fees Table.

Table 9.24 – Student Table

	Table 7.24 Student Table						
	Admission No		Name			Dat	e of Birth
	1426		Kavindu Prabashwara			20	005.05.23
	1427		Meenadevi Ramanathan		20	005.08.12	
	1428		Moho	mmad Mali	ikkar	20	005.02.07
	Table 9.2		5 - Facili	ty Fees Table	e		
	Receipt Pay		ment	Fees	Admiss	ion	
	<u>Number</u>	Da	ate		No		
	1000	2014.	.01.04	40.00	1426		
	1001	2014.	.01.06	120.00	1428		
	1002	2014	.01.12	80.00	1426		

If a student can pay fees a maximum of three times, there can be 0, 1, 2 or 3 rows in Facility Fees Table related to a record of the Student Table

- If number of records is 0, this means fee is not paid.
- If number of records is 1, this means fee is paid once only.
- If number of records is 2, this means fee is paid twice.
- If number of records is 3, this means fee is paid thrice.

Thus, there can be no or several rows in the Fees Table related to a row of the Student Table. Hence, the relationship between these two tables is one-to-many

Student Table

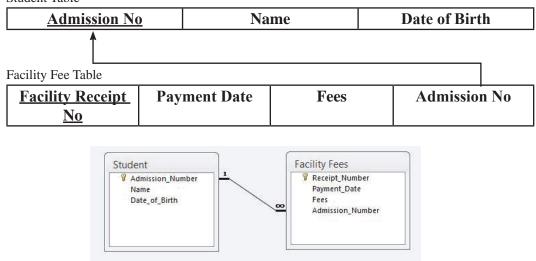


Figure 9.12 - One-to-Many Relationship

9.4.3 Many-to-many Relationship

If a record of a table is related to several records of another table and if a record of that related table is related to several records of the other table, there is a many-to-many relationship between those two tables.

Example

Students take part in sports (team) as an extra curricular activity. There are sports such as cricket, volleyball and football. A student can do at least one of these sports. Further, there should be a team for each sport.

Refer Table 9.26 given below which includes these data. According to this table,

Figure 9.26 – 7	Table (of	students	who	do	sports
-----------------	---------	----	----------	-----	----	--------

Admission No	Name	Date of Birth	Sport No	Sport	Team	Number of permanent members
1426	Kavindu Prabashwara	2005.05.23	S001	Cricket	A	11
1426	Kavindu Prabashwara	2005.05.23	S002	Football	A	16
1428	Mohommad Malikkar	2005.02.07	S001	Cricket	В	11
1428	Mohommad Malikkar	2005.02.07	S002	Football	A	16
1428	Mohommad Malikkar	2005.02.07	S003	Volleyball	В	06
1429	Janith Asheka	2005.04.15	S001	Cricket	A	11
1429	Janith Asheka	2005.04.15	S003	Volleyball	A	06

There is data duplication in this table. To minimize data duplication, let us break these data into separate tables. Include Sports data into Sports Table (Table 9.27) and student data into Student Table (Table 9.28).

Table 9.27 - Student Table

Admission No	Facility fees Table	Date of Birth
1426	Kavindu Prabashwara	2005.05.23
1428	Mohommad Malikkar	2005.02.07
1429	Janith Asheka	2005.04.15

Table 9.28 - Sports Table

	Sport No.	Sport	Number of permanant Members
Ę	S001	Cricket	11
\right\{ \frac{1}{2} \right\}	S002	Football	16
\[\frac{1}{2}\]	S003	Volleyball	6

Many-to-many relationship between Student Table and Sports Table is converted to one-to-many relationships in related databases. For this, another table is needed apart from the two tables given above. (Let us name that table as Students Sports Table – Table 9.30) Let us include Admission Number of Student Table to represent students and Sport Number of Sports Table to represent sports.

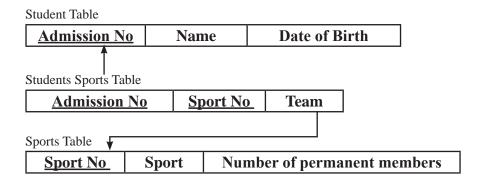
Figure 9.29 – Student Table

Admission No	Name	Date of Birth
1426	Kavindu	2005.05.23
	Prabashwara	
1428	Mohommad	2005.02.07
	Malikkar	
1429	Janith Asheka	2005.04.15

Figure 9.30 - Students Sports Table

• >	State into Sport	
sion	Sport No	Team
<u>)</u>		
6	S001	A
6	S002	A
8	S001	В
8	S002	A
8	\$003	В
9	001	A
9)	\$003	A
	sion 2 6 6 6 8 8 8 8 9 9 9 9 9	sion Sport No 6 S001 6 S002 8 S001 8 S002 8 S003 9 001

Figure 9.31 – Sports Table


Sport No	Sport	Number of permanent members
S001	Cricket	11
S002	Football	16
\$003	Volleyball	6

The Admission Number is the Primary key of the Student Table and the foreign key of Students Sports Table.

The Sport Number is the primary key of the Sports Table and the foreign key of Students Sports Table.

The primary key of the Students Sports Table is Admission Number + Sport Number.

Refer Figure 9.13 which gives relationship when two tables like the Student Table and Sports Table with many-to-many relationships are converted to one-to-many relationships.

Representing two tables with many-to-many relationships as two one-to-many relationship

Figure 9.13 - Many-to-Many Relationship

Thus.

There is a one-to-many relationship between the Student Table and the Students Sports Table.

There is a one-to-many relationship between Sports Table and Students Sports Table.

Hence, by using an extra table, many-to-many relationships can be converted to one-to-many relationships.

Creating a Relational Database Using Database Management System Software

Let us learn how to build relationships between tables using a Database Management System software. For this, create the tables given below: Figure 9.14 - Student Table (using field names and data types given) and Figure 9.15 – Marks Table.

	Field Name	Data Type
8 Ad	mission_Number	Text
Sui	name_with_Initials	Text
Da	te_of_Birth	Date/Time
Tel	ephone_Number	Text
Ad	mission_Fees	Currency

Figure 9.14 – Field names and data types of Student Table.

	Field Name	Data Type
3	Index_Number	Text
	Admission_Number	Text
	Maths	Number
	Science	Number
	English	Number
	Year	Text

Figure 9.15 – Field names and data types of marks table.

9.5.1 Build up relationship between tables

For Microsoft Office Access...

Select Database Tools → Select Relationship command → Select the table which should be related → Click 'Add' command button. (Indicate the number of tables required) → Drag the Primary Key to the foreign key of the table which should be related (Figure 9.16) → Select 'Enforce Referential Integrity' on 'Edit Relationship' Dialogue Box (Refer 9.17) → Select 'Cascade Update Related Field' and 'Cascade Update Related Records' → Click 'Create' command button.

For LibreOffice...

Select Tools Menu → Select Relationship command → Select the table which should be related → Click Add command button. (Indicate the number of tables required) → Drag the Primary Key to the foreign key of the table which should be related → Right click on Relationship and select Edit → Select 'Update Cascade' under 'Update Option' on Relations Dialogue Box. Select 'Delete Cascade' under 'Delete Option' (Figure 9.18) → Click 'OK' command button.

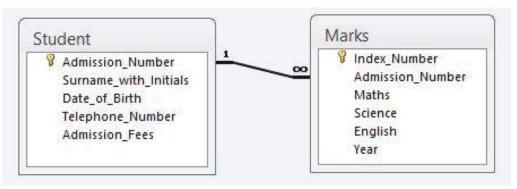


Figure 9.16 - One-to-many relationship between two tables.

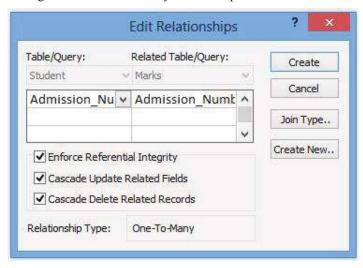


Figure 9.17 – Editing Relationship Dialogue Box (Access)

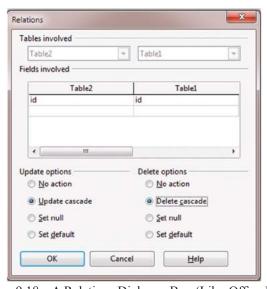


Figure 9.18 – A Relations Dialogue Box (LibreOffice Base)

The Admission Number is the primary key of the Student Table and the Foreign Key of the Marks Table.

observation

Special Features in Related Tables

As soon as the values of a primary key field of the Student Table are updated using 'Referential Integrity,' the foreign key field values of the related table are automatically changed.

Further, when a record of the Student Table is deleted, the related records of the related table are automatically deleted.

First, data should be entered to the student Table. After that, data can be entered to the Marks Table.

After entering the marks to the Student Table, data can be entered to the Marks Table through it.

For this, click on the + mark which is in front of the Admission Number of the Student Table. Then data can be entered to Marks Table easily. (Refer Figure 9.19)

	Ac	dmission_Number	 Surna 	me_v	with_Initial	5 +	Date_of_Bi	rth	 Teleph 	one	Number +	Adm	ission_Fees •
早	00	1	Karun	ajeev	wa R.J.C		8/10	/20	03 0715648	453			Rs. 560.00
II	1	Index_Numl •	Maths		Science	*	English	*	Year		Click to Add		
		1001		67		45		78	2013				
		1101		56		64		51	2014				
	*												
+	00	2	Soma	rathn	a A.B.G.		3/1	/20	03 0777876	514			Rs. 560.00
早	00	3	Rasap	uthra	m S.N.		7/10	/20	03 0346737	785			Rs. 560.00
11-12	1	Index_Numl -	Maths		Science		English		Year		Click to Add	•	
		1003		37		54		35	2013				
		1103		68		60		72	2014				
١,	*												
1	00	4	Jayas	ena L.	K.R.		7/11	/20	03 0112356	567			Rs. 560.00
+	00	5	Malik	kar M	I.N.M.		9/23	/20	03 0727543	627			Rs. 560.00
1	00	6	Radha	krisn	ia T.U.		1/6	/20	03 0679734	355			Rs. 560.00
121	00	7	Faslin	a M C	3		3/2	1/20	03 0417878	676			Rs. 560.00

Figure 9.19 – Entering data to Student Table and Marks Table.

9.6 Creating Forms to Entering and Displaying Data

Now you have knowledge about creating a table and entering data to it. Forms are used to enter data to a table in Database Management Systems. Further, forms are used to display entered data as well.

Here, a row of a table is displayed and entered as a record in a form. (Refer **Figure 9.18)**

Data Tabla

		Data T	able		
	Name	Address	Telephone No	Email	
	Anwar	Athurugiriya	0773684949	anvmom@dd.uk	
	Nimal	Galewela	07184632481	nigl@ya.com√	
	Sudakaran	Kandy	0817587484	suda@gmail.com	
	Saman	Kegalle			
Email	Saman Kegalle one No		Table and Data Form	Name Ni Address Gale Telephone No 07184	ya.com
Dat	a input through f	orm			

Each input record is entered to the last column of the table. Each record of the table can be filled one by one through the form. For this, the Record Navigation Bar of a form is used. (Refer Figure 9.20)

Figure 9.20 – Checking records from a data form.

1. Building a Data Form

For Microsoft Office Access ...

Create \rightarrow Form Design \rightarrow Add Existing Fields \rightarrow Show tables \rightarrow Select the required table \rightarrow Drag table fields to the form (Refer Figure 9.21)

Figure 9.21 -Data form to enter data to the Student

2. Showing Table Records in Data Form

For Microsoft Office Access ...

Home Tab \rightarrow View \rightarrow Form View (Refer Figure 9.22)

Admission_Number	001
Surname_with_Initials	Karunajeewa R.J.C.
Date_of_Birth	8/10/2003
Telephone_Number	0715648453
Admission_Fees	Rs. 560.00
Add New Record	Delete Record

Figure 9.22 – Showing records in the Student Table

3. Entering Control Wizards to a Form

For Microsoft Office Access ...

Design Tab \rightarrow Select 'Control Wizards' (Refer Figure 9.23) \rightarrow Select the button indicated as XXXX → Establish the button in data form → Select Record Operation in Command Button Wizard (Refer Figure 9.24) \rightarrow Select the Action which should be entered (E.g.: Add New Record) \rightarrow Give a proper name to the button \rightarrow Finish

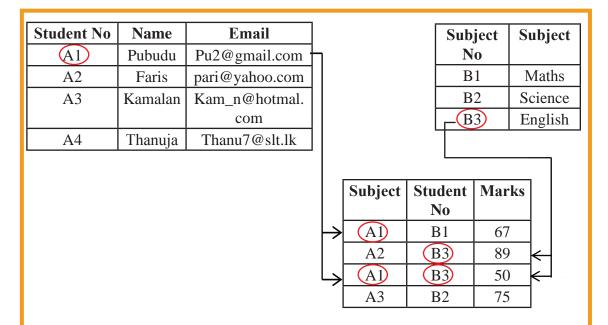

Figure 9.23 – controlling Tools

Figure 9.24 – Command Button Wizard

9.7 Designing Query to Get Information

Let us use a query to obtain necessary information from the data of related tables. Query represents data of selected fields (columns) in each table. (Refer Figure 9.25)

When Name, Subject and Marks are taken by a query from the three table above,

Name	Subject	Marks
Pubudu	Maths	67
Faris	English	89
Pubudu	English	50
Thanuja	Science	75

Figure 9.25 - Obtaining data to a query

For Microsoft OfficeAccess...

Create Tab → Query Design → Select the necessary tables (Refer Figure 9.26) → Select the necessary field from the tables → Run the query

Designing a Query

Figure 9.26 - Dialogue Box to select tables

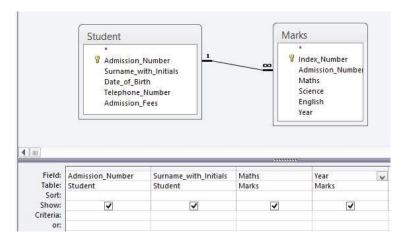


Figure 9.27 – Window to design query

Refer figure 9.28 given below for the information received after running the query.

Admission_Number -	Surname_with_Initials +	Maths +	Year -
001	Karunajeewa R.J.C	67	2013
001	Karunajeewa R.J.C	56	2014
002	Somarathna A.B.G.	76	2013
002	Somarathna A.B.G.	66	2014
003	Rasaputhram S.N.	37	2013
003	Rasaputhram S.N.	68	2014
004	Jayasena L.K.R.	87	2013
004	Jayasena L.K.R.	92	2014
005	Malikkar M.N.M.	62	2013
005	Malikkar M.N.M.	76	2014
006	Radhakrisna T.U.	32	2013
006	Radhakrisna T.U.	43	2014
007	Faslina M.G.	70	2013
007	Faslina M.G.	80	2014
*			

Figure 9.28 – information received after running the query

As shown in Figure 9.28, marks scored by students in 2013 and 2014 are shown. You can obtain marks scored by students in 2014 only (information shown in Figure 9.28) by naming year 2014 as Criteria. (Refer Figure 9.29)

Field:	Admission_Number	Surname_with_Initials	Maths	Year
Table:	Student	Student	Marks	Marks
Sort:				
Show:	✓	~	~	~
riteria:				2014"
or:				

Figure 9.29 – Giving Criteria for query

	Admission_Number •	Surname_with_Initials -	Maths -	Year
	001	Karunajeewa R.J.C	56	2014
	002	Somarathna A.B.G.	66	2014
	003	Rasaputhram S.N.	68	2014
	004	Jayasena L.K.R.	92	2014
	005	Malikkar M.N.M.	76	2014
	006	Radhakrisna T.U.	43	2014
	007	Faslina M.G.	80	2014
*				

Figure 9.30 – Information received after running query with Criteria

Various calculations can be made using fields through query. Let us learn how total marks scored by students are calculated.

Add a new column to the query as Total and build an expression indicating the calculation needed. To get total marks of subject it should be typed as:

Total: [Marks]! [Marks]! [Science] + [Marks]! [English]. This can be typed (Refer Figure 9.31.) or can be performed by building the expression, right click the Mouse button on the column which you expect to get the total and select Build command. Then use the Dialogue Box you get. (Refer Figure 9.32)

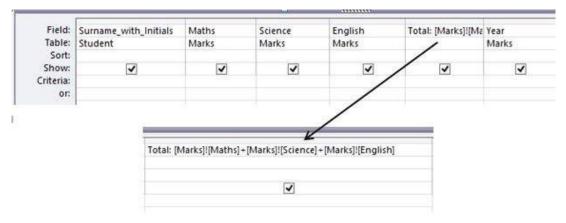


Figure 9.31 – Enlarge 'Total' column in the query

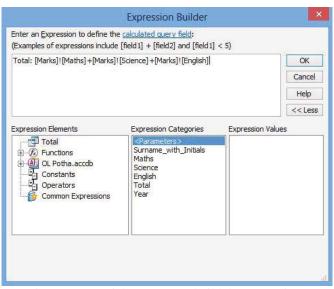


Figure 9.32 – Dialogue Box to build the expression

After running the query built in the way explained above, you get information as given in Figure 9.33 which is given below.

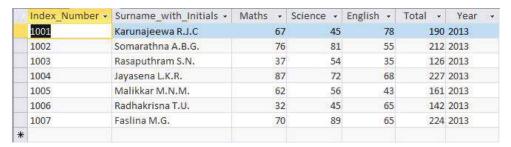


Figure 9.33 – Marks and total of students scored in 2013

9.8 Designing Reports to Present Information

Reports are used to obtain printed copies of important information received from the data of related tables. Both tables and queries can be used to design reports.

Let us learn how a report is designed using the query given above in Figure 9.33.

Report Wizard can be used to design reports.

For Microsoft Office Access...

Create Tab \rightarrow Report Wizard \rightarrow Select the necessary table or query (Refer Figure 9.34) \rightarrow Select the fields needed for the report from the table or query \rightarrow Design the report as you need clicking Next button \rightarrow Finish. Then you will get a report as shown in Figure 9.35.

Figure 9.35 - Report Wizard used to design reports

ndex_Number	Surname_with_Initials	Maths	Science	English	Total	Year
1001	Karunajeewa R.J.C	67	45	78	190	2013
1002	Somarathna A.B.G.	76	81	55	212	2013
1003	Rasaputhram S.N.	37	54	35	126	2013
1004	Jayasena L.K.R.	87	72	68	227	2013
1005	Malikkar M.N.M.	62	56	43	161	2013
1006	Radhakrisna T.U.	32	45	65	142	2013
1007	Faslina M.G.	70	89	65	224	2013

Figure 9.35 – Report which displays the total marks of students in 2013

Let us learn how numerical values included in a report are calculated.

For this, let us find the total of admission fees paid by the students. Create a table as explained above using Report Wizard including Admission Number, Name and Admission Fees. Then change from Report View to Design View. Then you will get a report layout as shown in Figure 9.36.

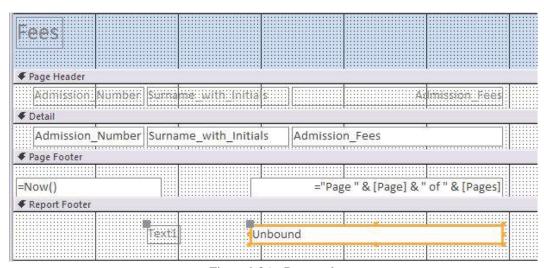


Figure 9.36 – Report plan

Select the tool given as 'ab' on the tool barand establish the text box under Report Footer. (Refer Figure 9.37)

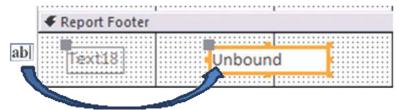


Figure 9.37 – Establishing the text box

The text box is indicated as unbound. The reason for this is there is no field given to it. To get the total of admission fees, get the Expression Builder Dialogue Box to build expressions by clicking the button with three dots in front of the Control Source on Property Sheet. (Refer Figure 9.39)

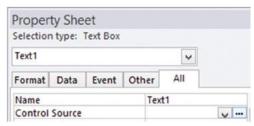


Figure 9.38 - Property Sheet

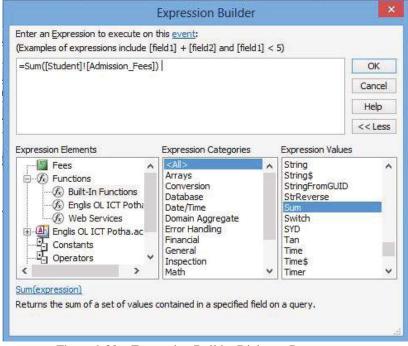


Figure 9.30 – Expression Builder Dialogue Box

To get the total of admission fees, type the expression = Sum ([Student Table]![Admission Fees]) and type OK. Then change the view from Design View to Report View. After that, you will get the report which displays the total of Admission Fees. (Refer Figure 9.40)

dmission_N	umber Surname_with_Initials	Admission_Fees
01	Karunajeewa R.J.C.	Rs. 560.00
02	Somarathna A.B.G.	Rs. 560.00
03	Rasaputhram S.N.	Rs. 560.00
04	Jayasena L.K.R.	Rs. 560.00
05	Malikkar M.N.	Rs. 560.00
06	Radhakrisna T.U.	Rs. 560.00
07	Faslina M.G.	Rs. 560.00
	Total	Rs. 3,920.00

Figure 9.40 – Report which displays the total of Admission Fees

Printing the Report

Change the 'Report View' to 'Print Preview'. Click on the tool shown in Figure 9.41. Print the number of copies you need.

Figure 9.41 – Printing tool

Activity

1. Explain the advantages of electronic databases.

- 2. Explain with examples the features that are available in electronic databases.
 - 3. Compare electronic and manual database.
 - 4. Explain what is meant by data encryption is.
 - 5. Explain relational databases using fields, records and tables.
 - 6. Define primary key and provide three examples.
 - 7. Define composite key and provide three examples.

- 8. Define foreign key and with three examples.
- 9. Write five disadvantages of data duplication.
- 10. a) What is a data type? Provide examples for data types.
 - b) Explain the reason as to why 'integer' data type is not the best data type for field that stores telephone numbers.
- 11. Explain the relationships; one-to-one, one-to-many and many-to-many with two examples for each.
- 12. Explain what 'objects' are in Database Management Systems and explain the uses of the objects.

Sammary

- Database is defined as the collection of organized data.
- In a table a column is known as a 'Field'
- A raw of a table is known as a 'Record'
- Advantages of electronic database
 - Efficient in searching data.
 - Facilities to get copies.
 - Less storage capacity used for storing data.
 - Efficient analysis of data.
 - Sharing data.
 - Data independence.
- Characteristic of a database.
 - Avoid data redundancy.
 - Consistency of data.
 - Increased efficiency
 - Increased accuracy
 - Increased validity
 - Increase the security of data.
- A column or collection of columns in a table when records can be identified uniquely is called primary key.

- If a field (or a combination of fields) of one table can be used to uniquely identify rows in another table, these fields are called the foreign keys.
- A relationship is built up between two tables by using foreign key.
- Data redundancy means the same data is stored in several database tables.
- The type of data that is relevant to a field is known as data type.
- In a relational database a relationships such as one-to-one, one-to-many and many-to-many can be exist.
- To enter and display data, forms can be used.
- Query is used to obtain information.
- To present data, reports are used.