D D	යඹ පළාත් අධ්යාපන දෙපාර්තයේ යඹ පළාත් අධ්යාපන දෙපාර්තිකේ යඹ පළාත් අධ්යාපන දෙපාර්තිකේ යඹ පළාත් අධ්යාපන දෙපාර්තයේ යම පළාත් අධ්යාපන දෙපාර්තයේ යම	Senga Troying and Bengring (1) Educe 2002 Provincial Department of Educe	minn - NWP විශාල පුව අධ්යාපත මාජ පිළ minn - NWP විශාල පුවත අධ්යාපත දෙපාර්තමේ ation - NWP විශාල පුවත් අධ්යාපත දෙපාර්තමේ	Provincial Department of Education - NWP
		First Term Test	- Grade 13 - 2019	
ndex No:		Combined 1	Mathematics I	Three hours only
* Part Answ use of * Part Answ Answ Answ Answ	question paper A (Question 1 A) wer all question additional sheets B wer five question are end of the time of part B before the proof part B before A (Question part B (Question	s if more space is need ns only. Write your ans ne allocated, tie the an ore handing them over	to each question in the select. swers on the sheets proving swers of the two parts to	ogether so that Part A is
		For Exami	ner's Use only	
(10	Combined M	athematics I	Paper I	
		Marks Awarded	Paper II	
Part	Question No	1	Taper II	
Part	Question No		Total	
Part				
Part	1 34		Total	
Part	1 2		Total Final Marks	l Marks
Part	1 2 3 4 5		Total Final Marks Fina	l Marks
	1 2 3 4 5 6		Total Final Marks Fina In Numbers	l Marks
	1 2 3 4 5 6 7		Total Final Marks Fina	l Marks
	1 2 3 4 5 6 7		Total Final Marks Fina In Numbers	l Marks
	1 2 3 4 5 6 7		Total Final Marks Fina In Numbers	l Marks
	1 2 3 4 5 6 7 8 9		Total Final Marks Fina In Numbers	
	1 2 3 4 5 6 7 8		Final Marks Fina In Numbers In Words Marking Examiner	
	1 2 3 4 5 6 7 8 9 10 Total		Total Final Marks Fina In Numbers In Words	
	1 2 3 4 5 6 7 8 9 10 Total		Final Marks Final Marks In Numbers In Words Marking Examiner Marks Checked by	
	1 2 3 4 5 6 7 8 9 10 Total 11	Trials Awarded	Final Marks Fina In Numbers In Words Marking Examiner	
	1 2 3 4 5 6 7 8 9 10 Total 11 12		Final Marks Final Marks In Numbers In Words Marking Examiner Marks Checked by	
A	1 2 3 4 5 6 7 8 9 10 Total 11 12 13		Final Marks Final Marks In Numbers In Words Marking Examiner Marks Checked by	
A	1 2 3 4 5 6 7 8 9 10 Total 11 12 13 14 15		Final Marks Final Marks In Numbers In Words Marking Examiner Marks Checked by	
A	1 2 3 4 5 6 7 8 9 10 Total 11 12 13 14 15		Final Marks Final Marks In Numbers In Words Marking Examiner Marks Checked by	
A	1 2 3 4 5 6 7 8 9 10 Total 11 12 13 14 15 16 17		Final Marks Final Marks In Numbers In Words Marking Examiner Marks Checked by	

Combined Maths 13 - I (Part A)

	If there is no remainder when the polynomial $ax^3 + bx^2 + cx + d$ is divided by $(x^2 + k^2)$ show $ab = cd$.
•	
Į	Using the graphs solve the inequality $2 + x - 4 > (x - 4)^2$.
•	

		e $a \in \Re$						
		• • • • • • • • • •			 • • • • • • • • • •	 •	 	
• • • • • • • • • • •					 	 	 	
					 	 	 	• • • • •
					 	 	 	• • • • •
					 	 	 	••••
		• • • • • • • • • • •		• • • • • • • • •	 	 	 	
	• • • • • • • • • • • • • • • • • • • •				 	 	 	
Evaluate,	$\theta \xrightarrow{\lim} \frac{\pi}{2}$	$\frac{1-s}{\left(\frac{\pi}{2}-\theta\right)}$	$\frac{\sin \theta}{\theta \cos \theta}$		 	 	 	
Evaluate,	$\theta \xrightarrow{\lim} \frac{\pi}{2}$	$\frac{1-s}{\left(\frac{\pi}{2}-\theta\right)}$	$\frac{\sin \theta}{\theta \cos \theta}$		 		 	
Evaluate,	$\theta \xrightarrow{\lim} \frac{\pi}{2}$	$\frac{1-s}{\left(\frac{\pi}{2}-\theta\right)}$	$\frac{\sin \theta}{\theta \cos \theta}$		 	 	 	
	$\theta \xrightarrow{\lim} \frac{\pi}{2}$						 	

_	Find the area bounded by the curve $y = x(x-2)$ and the line $y = -\frac{x}{2}$ using integration.
]	Show that the equation of the normal line to the parabola $y^2 = 4x$ at the point $(t^2, 2t)$, is $y + tx = 2$. If the normal line meets this parabola again at the point $(T^2, 2T)$, show that $t^2 + tT + 2 = 0$.
]	
]	
]	
	If the normal line meets this parabola again at the point $\left(T^2,2T\right)$, show that $t^2+tT+2=0$.
	If the normal line meets this parabola again at the point $\left(T^2,2T\right)$, show that $t^2+tT+2=0$.
	If the normal line meets this parabola again at the point $\left(T^2,2T\right)$, show that $t^2+tT+2=0$.
	If the normal line meets this parabola again at the point $\left(T^2,2T\right)$, show that $t^2+tT+2=0$.
	If the normal line meets this parabola again at the point $\left(T^2,2T\right)$, show that $t^2+tT+2=0$.
	If the normal line meets this parabola again at the point $\left(T^2,2T\right)$, show that $t^2+tT+2=0$.
	If the normal line meets this parabola again at the point $\left(T^2,2T\right)$, show that $t^2+tT+2=0$.

	veen the lines is $ (h) $	$-m$)sın α	-(k-n)co	$ \alpha $.			
		,	` /	ı			
Let $A = (2, -1)^{-1}$	and $B = (4, -1)$ and $B = (4, -1)$	3). $C = (3)$	Bt,-t) is	a point on t	he perpendi	cular bisect	
Let $A = (2, -t)$ $t \in R \text{ Fin}$	-1) and $B = (4, -1)$	3). $C = (3)$	(3t,-t) is coordinates	a point on t D such	that ACB	cular bisect D form a ri	hombus.
Let $A = (2, -t)$ $t \in R \text{ Fin}$	and $B = (4, -1)$ and $B = (4, -1)$ d the value of t and	3). $C = (3)$	(3t,-t) is coordinates	a point on t D such	that ACB	cular bisect D form a ri	hombus.
Let $A = (2, -t)$ $t \in R \text{ Fin}$	and $B = (4, -1)$ and $B = (4, -1)$ d the value of t and	3). $C = (3)$	(3t,-t) is coordinates	a point on t D such	that ACB	cular bisect D form a ri	hombus.
Let $A = (2, -t)$ $t \in R \text{ Fin}$	and $B = (4, -1)$ and $B = (4, -1)$ d the value of t and	3). $C = (3)$	(3t,-t) is coordinates	a point on t D such	that ACB	cular bisect D form a ri	hombus.
Let $A = (2, -1)$ $t \in R$ Find	and $B = (4, -1)$ and $B = (4, -1)$ d the value of t and	3). $C = (3)$	(3t,-t) is coordinates	a point on t D such	that ACB	cular bisect D form a ri	hombus.
Let $A = (2, -t)$	and $B = (4, -1)$ and $B = (4, -1)$ d the value of t and	3). $C = (3)$	(3t,-t) is coordinates	a point on t D such	that ACB	cular bisect D form a ri	hombus.
Let $A = (2, -t)$	and $B = (4, -1)$ and $B = (4, -1)$ d the value of t and	3). $C = (3)$	(3t,-t) is coordinates	a point on t D such	that ACB	cular bisect D form a ri	hombus.
Let $A = (2, -t)$	and $B = (4, -1)$ and $B = (4, -1)$ d the value of t and	3). $C = (3)$	(3t,-t) is coordinates	a point on t D such	that ACB	cular bisect D form a ri	hombus.
Let $A = (2, -t)$	and $B = (4, -1)$ and $B = (4, -1)$ d the value of t and	3). $C = (3)$	(3t,-t) is coordinates	a point on t D such	that ACB	cular bisect D form a ri	hombus.
Let $A = (2, -1)$ $t \in R$ Find	and $B = (4, -1)$ and $B = (4, -1)$ d the value of t and	3). $C = (3)$	(3t,-t) is coordinates	a point on t D such	that ACB	cular bisect D form a ri	hombus.

09.	Solve $2 \tan^{-1}(x-1) + \tan^{-1} x = \frac{\pi}{2}$	
10.	Find the values of x in the range [-	$[-\pi, \pi]$, which satisfies the equation $\cos 2x + 3\sin x = 2$.

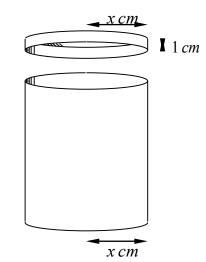
Answer only 05 questions.

- 11. a. If and α , β are the roots of the equation, $ax^2 + bx + c = 0$ find the value of $(\alpha \beta)^2$ in terms of a, b and c. Obtain the roots of the equation $(c-b+a)x^2 + (b-2a)x + a = 0$ in terms of α , β .
 - b. (i) If there is a common root for the equations $ax^2 + a^2x + 1 = 0$ and $bx^2 + b^2x + 1 = 0$, show that the quadratic equation $abx^2 + x + a^2b^2 = 0$ is satisfied by the other roots of them.
 - ii. Show that for real x, there is no real value of the expression $\frac{x^2 + 2x 1}{2x 1}$ between 1 and 2.
 - c. Let, $f(x) = ax^3 + bx^2 + x + 2 = 0$. It is given that (x-1) is a factor of f(x) and the remainder when f(x) is divided by (x+1) is -6. Find the values of a and b. Express f(x) as a product of linear factors for these values of a and b.
- 12. *a*. Sketch the graph of y = |x| 2

Hence obtain the graph of y = ||x| - 2|. Solve the inequality $\frac{||x| - 2|}{2} > 1$ using above graph.

- b. f(x) is a polynomial of degree 4 and it is divisible by $x^2 + 2$. When it is divided by $(x+1)^2(x-2)$ the reminder is $6x^2 3x$. Find the polynomial. Show that there are no real roots for the equation f(x) = 0.
- c. Express $\frac{4x^2 x + 2}{x(x+1)^2}$ in partial fractions.
- $d. \quad \text{When } a,b,c \in \Re \text{ , show that } \log_a c = \frac{\log_b c}{\log_b a} \text{ . Hence deduce that } \log_a c = \frac{1}{\log_c a} \text{ .}$ Show that $\log_a x \cdot \log_b x + \log_b x \cdot \log_c x + \log_c x \cdot \log_a x = \frac{\log_a x \cdot \log_b x \cdot \log_c x}{\log_{abc} x}$.
- 13. The equation of a curve is given by $y = \frac{3x+4}{(2x+1)(x-2)}$.
 - i. Express $\frac{3x+4}{(2x+1)(x-2)}$ in partial fractions.

Hence find the partial fractions of $\frac{(3x+4)^2}{(2x+1)^2(x-2)^2}$.


- ii. Show that $\frac{dy}{dx} = \frac{2}{(2x+1)^2} \frac{2}{(x-2)^2}$. Hence or otherwise show that there is a turning point at x = -3. Find x coordinates of other stationary points on the curve.
- iii. Find, $\frac{d^2y}{dx^2}$ and determine the nature of the turning point at x = -3.
- iv. Sketch the graph of $y = \frac{3x+4}{(2x+1)(x-2)}$ by indicating the turning points and asymptotes.
- v. Find $\int \frac{3x+4}{(2x+1)(x-2)} dx$ and hence show that the area bounded by the curve, x axis and the lines x = 4 and x = 12 is $\ln 15$.

Find the volume of the solid generated by rotating this region about x axis.

14. a. Let
$$f(x) = \frac{(x-1)(x-5)}{(x-4)(x-2)}$$
 for $x \neq 0$, $x \neq 2$. Show that $f'(x) = \frac{6(x-3)}{(x-2)^2(x-4)^2}$ and find values of x such that $f'(x) = 0$.

Sketch the graph of y = f(x) by indicating the turning points and asymptotes.

- b. It is needed to make a biscuit tin using a thin metal sheet of area 80π cm² without any wastage. The radius of the lid same as the radius of the tin x cm. The lid overlaps the tin by 1 cm as shown in the figure. The volume of tin is V cm³ Here x is a variable.
 - i. Show that $V = \pi (40x x^2 x^3)$
 - ii. Using the derivative of v, find the radius when the volume is maximum.

15. a. Let $f(x) = \frac{1}{x(x-1)^2}$. Express f(x) in partial fractions.

Evaluate $\int f(x)dx$. Hence or otherwise evaluate $\int \frac{1}{\left(e^t-1\right)^2} dt$.

b. Using the integration by parts, find $\int xe^{-2x}dx$.

c. Prove that
$$\int_{0}^{a} f(x)dx = \int_{0}^{a} f(a-x)dx$$
.

Using the above result, evaluate
$$\int_{0}^{\frac{\pi}{2}} \frac{\sin^{3} x}{\sin x + \cos x} dx$$
.

16. In the parallelogram PQRS, the equations of the sides PQ, QR, RS and SP are $ax + by + c_1 = 0$, $lx + my + n_1 = 0$, $ax + by + c_2 = 0$ and $lx + my + n_1 = 0$ respectively. Show that the area of parallelogram is $\frac{|c_1 - c_2||n_1 - n_2|}{|am - bl|}$.

In the rhombus ABCD the equations of the sides AB and AC are x-y+1=0 and 2x-y-1=0 respectively. If the side BC passes through the point (5,-6), find the equations of BC, CD and DA.

Using the results of the first part, find the area of the rhombus ABCD.

17. *a*. If $\theta = 36^{\circ}$, show that $\sin 3\theta = \sin 2\theta$ Hence deduce that $\cos 36^{\circ} = \frac{\sqrt{5} + 1}{4}$.

Further show that, $\sin 12^{\circ} \sin 48^{\circ} \sin 54^{\circ} = \frac{1}{8}$.

b. State the Sine rule for a triangle with usual notation.

The angular bisector of the interior angle \hat{A} meets BC at D. Show that $AD = \frac{2bc}{(b+c)}\cos\frac{A}{2}$.

Find the length of the angular bisector of the interior angle \hat{B} .

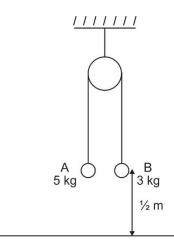
If the angular bisectors of the interior angles \hat{A} and \hat{B} are equal in length, show that $\sin B \cos \left(\frac{A-C}{2} \right) = \sin A \cos \left(\frac{B-C}{2} \right)$.

c. Express $f(x) = 2\cos^2 x + 4\sin x \cos x - 2\sin^2 x$ in the form $f(x) = A\sin(2x + \alpha)$. Here A > 0 and α is an acute angle. Hence draw a rough graph of y = f(x) in the range $-\pi \le x \le \pi$.

සියලු හිමිකම් ඇවිරිණි / All Rights reserved වයඹ පළාත් අධනපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයඹ පළාත් අධනපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයඹ පළාත් අධනපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයඹ පළාත් අධනපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වැනි පළාත් අධනපත දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයඹ පළාත් අධනපන දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයඹ පළාත් අධනපන දෙපාර්තමේන්තුව Provincial Depa Das cert all properties the line per track the state of t වයඹ පළාත් අධනපන දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයඹ පළාත් අධනපන දෙපාර්තමේන්තුව Provincial Department of Education -වයඹ පළාත් අධ්නපන දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයඹ පළාත් අධ්නපන දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයඹ පළාත් අධ්නපන දෙපාර්තමේන්තුව Provincial Department of Education - NWP වයඹ පළාත් අධ්නපන දෙපාර්තමේන්තුව Provincial Department of Education - NWP First Term Test - Grade 13 - 2019 Combined Mathematics II Three hours only Index No:..... **Instructions:** * This question paper consists of two parts. Part A (Question 1 - 10) and Part B (Question 11 - 17) Answer all questions. Write your answers to each question in the space provided, you may use additional sheets if more space is needed. * Part B Answer five questions only. Write your answers on the sheets provided. * At the end of the time allocated, tie the answers of the two parts together so that Part A is on top of part B before handing them over to the supervisor. * You are permitted to remove only Part B of the question paper from the Examination Hall. For Examiner's Use only Paper I (10) Combined Mathematics II Question No Marks Awarded Paper II Part Total 1 Final Marks 2 3 4 **Final Marks** 5 Α In Numbers 6 7 In Words 8 9 10 Marking Examiner Total 11 Marks Checked by 1 12 13 Supervised by 14 B 15 16 17

Total

Paper 1 total

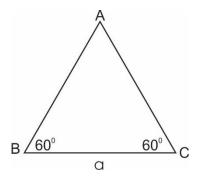

Percentage

(Part A)

01)	A particle Q_1 is released from the highest point of the ground floor of a building with two stores with equal height from the ground level. At the same instant another particle Q_2 is projected vertically downwards with initial velocity u from the highest point of the first floor, such that both particles meet each other at the ground level. (see the diagram). If the time taken for both particles to meet each other is T , draw the $v-t$ graphs for the motion of both particles in the same diagram. Hence show that $u=\frac{gT}{2}$. Here g is the acceleration due to gravity.	Q_2
•••		
•••		
•••		
•••		
•••		
02)	A sphere A of mass $2m$ moving with an initial velocity u on a smooth horizontal table, cowith a smooth sphere B of mass m with the same size. If the coefficient of restitution for the	he collision is
	e (0 < e < 1), obtain the velocity of the sphere B after the collision. If $e = \frac{1}{4}$, show that force on the partials B is $\frac{5mu}{4}$	the impulsive
	force on the particle B is $\frac{5mu}{6}$.	
•••		
•••		
•••		
•••		
•••		

03)	A particle projected under gravity at an angle θ with the horizontal from a point θ , passes through the maximum point θ which is inclined at an angle θ to the horizontal from θ , show that $\tan \theta = 2 \tan \alpha$
04)	A train engine of mass M metric tonnes, power $H Kw$ travels along a horizontal road with a constant velocity $v ms^{-1}$ under a resistive force of R N. Show that $R = \frac{H \times 10^3}{V}$. For this engine to travel upwards along an inclined plane of 30° to the horizontal with the same constant velocity v and under the same resistive force, show that the new power of the engine should be $\left(\frac{Mgv}{2} + H\right)kw$.

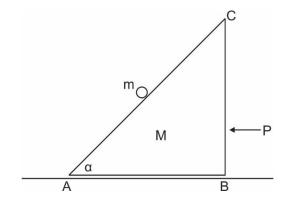
Two particles A and B with masses 5kg and 3kg respectively are connected by a light inextensible string passing over a smooth light pulley fixed to a ceiling. Initially the two particles are held in a same horizontal level at a height of $\frac{1}{2}m$ above the floor with the strings taught and vertical. (see the diagram). When the system is released gently show that the acceleration of the system is $\frac{g}{8}m$. If the strings are long enough for the particle A to hit the ground and the particle B doesn't hit the pulley, show that the particle B reaches a height of $\frac{9}{8}m$ above the ground level for the first time. Here g is the acceleration due to gravity.


••••	•••••	•••••	 •••••

- The position vectors of two non collinear points A and B with respect to the origin O are \underline{a} and \underline{b} respectively. C is a point on OA such that $\overrightarrow{OC} = \frac{2}{3} \overrightarrow{OA}$. D is a point on OB such that $\overrightarrow{OD} = 2 \overrightarrow{OB}$ and E is a point on AB such that $\overrightarrow{AE} = \frac{1}{2} \overrightarrow{AB}$.
 - i) Find \overrightarrow{CE} and \overrightarrow{ED} in terms of \underline{a} and \underline{b}
 - ii) Show that C, E and D are collinear and find the ratio CE: ED.

 •••••	•••••	•••••	•••••
 •••••	•••••	•••••	••••••
 	•••••		

	the horizontal is applied on a wooden block of weight w , which is placed on a rough horizontal table (See the figure). If the coefficient of friction between the table and the wooden block is μ , show that the maximum value of P that should	30°	
	be applied such that the block is in equilibrium without moving is $\frac{2\mu w}{\sqrt{3} + \mu}$.		
			•
08)	W and length $16a$ is in equilibrium in a vertice	from a smooth wall. An uniform rod AB of weightical plane with the end A against the wall and the angle which the rod makes with the horizont eg is $\sqrt{2} w$.	8
			,


- O9) The forces 3P, 4P and 5P act along the sides AB, BC and CA respectively of an equilateral tringle of side a in the direction indicated by the order of the letters.
 - i) Find the magnitude and the direction of the resultant.
 - ii) Assuming that the line of action of the resultant acts at a point, which is on the line BC produced at a distance of $\frac{3a}{2}$ from C, a single force is applied at B for the system to be reduced to a couple. Find the moment of the couple.

10)	A particle P of mass m is placed on the top of a fixed sphere of center O and radius a and it is gently displaced from its position of equilibrium. Find the angle which OP makes with upward vertical and the velocity of the particle when it leaves the sphere.

Combined Maths 13 - II (Part B)

- 11) (a) A motor car A which moves with uniform velocity u along a straight level road, passes a police check point X. After time T from that instant a police car B starts from rest at X and moves with a uniform acceleration f along a level road parallel to it, to catch the car. After obtaining the velocity of 2u, the police car moves with the constant velocity. Draw velocity time graphs for both motions in the same diagram. Hence when B reaches its maximum velocity, show that the distance between two cars A and B is UT. Also prove that the time taken for the motor car B to pass the motor car A, from the moment which the motor car A passes the check point X is $2\left(T + \frac{u}{f}\right)$.
 - (b) Two airports B and C are situated at equal distance d due North and South of the airport A respectively. On a day when there is a wind blowing with constant velocity v, in a direction making an angle θ towards East from North, two planes moving with equal uniform velocity u relative to wind, begin their journeys to B and C from A at the same. Using the principle of relative velocity draw the velocity triangles for both planes in the same diagram. Hence show that $t_1 t_2 = \frac{2dv\cos\theta}{v^2 u^2}$, here t_1 and t_2 are the time taken by two planes to complete above journeys respectively. If both planes return to the airport A again, deduce that they reach A at the same instant.
- A smooth wedge of mass M with vertical cross section ABC is kept on a smooth horizontal table. A particle of mass m is placed on a face of the wedge inclined at an angle α to the horizontal. As shown in the figure, a horizontal force P is applied on the other face such that the face containing the particle moves forward. By applying the equations of motion for the system in the direction BA and for the particle in the direction CA,

- (i) show that the acceleration of the wedge relative to the earth is $\frac{P mg \sin \alpha \cos \alpha}{M + m \sin^2 \alpha}$.
 - (ii) show that the acceleration of the particle relative to the wedge is $\frac{(M+m)g\sin\alpha P\cos\alpha}{M+m\sin^2\alpha}$
- (iii) show that if $P \le \frac{(M+m)g \sin \alpha}{g \cos \alpha}$, the particle m moves upwards along the inclined plane or it comes to rest on the plane.
- (iv) If the system is released gently, find acceleration of the wedge relative to earth and the acceleration of the particle relative to the wedge. Further show that the acceleration of the particle relative to the earth is $\frac{g \sin \alpha}{M + m \sin^2 \alpha} \left\{ M^2 + m \sin^2 \alpha \left(m + 2M \right) \right\}^{\frac{1}{2}}.$

13) (a) A smooth circular tube of radius a and center O is fixed in a vertical plane. A smooth particle of mass m is kept on the lowest point of the tube. A velocity of u is applied on the particle such that it moves in a vertical circular path. When the particle makes an angle θ with the downward vertical through the center, show that the velocity v of the particle is given by $v^2 = u^2 + 2ag\cos\theta - 2ag$ and the reaction R on the particle m by the tube is given by $R = \frac{m}{a} (u^2 + 3ga\cos\theta - 2ga)$.

If the particle leaves its circular motion, show that $2ag < u^2 < 5ag$.

Also show that $u^2 > 5ag$, if the particle completes its circular motion.

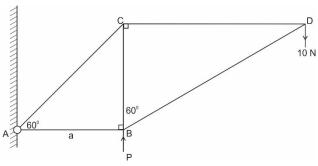
- (b) A ship sails with uniform velocity u in a straight path. A gun is fixed to the ship making an angle θ with the horizontal such that it aims the direction of motion of the ship. At a certain instant a bullet is released from the gun with a velocity $\sqrt{3} u$ so that it hit a castle of height h which is at a horizontal distance d from the gun. Assuming that the gun is in the level of sea, if the bullet hits castle, show that $gd^2 + 2u^2 \left(1 + \sqrt{3}\cos\theta\right)^2 h 2u^2\sqrt{3d}\sin\theta\left(1 + \sqrt{3}\cos\theta\right) = 0$
- 14) (a) \underline{a} and \underline{b} are two non-zero, non-parallel vectors. When α and β are two scalars, prove that $\alpha \underline{a} + \beta \underline{b} = 0$ if and only if $\alpha = 0$ and $\beta = 0$.

OABC is a parallelogram. $\overrightarrow{OA} = \underline{a}$ and $\overrightarrow{OB} = \underline{b}$. M and N are the midpoints of BC and AC respectively. Let $OP = \lambda ON$ and $AP = \mu AM$ (λ and μ are scalars). Find the values of λ and μ . Also find the ratios OP:PN and AP:PM.

(b) A system of three coplanar forces (measured in Newtons) and their points of action are shown in the table below.

Point of action	Position vector	Force
A	3 <u>i</u> + 2 <u>j</u>	$4\underline{i} + 2\underline{j}$
В	$\left(-3\underline{i}+0\underline{j}\right)$	- <u>i</u> - <u>j</u>
С	2 <u>i</u> - 3 <u>j</u>	-3 <u>i</u> - <u>j</u>

Here \underline{i} and \underline{j} are the unit vectors along the axes OX and OY in the rectangular Cartesian coordinate plane respectively. Lengths are measured in meters.


Mark the components of these three forces on the Cartesian coordinate plane indicating the coordinates of the points of action.

Show that the system is equivalent to a couple only. Find the additional force that should be applied for the system to be in equilibrium, other than the force $\left(\frac{5}{\sqrt{2}}\,\underline{i}\,+\,\frac{5}{\sqrt{2}}\,\underline{j}\right)$ applied at the origin. Also find the point of action of that additional force.

15) (a) An uniform rod AB of length 2a and weight w inclined at an angle $\tan^{-1} \frac{4}{3}$ to the floor rests in a vertical plane perpendicular to the wall with the end A on a rough horizontal floor and the end B against a rough vertical wall. The coefficient of friction between the rod and the floor and the rod and the wall is $\frac{1}{2}$.

A horizontal force P is applied at the point C on the rod where $AC = \frac{a}{4}$, so that the rod is in limiting equilibrium of slipping towards the wall. Show that $P = \frac{5W}{3}$.

(b) The framework shown in the following figure is made by joining five light rods *AB*, *BC*, *AC*, *CD* and *BD* freely at their ends.

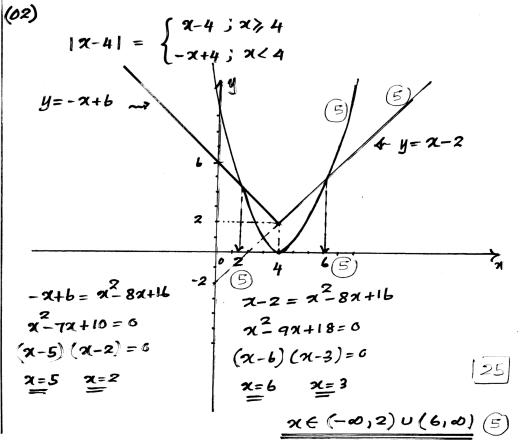
It is given that AB = a and $C\hat{A}B = C\hat{B}D = 60^{\circ}$. A weight of 10N is suspended from D and the frame work is hinged to a vertical wall at A. The framework is kept in equilibrium in a vertical plane by a vertical force applied at B, so that rods AB and CD are horizontal and the rod BC is vertical. Find the value of P.

Draw a stress diagram using Bow's notation. Hence find the stresses in the five rods stating whether they are tensions or thrusts.

- Four uniforms smooth rods AB, BC, CD and DA each of length 2a and weight w are smoothly jointed at A, B, C and D so as to form a rhombus. The rods AB and CD are placed on two smooth pegs on the same horizontal level at a distance 2l apart such that the joint A is above C. A weight 2w is hung at C. The rhombus is kept in equilibrium symmetrically in a vertical plane with $B\hat{A}D = 120^{\circ}$
 - (i) Find the reaction on a rod by a peg.
 - (ii) Show that the reaction at the joint B is $\frac{\sqrt{43} w}{2}$ and find the inclination of the reaction to the horizontal.
 - (iii) Also show that $l = \sqrt{3} a$.
 - (b) The end A of an uniform rod AB of weight w and length 2a is hinged freely to a vertical wall and the end B is a attached to a point C on the wall by a means of a light inextensible string of length 2a. C is a point on the wall at a height d(<4a) vertically above A. The rod is in equilibrium in a vertical plane perpendicular to the wall.
 - (i) Show that the tension in the string is $\frac{Wa}{d}$.
 - (ii) Show that the reaction of the hinge A is $\left(\frac{2a^2+d^2}{2}\right)^{\frac{1}{2}} \frac{w}{d}$.
 - (iii) Find the angle made by the reaction of the hinge at A with the horizontal.

17) (a) An engine of a train with mass 200 metric tonnes moves along a straight level road with a constant velocity of $72 \, kmh^{-1}$ against a constant resistance of 30 000N. Find the power of the train engine in kilowatts.

Then another cabin of mass 100 metric tonnes is connected to the engine by a connecting rod and it is pulled along the same road. The resistance against the engine remains unchanged and the resistance of the cabin is 10000N. If the engine works with the same power, find the acceleration of the train and the tension of the connecting rod when the velocity of the train is $36 \, kmh^{-1}$.


Subsequently the train with the cabin climb up a hill inclined at $sin^{-1}\left(\frac{1}{30}\right)$ with the same power under the same resistive forces with an acceleration of $\frac{1}{10}$ ms^{-2} . Then show that the velocity of the rain is $\frac{15}{4}$ ms^{-1} . (The acceleration due to gravity is 10 ms^{-2})

(b) Two smooth spheres A and B with the same radii moves in the same direction on a smooth horizontal table and collide directly. The masses of A and B are 3m and 2m respectively. Also the velocities of A and B are 2u and u respectively. The coefficient of restitution between the spheres is e. After the collision find the velocities of the spheres.

Show that the impulse $J = \frac{6mu(1+e)}{5}$.

Also show that the loss of kinetic energy due to collision is $\frac{J}{2}(1-e)u$.

(01)
$$ax^{3} + bx^{2} + (x + d = (x^{2} + k^{2}) (Ax + B))$$
 (5)
 $x^{3} \Rightarrow A = A - Q$
 $x^{2} \Rightarrow b = B - Q$
 $x^{2} \Rightarrow b = B - Q$
 $x^{2} \Rightarrow b = B - Q$
(onstant $\Rightarrow d = k^{2}B - Q$)
(onstant $\Rightarrow d = k^{2}B - Q$)
(onstant $\Rightarrow d = k^{2}B - Q$)
($\Rightarrow d = B - Q$) ($\Rightarrow d = B - Q$

(03)
$$(a-2) x^2 - 3(a+2) x + ba = 0$$
.

For real and distinct roots.

 $a \neq 2$ and $a > 0$ $= 0$
 $\{-3(a+2)\}^2 - 4(a-2)ba > 0$ $= 0$
 $\{-3(a+2)\}^2 - 4(a-2)ba > 0$ $= 0$
 $\{-3(a+2)\}^2 - 4(a-2)ba > 0$ $= 0$
 $\{a^2 + 4a + 4\} - 24a(a-2) > 0$
 $\{a^2 + 4a + 4\} - 8a^2 + 1ba > 0$
 $\{a^2 + 28a + 12 > 0$
 $\{a^2 + 28a - 12 < 0$
 $\{a - b\} (5a + 2) < 0$ $= 0$

$$(\alpha-6)(5\alpha+2) + (-2/5)(5/5) + (-2/5)(5/5)$$

$$\Rightarrow \alpha \in (-\frac{2}{5},2) \cup (2,6) = 5$$

$$= \frac{1-Sin\theta}{(04)}$$

$$\frac{1-\sin\theta}{\sqrt{2}} = \frac{1-\sin\theta}{\sqrt{2}}$$

$$\frac{1-\sin\theta}{\sqrt{2}} = \frac{1-\sin\theta}{\sqrt{2}}$$

$$\frac{1-\sin\theta}{\sqrt{2}} = \frac{1-\sin\theta}{\sqrt{2}}$$

$$\frac{1-\sin\theta}{\sqrt{2}} = \frac{1-\sin\theta}{\sqrt{2}}$$

$$= \frac{\sin\theta}{\sqrt{2}} = \frac{1-\sin\theta}{\sqrt{2}}$$

$$= \frac{\sin\theta}{\sqrt{2}} = \frac{1-\sin\theta}{\sqrt{2}}$$

$$= \frac{\sin\theta}{\sqrt{2}} = \frac{\sin\theta}{\sqrt{2}}$$

$$= \frac{\sin\theta}$$

$$= 1 \times \frac{1}{2} \stackrel{(5)}{=}$$

$$= \frac{1}{2} \stackrel{(5)}{=}$$

[25]

$$(\pm^{2}, 2\pm)$$
 $(\pm^{2}, 2\pm)$
 $(\pm^{2}, 2\pm)$
 $(\pm^{2}, 2\pm)$

$$y^{2} = 4\pi$$

$$2y \frac{dy}{d\pi} = 4$$

$$\frac{dy}{d\pi} = \frac{2}{y}$$

$$m_{1} = \left(\frac{dy}{d\pi}\right)(t_{1}^{2}2t) = \frac{2}{2t} = \frac{1}{t} = 5$$

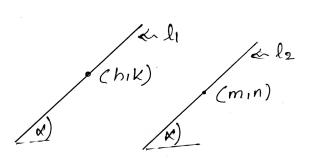
$$\Rightarrow m_1 m_2 = -1$$

$$m_2 = -t = 5$$

$$\frac{y-2t}{x-t^2} = -t \quad (5)$$

$$y+tx=2t+t^3$$

Since (7,2T) is on the normal


$$t^{3}+2t-tT^{2}-2T=0$$

$$(t-T)(t^2+4T+2)=0$$

$$t-T\neq 0$$
=) $t^2+tT+2=0$ (5.)

25

(07)

Eq. of the stright line l_1 $\frac{y-1}{x-h} = \tan x$

y los x - k los x = 91 sin x - h sin xy los x - 91 sin x + h sin x - k los x = 0. (10)

Simillarly

Eq n of the Stright line 12

yeusa-918ina+mSina-n lusa=0. (5)

: Pependicular destance =

=
$$|(h-m) \sin x + (n-k) \cos x|$$

= $|(h-m) \sin x - (k-n) \cos x|$

25

(08)
$$c(3t,-t)$$

$$B(4,-3)$$

$$m_{1} = \frac{-1+3}{2-4}$$

$$= \frac{2}{-2}$$

$$= -1$$

$$m_{1}m_{2} = -1$$

$$M = \left(\frac{4+2}{2}, \frac{-3-1}{2}\right) \qquad \begin{array}{c} m_1 m_2 = -1 \\ (-1) m_2 = -1 \end{array}$$

$$= \left(3, -2\right) \stackrel{\text{\tiny M}}{=} 1$$

.. Eq of the perpendicular bisector.

$$\frac{y+2}{x-3} = 1$$

$$y+2 = x-3$$

$$y-x+5 = 0 = 5$$

Since c(3t,-t) is on the line y-2+5=6 -+-2++5=0

$$t = \frac{5}{4}(5) \Rightarrow C \equiv \left(\frac{15}{4}, \frac{-5}{4}\right)(5)$$

$$3 = \frac{91 + \frac{15}{4}}{2}$$

$$5 = \frac{15}{4}$$

$$7 = \frac{5}{4}$$

$$9 = \frac{24 - 15}{4} = \frac{9}{4}$$

$$7 = \frac{24 - 15}{4} = \frac{9}{4}$$

$$7 = \frac{24 - 15}{4} = \frac{9}{4}$$

$$7 = \frac{-11}{4}$$

$$7 = \frac{9}{4}$$

$$7 = \frac{9}{4}$$

$$b = 9 + \frac{13}{4}$$

$$9 = \frac{24 - 15}{4} = \frac{9}{4}$$

$$\mathfrak{D} \equiv \left(\frac{q}{4}, \frac{-11}{4}\right)$$

(09)
$$2 + an^{-1}(x-1) + tan^{-1}(n) = \frac{n}{2}$$

let $x = tan^{-1}(x-1)$ and $y = tan^{-1}(x)$
 $\Rightarrow tan x = 9x-1$ and $\Rightarrow tan y = n$
 $2x + y = \frac{n}{2}$
 $xx = \frac{n}{2} - y$
 $tan (2x) = tan (\frac{n}{2} - y)$
 $\frac{x + an x}{1 - tan^{2}x} = \frac{1}{x}$
 $\frac{x(x-1)}{1 - (x-1)^{2}} = \frac{1}{x}$
 $\frac{x}{2}(x-1) = 1 - x^{2} + 2x - 1$
 $\frac{x^{2}}{2} - 2x = -x^{2} + 2x$
 $\frac{x^{2}}{2} - 4x = 0$
 $\frac{x^{2}}{2} - 4x = 0$

. 25

 $\mathcal{I} = \frac{511}{6}$

Combined Mathematics I- Part B - Grade 13

(11) (a)
$$ax^{2}+bx+c=0$$
 $\Rightarrow x = \frac{b}{a}$ $\Rightarrow x = \frac{c}{a}$ $\Rightarrow x$

(b) (i) Let the roots of
$$ax^2 + a^2x + 1 = 0$$
 are x, β . Also let $bx^2 + b^2x + 1 = 0$. Is roots are x, θ . B.

$$ax^2 + a^2x + 1 = 0 - 0$$

$$0 - 0 \Rightarrow (a - b)x^2 + (a^2 - b^2)x = 0$$

$$(a - b^2)x^2 (x + a + b) = 0$$

$$(a - b^2)x^2 (x + a + b) = 0$$

$$(a - b^2)x^2 (x + a + b) = 0$$

$$x = -a - b$$
Also $x + \beta^3 = -a$

$$x + 0 = -b$$
Also $x + \beta^3 = -a$

$$x + 0 = -b$$
Also $x + \beta^3 = -a$

$$x + 0 = -b$$

$$x = -a - b$$
Also $x + \beta^3 = -a$

$$x + 0 = -b$$

$$x = -a - b$$
Also $x + \beta^3 = -a$

$$x + 0 = -b$$

$$x = -a - b$$
Also $x + \beta^3 = -a$

$$x + 0 = -b$$

$$x = -a - b$$
Also $x + \beta^3 = -a$

$$x + 0 = -b$$

$$x^2 - (\beta + b)x + \beta = 0$$

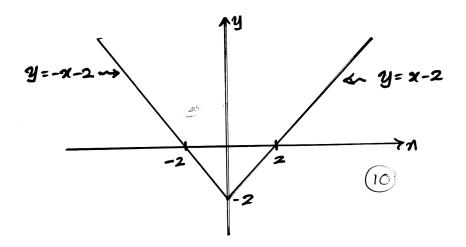
$$x^2 - (\beta + b)x + \beta = 0$$

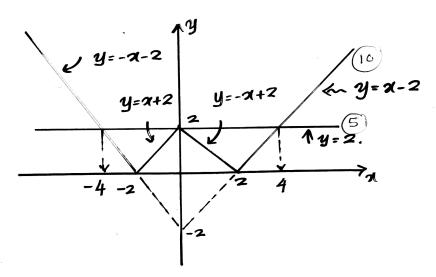
$$x^2 - (\beta + b)x + \beta = 0$$

$$x^2 - (\beta + b)x + \beta = 0$$

$$x^2 + \frac{1}{ab}x + \alpha^2 + \beta^2 = 0$$

$$x^2 + \frac{1}{ab}x + \alpha^2 + \alpha$$


i.e.
$$4(y-1)^2 - 4(y-1) \ge 0$$


i.e. $4(y-1)(y-1) \ge 0$

i.e. $4(y-1)(y-2) \ge 0$

i.e. $4(y-1) \ge 0$

$$(12) a \cdot |x| = \begin{cases} x ; x > 0 \\ -x; x < 0 \end{cases}$$

$$\frac{|1x|-2|}{2} > t$$

1/2/-2/>2

$$\int (x) = \frac{(x^2 + 2)(x^2 - x + 1)}{5}$$

$$\int (x) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1) = 0$$

$$(x^2 + 2)(x^2 - x + 1$$

.. The eq
$$^{\Omega}$$
 has not real roots.

(c)
$$\frac{4x^2-x+2}{x(x+1)^2} = \frac{A}{x} + \frac{B}{x+1} + \frac{C}{(x+1)^2}$$

$$4\chi^2 - \chi + 2 = A(\chi + 1)^2 + B\chi(\chi + 1) + C\chi$$

$$\frac{4x^2 + 2}{x(x+1)^2} = \frac{2}{x} + \frac{2}{x+1} - \frac{7}{(x+1)^2}$$

(b)
$$f(x) = (x^2+2)(Ax^2+Bx+c)$$

 $= (x+1)^2(x-2)(Mx+N) + bx^2 - 3x$
 $= (x^2+2)(Ax^2+Bx+c) = (x+1)^2(x-2)(Mx+N) + bx^2 - 3x$
 $= (x^2+2x+1)(x-2)(Mx+N) + bx^2 - 3x$
 $= (x^3+2x^2+x-2x^2-4x-2)(Mx+N) + bx^2 - 3x$
 $+ bx^2 - 3x$
 $= (x^3-3x-2)(Mx+N) + bx^2 - 3x$

$$2^{3} \approx B = N \approx 2$$
 $2^{2} \approx C + 2A = -3M + 6$
 $C + 2A = -3A + b$
 $C + 5A = 6 = 3$
 $2^{3} \approx 2B = -3N - 2M - 3$
 $2^{3} \approx -3B - 2A - 3$

 χ^{4}_{m} A = M - (1)

d)
$$\log_{a}^{c} = \frac{\log_{b}^{c}}{\log_{a}^{a}}$$

Let $\log_{a}^{c} = x$, $\log_{b}^{c} = y$ and $\log_{b}^{a} = z$

$$\Rightarrow c = a^{x} - 0 \Rightarrow b^{y} = c - 0 \Rightarrow b^{z} = a - 0$$

$$0 = 0 \quad a^{x} = b^{y}$$

$$3 \text{ trom } 0$$

$$(b^{z})^{x} = b^{y}$$

$$b^{zz} = b^{y}$$

$$xz = y$$

$$x = \frac{y}{z}$$

$$\log_{a}^{c} = \frac{\log_{b}^{c}}{\log_{a}^{a}}$$

$$= \frac{1}{\log_{a}^{c}} = \frac{\log_{c}^{c}}{\log_{a}^{a}}$$

$$\log_{a}^{x} \cdot \log_{b}^{x} + \log_{b}^{x} \cdot \log_{a}^{x} + \log_{c}^{x} \cdot \log_{a}^{x}$$

$$= \frac{\log_{a}^{c} + \log_{a}^{x} + \log_{a}^{x}}{\log_{a}^{x} \cdot \log_{a}^{x}}$$

$$= \frac{\log_{\mathcal{A}} abc}{\log_{\mathcal{A}} a \cdot \log_{\mathcal{A}} b \cdot \log_{\mathcal{A}} c} = \frac{\frac{1}{\log_{a} b \cdot \log_{a} abc}}{\frac{1}{\log_{a} a \cdot \log_{b} a} \cdot \frac{1}{\log_{a} a \cdot \log_{c} abc}} = \frac{\log_{a} abc}{\frac{\log_{a} abc}{\log_{a} abc}}$$

(13).
$$\frac{3x+4}{(3x+1)(x-2)} = \frac{A}{3x+1} + \frac{B}{x-2}$$

 $3x+4 = A(x-2) + B(2x+1)$
 $x \approx 3 = A + 2B \approx 0$
(anstant $4 = -2A + B \approx 0$
(bx2+B); $10 = 5B$
 $\frac{B=2}{2}$
(i) $\Rightarrow 3 = A + 4$
 $\frac{A=-1}{2}$
 $\frac{3x+4}{(2x+1)(x-2)} = \frac{2}{x-2} - \frac{1}{2x+1}$ (5)

$$\frac{(3x+4)^2}{(2x+1)^2(x-2)^2} = \left\{\frac{2}{x-2} - \frac{1}{2x+1}\right\}^2$$

$$= \frac{4}{(x-2)^2} - \frac{4}{5} \left\{\frac{1}{x-2} - \frac{2}{2x+1}\right\} + \frac{1}{(2x+1)^2}$$

$$= \frac{4}{(x-2)^2} - \frac{4}{5} \left\{\frac{1}{x-2} - \frac{2}{2x+1}\right\} + \frac{1}{(2x+1)^2}$$

$$= \frac{8}{5(2x+1)} - \frac{4}{5(x-2)} + \frac{4}{(x-2)^2} + \frac{1}{(2x+1)^2}$$

$$y = \frac{2}{x-2} - \frac{1}{2x+1}$$

$$\frac{dy}{dx} = 2 \times (-1)(x-2)^{-2} - (-1)(2x+1)^{-2} \times 2$$

$$= \frac{-2}{(x-2)^2} + \frac{2}{(2x+1)^2}$$

$$= \frac{2}{(2x+1)^2} - \frac{2}{(x-2)^2}$$

$$= \frac{2}{(2x+1)^2} - \frac{2}{(2x+1)^2}$$

$$= \frac{2(x-2)^2 - 2(2x+1)^2}{(2x+1)^2(x-2)^2}$$

$$= \frac{2 \cdot x^2 + 4x + 4 - 4x^2 - 4x - 1}{(2x+1)^2(x-2)^2}$$

$$= \frac{-2 \cdot x^2 + 8x + 3}{(2x+1)^2(x-2)^2}$$

$$= \frac{-2 \cdot (3x+1)(x+3)}{(2x+1)^2(x-2)^2}$$

$$= \frac{-2(3x-1)(x+3)}{(2x+1)^2(x-2)^2}$$

$$\Rightarrow \frac{dy}{dx} = 0 \quad \text{When} \quad x = \frac{1}{3} \quad \text{and} \quad x = -3 \quad (5)$$

$$(III) \frac{dy}{dx} = \frac{2}{(2x+1)^2} - \frac{2}{(x-2)^2}$$

$$\frac{d^2y}{dx} = -4(2x+1)^{-3}x2 - 2x(-2)(x-2)^{-3}$$

$$= \frac{-8}{(2x+1)^3} + \frac{4}{(x-2)^3}$$

When
$$\alpha = -3$$

$$\frac{d^2y}{dx^2} = \frac{-8}{(2x+1)^3} + \frac{4}{(x-2)^3}$$

$$\left(\frac{d^2y}{da^2}\right)_{2=-3} = \frac{4}{(-3-2)^3} - \frac{8}{(-6+1)^3}$$

$$= \frac{8}{125} - \frac{4}{125}$$

$$= \frac{4}{125}$$

(IV) Vertical asymptote;
$$x = -\frac{1}{2}$$
 and $x = 2$. (5)

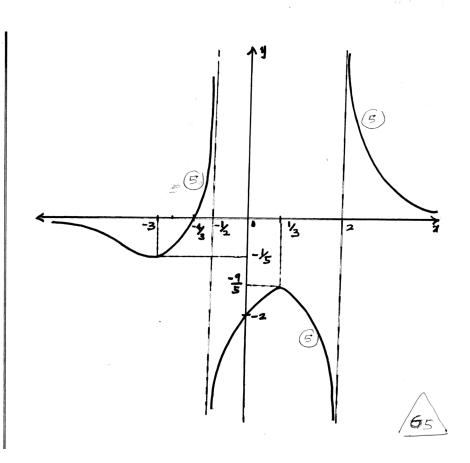
Horizontal asymptote;

$$\begin{array}{cccc}
x & \underset{\longrightarrow}{lim} & -\infty & y & \underset{\longrightarrow}{lim} & 0 \\
x & \underset{\longrightarrow}{\longrightarrow} & +\infty & y & \underset{\longrightarrow}{lim} & 0
\end{array}$$

1	-बर्श ८-३	N=-3	-3くなく-な	-1/2 2 2 1/3	x=1/3	18/2/2	2440
Sign of fi(x)	1	0	+	+	0	1/	_

When x=-3
$$y = \frac{1}{5}$$

When
$$x = \frac{1}{3}$$
 (25) $y = -\frac{9}{5}$


There are two turning points

$$\left(\frac{1}{3}, -\frac{9}{5}\right)$$
 - Local max (5)

$$\begin{array}{ccc}
& \lim_{x \to -\frac{1}{2}^{-}} & y \xrightarrow{\text{lim}} & \infty \\
x \xrightarrow{\text{lim}} & -\frac{1}{2}^{+} & y \xrightarrow{\text{lim}} & -\infty
\end{array}$$

$$\begin{array}{ccc}
x & \xrightarrow{\lim} 2^{-} & y & \xrightarrow{\lim} -\infty \\
x & \xrightarrow{\lim} 2^{+} & y & \xrightarrow{\lim} +\infty
\end{array}$$

When
$$x=0$$
 $y=\frac{4}{1x(-2)}=-2. \Rightarrow (0,-2)^{5}$

V. Area =
$$\int_{4}^{12} \frac{3x+4}{(2x+1)(x-2)} dx$$
=
$$\int_{4}^{12} \frac{2}{x-2} - \frac{1}{2x+1} dx$$
=
$$2\int_{4}^{12} \frac{1}{x-2} dx - \frac{1}{2}\int_{4}^{12} \frac{2}{2x+1} dx = 2\left\{-\ln|x-2|\right\}_{4}^{12} - \frac{1}{2}\left\{-\ln|2x+1|\right\}_{4}^{12}$$
=
$$2\ln\left|\frac{10}{2}\right| - \frac{1}{2}\ln\left|\frac{25}{3}\right|$$
=
$$2\ln\left|5\right| - \ln\left|\frac{5}{3}\right|$$
=
$$-\ln\left|25x = \frac{1}{2}\right| = \ln\left|15\right| = 1$$

Volume =
$$\int_{-12}^{12} \frac{(2\pi+4)^2}{(2\pi+1)^2(\pi-2)^2} d\pi = \frac{1}{4} \int_{-12}^{12} \frac{8}{5(2\pi+1)} \int_{-12}^{4} \frac{4}{5(\pi-2)^2} + \frac{1}{(2\pi+1)^2} d\pi = \frac{1}{4} \int_{-12}^{12} \frac{8}{5(2\pi+1)} \int_{-12}^{12} \frac{4}{5(\pi-2)^2} d\pi + \frac{1}{5} \int_{-12}^{12} \frac{4}{5(\pi-2)^2} d\pi = \frac{1}{5} \int_{-12}^{12} \frac{4}{5(\pi-2)^2} \int_{-12}^{12} \frac{4}{5(\pi-2$$

(14) (a)
$$f(x) = \frac{(x-1)(x-5)}{(x-4)(x-2)} = \frac{x^2-6x+5}{x^2-6x+8}$$

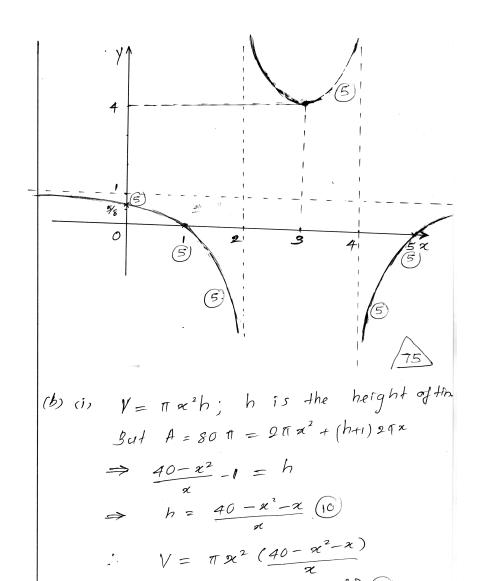
$$f'(x) = \frac{(x^2-6x+8)(2x-6)-(x^2-6x+8)(2x-6)}{(x-4)^2(x-2)^2}$$

$$= \frac{(2x-6)(3)}{(x-4)^2(x-2)^2}$$

$$= \frac{6(x-3)}{(x-4)^2(x-2)^2}$$

$$= \frac{6(x-3)}{(x-4)^2(x-2)^2}$$
For turning points
$$f'(x) = 0 \stackrel{\text{(5)}}{=} x = 3.$$

$$f(x) = \frac{1-\frac{6}{x}+\frac{5}{x^2}}{1-\frac{6}{x}+\frac{8}{x^2}}$$


for
$$\alpha \longrightarrow -\infty$$
; for $\Rightarrow 1$ $\Rightarrow y=1$ is a $\alpha \longrightarrow +\infty$; for $\Rightarrow 1$ $\Rightarrow y=1$ is a $\Rightarrow y=1$ is a $\Rightarrow y=1$ $\Rightarrow y=1$

x=4 and d=2 are vertical asymptotes.

X	- D L x L 2	26x63	36264	42220
sign of	(-)	(ー)	(+)	(+)
f (n)			/.	/

When
$$\alpha = 3$$
, $f(x) = 4$
When $\alpha = 1$, $\alpha = 5$, $f(\alpha) = 0$
When $\alpha = 0$ for $\alpha = 5/8$

(3,4) is a local minimum point.

(ii)
$$\frac{dV}{d\chi} = \Pi (40 - 2x - 3x^2) (5)$$

= $\Pi (10 - 3x) (4 + x) (5)$
When $\frac{dV}{dx} = 0$; $x = 10/3$ or $x = -4$
 $x = 10/3 (5)$

= T (402-22-x2) (10)

$$\frac{dv}{dx} + 0 - \frac{10}{3} x = \frac{10}{3} + \frac{10}{3} x$$

.: When
$$\alpha = 10/3$$
 cm, V is maximum.

(15)
$$a \cdot \frac{1}{x(x-1)^2} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{(x-1)^2}$$

$$1 = A(x-1)^2 + Bx(x-1) + Cx$$

$$x^2 \Rightarrow A + B = 0 - 0$$

$$x \Rightarrow 0 = -2A - B + C - 2$$

$$Constant \Rightarrow 1 = A = 6$$

$$\frac{1}{x(x-1)^2} = \frac{1}{x} - \frac{1}{x-1} + \frac{1}{(x-1)^2}$$

$$= \int \frac{1}{x} dx - \int \frac{1}{x-1} dx + \int (x-1)^{-2} dx$$

$$= \int \frac{1}{x} dx - \int \frac{1}{x-1} dx + \int (x-1)^{-2} dx$$

$$= \ln|x| - \ln|x-1| - \frac{1}{x-1} + C = \frac{1}{x-1}$$

$$Let x = e^t$$

$$\frac{dx}{dt} = e^t$$

$$\int \frac{1}{x(x-1)^2} dx = \ln|x| - \ln|x-1| - \frac{1}{x-1} + C$$

$$\int \frac{1}{e^t(e^t,1)^2} dt = t - \ln|e^t| - \ln|e^t| - \frac{1}{e^t,1} + C$$

$$\int \frac{1}{(e^t,1)^2} dt = t - \ln|e^t| - \frac{1}{e^t,1} + C$$

(b)
$$\int x e^{-2x} dx = \int x \frac{d(-e^{-2x})}{dx} dx$$

$$= -\frac{\pi e^{-2x}}{2} + \int \frac{1}{2} e^{-2x} dx$$

$$= -\frac{\pi e^{-2x}}{2} - \frac{1}{4} \int e^{-2x} (-2) dx$$

$$= -\frac{\pi e^{-2x}}{2} - \frac{1}{4} e^{-2x} + (3)$$

$$= \frac{\pi e^{-2x}}{2} - \frac{1}{4} e^{-2x} + (3)$$

$$I = \int_{0}^{\pi/2} \frac{1}{\sin^{2}(x)} dx = \int_{0}^{\pi/2} \frac{1}{\sin^{2}(x)} dx \xrightarrow{10}$$

$$I = \int_{0}^{\pi/2} \frac{1}{\sin^{2}(x)} dx \xrightarrow{10} (1)$$

$$= \int_{0}^{\pi/2} \frac{\sin^{2}(\pi/2)}{\sin(\frac{\pi}{2} - x)} dx \xrightarrow{10} dx \xrightarrow{10}$$

$$= \int_{0}^{\pi/2} \frac{\cos^{2}(x)}{\cos^{2}(x)} dx \xrightarrow{10} (2) \xrightarrow{10}$$

$$0+0 2I = \int \frac{\sin^3 \pi}{\sin^3 \pi + \cos^3 \pi} d\pi + \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi + \cos^3 \pi} d\pi$$

$$= \int \frac{5 \sin^3 \pi + \cos^3 \pi}{\sin^3 \pi + \cos^3 \pi} d\pi$$

$$= \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi + \cos^3 \pi} d\pi$$

$$= \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi + \cos^3 \pi} d\pi$$

$$= \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi + \cos^3 \pi} d\pi$$

$$= \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi + \cos^3 \pi} d\pi$$

$$= \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi + \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi$$

$$= \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi + \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi$$

$$= \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi + \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi$$

$$= \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi + \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi$$

$$= \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi + \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi$$

$$= \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi + \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi$$

$$= \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi + \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi$$

$$= \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi + \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi$$

$$= \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi + \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi$$

$$= \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi + \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi$$

$$= \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi + \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi$$

$$= \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi + \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi$$

$$= \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi + \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi$$

$$= \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi + \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi$$

$$= \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi + \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi$$

$$= \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi + \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi$$

$$= \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi + \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi$$

$$= \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi + \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi$$

$$= \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi + \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi$$

$$= \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi + \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi$$

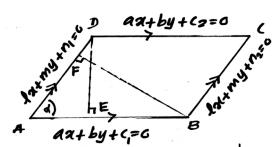
$$= \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi + \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi$$

$$= \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi + \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi$$

$$= \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi + \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi$$

$$= \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi + \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi$$

$$= \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi + \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi$$


$$= \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi + \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi$$

$$= \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi + \int \frac{\pi_{Los}^3 \pi}{\sin^3 \pi} d\pi$$

$$= (\pi)_{0}^{\pi/2} - \left\{\frac{\sin^{2}\pi}{z_{s}}\right\}_{0}^{\pi/2}$$

$$= \frac{\pi}{2} - 0 - \left\{\frac{\sin^{2}\pi}{2} - \frac{\sin^{2}\cos^{2}(s)}{2}\right\}_{0}^{\pi/2}$$

$$= \frac{\pi}{2} - 1 = \frac{\pi}{2$$

Area =
$$|AB \times DE|$$

$$= \frac{|BE \times BF|}{|Sin \times K|} \sim A$$

$$= \frac{|BE \times BF|}{|Sin \times K|} \sim A$$

BF=
$$\left| \frac{n_2 - n_1}{\sqrt{a^2 + b^2}} \right| \approx 0$$
 DE= $\left| \frac{c_2 - c_1}{\sqrt{a^2 + b^2}} \right| \approx 3$

$$m_1 = -\frac{a}{b}$$

$$y = -\frac{l}{m}x - \frac{n}{m}$$

$$m_2 = -\frac{l}{m}$$

$$\tan \alpha = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$

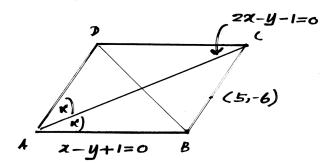
$$= \left| \frac{-\frac{a}{b} + \frac{l}{m}}{1 + \frac{a}{b} \times \frac{l}{m}} \right|$$

$$= \left| \frac{bl - ma}{bm + al} \right|$$

bl-ma
$$(bl-ma)^{2} + (bm+al)^{2}$$

= $(a^{2} + b^{2}) (m^{2} + l^{2})$

$$Sinq = \frac{bl-ma}{\sqrt{(a^2+b^2)(m^2+l^2)}} \rightsquigarrow 3$$


Substitute (), () and () in ()

Area =
$$\frac{\left|\frac{n_2 - n_1}{\sqrt{1^2 + m^2}}\right| \left|\frac{c_2 - c_1}{\sqrt{a^2 + b^2}}\right|}{\frac{bl - ma}{\sqrt{\left(a^2 + b^2\right)\left(m^2 + l^2\right)}}}$$

$$= \frac{\left(n_2 - n_1\right)\left(c_2 - c_1\right)}{am - bl}$$

$$= \frac{\left|n_2 - n_1\right| \left|c_2 - c_1\right|}{\left|am - bl\right|}$$

Let the gradient of AD is my tan DAC = tan BAC

$$\left|\frac{m-2}{1+m\cdot 2}\right| = \left|\frac{1-2}{1+2}\right|$$

$$\frac{m-2}{l+2m}=\pm\frac{1}{3}$$

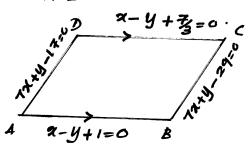
- .. The gradient of AD and BC is -7
- $\therefore \frac{\text{The eq}^{\underline{p}} \text{ of BC}}{\frac{y+b}{n-5}} = -7 \implies \underbrace{y+7n-29=6}_{[5]}$

$$2x-y-1=0$$

$$y+7x-29=0$$

$$\Rightarrow c = \left(\frac{10}{3}, \frac{17}{3}\right) = \frac{17}{3}$$

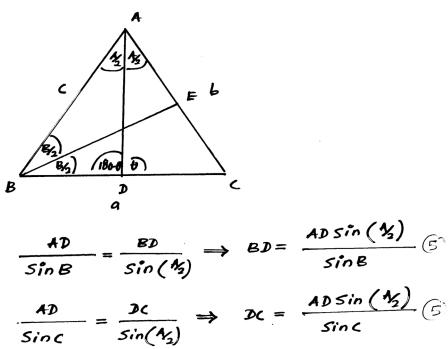
: The eq of DC;


$$\frac{y - \frac{17}{3}}{2 - \frac{10}{3}} = 1 \implies 3y - 3z - 7 = 0$$

$$\begin{array}{c} 2x-y-1=0 \\ x-y+1=0 \end{array} \Rightarrow A=(2,3) \tag{5}$$

: The eq of AD:

$$\frac{y-3}{x-2} = -7 \Rightarrow y+7x-17=0$$


Area =
$$\frac{|29-171|}{|1\times1+7\times1|} = \frac{|12\times\frac{4}{3}\times\frac{1}{8}|}{|8|} = \frac{16}{8}\times1 = \frac{2}{25}$$

17)
$$\theta = 360$$
 $5\theta = 180^{\circ}$
 $3\theta + 2\theta = 180^{\circ}$
 $3\theta = 180^{\circ} - 2\theta$
 $\sin 3\theta = \sin (180 - 2\theta)$
 $\frac{\sin 3\theta}{3\theta} = \sin (180 - 2\theta)$
 $\frac{\sin 3\theta}{3\theta} = \sin 2\theta$
 $\frac{\sin 3\theta}{3\theta} = 2\sin \theta \cos \theta$
 $4\sin 3\theta + 2\sin \theta \cos \theta - 3\sin \theta = 0$
 $\sin \theta = 3\sin \theta + 2\cos \theta - 3\sin \theta = 0$
 $\sin \theta = 3\sin \theta + 2\cos \theta - 3\sin \theta = 0$
 $\sin \theta = 3\sin \theta + 2\cos \theta - 3\sin \theta = 0$
 $\sin \theta = 3\sin \theta + 2\cos \theta - 3\sin \theta = 0$
 $\sin \theta = 3\sin \theta + 2\cos \theta - 3\sin \theta = 0$
 $\sin \theta = 3\sin \theta + 2\cos \theta - 3\sin \theta = 0$
 $\sin \theta = 3\sin \theta + 2\cos \theta - 3\sin \theta = 0$
 $\sin \theta = 3\sin \theta + 2\cos \theta - 3\sin \theta = 0$
 $\sin \theta = 3\sin \theta + 2\cos \theta - 3\sin \theta = 0$
 $\sin \theta = 3\sin \theta + 2\cos \theta - 3\sin \theta = 0$
 $\sin \theta = 3\sin \theta + 2\cos \theta + 2\cos \theta - 3\sin \theta = 0$
 $\sin \theta = 3\sin \theta + 2\cos \theta + 2\cos \theta + 3\sin \theta = 0$
 $\sin \theta = 3\sin \theta + 2\cos \theta + 2\cos \theta + 3\sin \theta = 0$
 $\sin \theta = 3\sin \theta + 2\cos \theta + 2\cos \theta + 3\sin \theta = 0$
 $\sin \theta = 3\sin \theta + 2\cos \theta + 2\cos \theta + 3\sin \theta = 0$
 $\sin \theta = 3\sin \theta + 2\cos \theta + 2\cos \theta + 3\sin \theta = 0$
 $\sin \theta = 3\sin \theta + 2\cos \theta + 2\cos \theta + 3\sin \theta = 0$
 $\sin \theta = 3\sin \theta + 2\cos \theta + 2\cos \theta + 3\sin \theta = 0$
 $\sin \theta = 3\sin \theta + 2\cos \theta + 2\cos \theta + 3\sin \theta = 0$
 $\sin \theta = 3\sin \theta + 2\cos \theta + 2\cos \theta + 3\sin \theta = 0$
 $\sin \theta = 3\sin \theta + 2\cos \theta + 2\cos \theta + 3\sin \theta = 0$
 $\sin \theta = 3\sin \theta + 2\cos \theta + 2\cos \theta + 3\sin \theta = 0$
 $\sin \theta = 3\sin \theta + 2\cos \theta + 2\cos \theta + 3\sin \theta = 0$
 $\sin \theta = 3\sin \theta + 2\cos \theta + 2\cos \theta + 3\sin \theta = 0$
 $\sin \theta = 3\sin \theta + 2\cos \theta + 3\sin \theta = 0$
 $\sin \theta = 3\sin \theta + 3\sin \theta + 3\sin \theta + 3\sin \theta = 0$
 $\sin \theta = 3\sin \theta + 3\sin \theta + 3\sin \theta + 3\sin \theta + 3\sin \theta = 0$
 $\sin \theta = 3\sin \theta + 3\sin \theta + 3\sin \theta + 3\sin \theta + 3\sin \theta = 0$
 $\sin \theta = 3\sin \theta + 3\sin \theta +$

Sin12 sin48 sin 54 =
$$-\frac{1}{2}$$
 { $-2\sin 12 \sin 48$ } $\sin 54$
= $-\frac{1}{2}$ { $\cos 60^{\circ}$ - $\cos 36$ } $\sin 54$
= $-\frac{1}{2}$ { $\frac{1}{2}$ - $\frac{15+1}{4}$ } $\sin (90-36)$
= $-\frac{1}{2}$ { $\frac{1-15}{4}$ } $\cos 36$
= $\frac{15-1}{8}$ x $\frac{15+1}{4}$
= $\frac{5-1}{32}$
= $\frac{1}{8}$ $\frac{1}{5}$

b. Sin Rule

$$BD + DC = a$$

$$\frac{ADSin(\frac{1}{2})}{SinB} + \frac{ADSin(\frac{1}{2})}{SinC} = 9$$

$$ADSin(4) \left\{ \frac{SinB+SinC}{SinBSinC} \right\} = \alpha$$

ADSin (1/2)
$$\left\{\frac{\kappa b + kc}{\kappa^2 bc}\right\} = a$$

$$AD = \frac{Kab(}{(b+c)Sin(}\frac{1}{2})$$

$$= \frac{bcSinA}{(b+c)Sin(}\frac{1}{2})$$

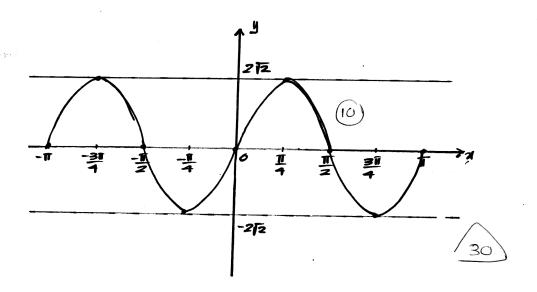
$$BE = \frac{2a(\cos(\frac{B}{2}))}{a+c}$$

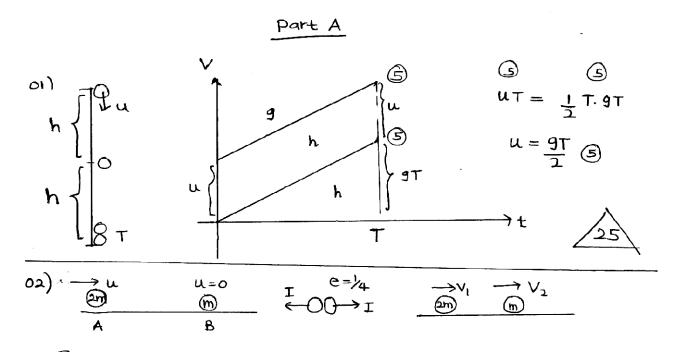
$$\frac{2b(\cos(\frac{A}{2}))}{b+c} = \frac{2a(\cos(\frac{B}{2}))}{a+c}$$

$$\frac{b\cos\left(\frac{A}{2}\right)}{b+c} = \frac{a\cos\left(\frac{B}{2}\right)}{a+c}$$

$$\frac{KSinB(os(\frac{A}{2})}{KSinB+KSinC} = \frac{KSinA(os(\frac{B}{2}))}{KSinA+KSinC}$$

$$\frac{SinB(os(\frac{A}{2}))}{2Sin(\frac{B+C}{2})cos(\frac{B-C}{2})} = \frac{SinA(os(\frac{B}{2}))}{2Sin(\frac{A+C}{2})cos(\frac{A-C}{2})(5)}$$


$$\frac{SinBlos\left(\frac{A}{2}\right)}{2Sin\left(\frac{\pi}{2} - \frac{A}{2}\right)cos\left(\frac{B-C}{2}\right)} = \frac{SinAlos\left(\frac{B}{2}\right)}{2Sin\left(\frac{\pi}{2} - \frac{B}{2}\right)cos\left(\frac{A-C}{2}\right)}$$


$$\frac{SinBlos\left(\frac{A}{2}\right)}{2Cos\left(\frac{A}{2}\right)} = \frac{SinAlos\left(\frac{B}{2}\right)}{2Cos\left(\frac{B}{2}\right)cos\left(\frac{A-C}{2}\right)}$$

$$\frac{SinBlos\left(\frac{A-C}{2}\right)}{SinBlos\left(\frac{A-C}{2}\right)} = SinAlos\left(\frac{B-C}{2}\right)$$

()
$$f(x) = 2\cos^2 x + 4\sin x \cos x - 2\sin^2 x$$

 $= 2\cos 2x + 2\sin 2x$.
 $= 2\sqrt{2} \left\{ \frac{1}{\sqrt{2}} \cos 2x + \frac{1}{\sqrt{2}} \sin 2x \right\}$
 $= 2\sqrt{2} \left\{ \cos 2x \sin \sqrt{x} + \sin 2x \cos \sqrt{x} \right\}$
 $= 2\sqrt{2} \sin \left(2x + \frac{\pi}{4} \right) = 2\sqrt{2} \cos \left(2x + \frac{\pi}{4} \right) = 2\sqrt{$

Conservation of momentum

$$2mV_1 + mV_2 = 2mU$$

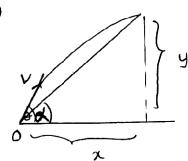
 $2V_1 + V_2 = 2U - 0$ (5)

Newton's law of restitution.

$$V_{1}-V_{2} = -eu - \odot \stackrel{\frown}{\odot}$$

$$3V_{2} = 2u(1+e)$$

$$V_{2} = \frac{2u(1+e)}{3} \stackrel{\frown}{\odot}$$


$$I = \frac{2mu(1+e)}{3}$$

$$= \frac{2mu}{3} \times \frac{5}{4}$$

$$= \frac{5mu}{6}$$

$$= \frac{5mu}{6}$$

$$\uparrow V^2 = u^2 + 2aS$$

$$0 = (V \sin \theta)^{2} - 2gy$$

$$0 = V \sin \theta - gt$$

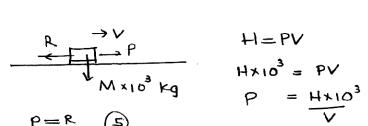
$$t = \frac{V \sin \theta}{g}$$

$$\rightarrow$$
 $s = ut$

$$pS = ut$$

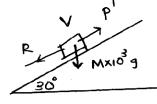
$$x = V \cos \Phi \times \frac{V \sin \Phi}{g}$$

$$= V^{2}$$


$$\frac{\tan d = \frac{y}{x}}{= \frac{V^2 \sin^2 \theta}{29}}$$

$$\frac{\sqrt{\sin \theta \cdot \cos \theta}}{9}$$

$$\tan \alpha = \frac{\tan \theta}{2}$$


4)

$$H \times 10^3 = PV$$

$$P = \frac{H \times 10^3}{V}$$

$$\therefore R = \underbrace{H \times 10^3}_{V} \quad (5)$$

$$b_1 = \frac{1}{H \times 10^3} + \frac{3}{M \times 10^3}$$

$$H = PV$$

$$H^{\times}_{10}^{3} = P^{\vee} = H \times 10^{3} + M \times 10^{3} g \times V$$
 (S)

$$H' = H + \frac{MgV}{2}$$
 (S)

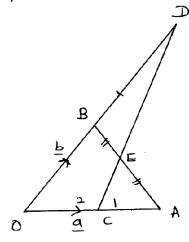
$$29 = 8f$$

$$f = \frac{9}{4} \quad \boxed{5}$$

When A hits the ground velocities of A and B are equal.

$$V = \sqrt{\frac{9}{2}}$$

$$0 = \frac{9}{4} - agh$$


$$h = \frac{1}{8}$$
 m

. The height reached by $B = 1 + \frac{1}{8} = \frac{9}{8}$ m from the ground level

6)

$$\overrightarrow{ED} = \overrightarrow{EB} + \overrightarrow{BD}$$

$$= \frac{1}{2}(\underline{b} - \underline{a}) + \underline{b}$$

$$= \frac{1}{3}(\underline{b} - \underline{a}) \quad (5)$$

$$\overrightarrow{CE} = \overrightarrow{CA} + \overrightarrow{AE} \qquad (5)$$

$$= \frac{1}{3} \overrightarrow{OA} + \underbrace{1}_{2} \overrightarrow{AB}$$

$$= \frac{1}{3} \underline{a} + \underbrace{1}_{2} (\underline{b} - \underline{a})$$

$$= -\underline{a}_{1} + \underline{b}_{2}$$

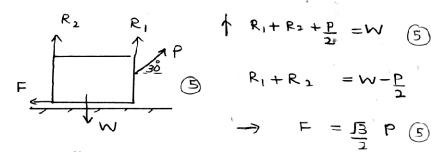
$$= -\underline{a}_{2} + \underline{b}_{2}$$

$$= -\underline{a}_{3} + \underline{b}_{2}$$

$$= -\underline{a}_{3} + \underline{b}_{2}$$

$$= -\underline{a}_{3} + \underline{b}_{2}$$

$$= -\underline{a}_{3} + \underline{b}_{2}$$


$$\overrightarrow{CE} = \frac{3}{1} \times \frac{3}{1} \left(B \overline{P} - \overline{Q} \right)$$

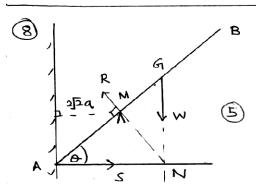
$$\overrightarrow{CE} = \frac{1}{3} \overrightarrow{ED}$$

... C, E, D are collineat.

$$\uparrow R_1 + R_2 + \frac{P}{2} = W \quad (5)$$

$$R_1 + R_2 = W - \frac{P}{2}$$

$$\rightarrow$$
 $F = \overline{3} P (\overline{5})$


For the equilibrium

$$M \ge \left| \frac{F}{R_1 + R_2} \right|$$

$$M \geq \frac{13P}{2M-P}$$

$$P_{\text{max}} = \frac{2\mu W}{\sqrt{3+\mu}}$$

AN = 80 cos 0

 $AM = 8a \cos^2 \theta$ $8a \cos^3 \theta = 2 \sqrt{2}a \quad \text{(5)}$

$$\cos_3 \theta = \left(\frac{12}{7}\right)_3$$

$$\cos \Theta = \frac{1}{12}$$

(5)

For the rod AB

$$R \times 8a \cos^2 \theta = W \times 8a \cos \theta$$

$$R \times COS \frac{\pi}{4} = W$$

Applying the principle of Conservation of energy for P, P.E=0 $\frac{1}{2}mV^2+mg$ a $\cos \theta = mga$ (5)

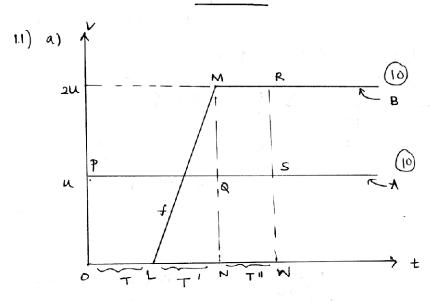
$$\frac{1}{2}mV^2 + mg a \cos \theta = mga (5)$$

$$V^2 = 2ga (1 - \cos \theta)$$

$$mg \cos \Theta - R = m \frac{V^2}{a} \qquad (5)$$

$$R = mg\cos\theta - \frac{m}{\alpha} (1 - \cos\theta) 2q\alpha$$

when the particle leaves the sphere, R=0 3


$$\Theta = \cos^{-1}\left(\frac{\pi}{3}\right)$$

$$\Theta = \cos^{-1}\left(\frac{\pi}{3}\right)$$

$$V^{2} = 29a \left(1 - \frac{2}{3}\right)$$

$$V = \sqrt{\frac{29a}{3}}$$

$$\frac{2u}{T}$$
, = f (S)

distance between the cars when B reaches maximum velocity

Area of DRON - Area of LMN (5)

$$= \frac{(T+T^{1})u}{(5)} - \frac{1}{2} T^{1} x^{2} u (5)$$

$$= \left(T + \frac{2u}{f}\right)u - \frac{1}{2} \times \frac{2u}{f} \times 2u$$

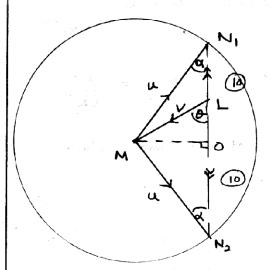
$$= nL + \frac{t}{2n_y} - \frac{t}{2n_y}$$

when B passes A,

Area of OPSW = Area of LMRW (5)

$$(T + T' + T'')u = (\frac{1}{2} \times T' \times 2u) + 2uT'' \subseteq$$

Total time =
$$T + \frac{2u}{t} + T = \frac{2T + \frac{2u}{t}}{t} = \frac{2}{T} + \frac{u}{t}$$
 (5)


$$V_{P_{2},E}$$
 $V_{P_{2},W} = u$ $V_{W,E} = |\partial V_{V}|$

$$\frac{V}{P_{2},E} = V_{P_{2},w} + V_{w_{1}E}$$

$$V = V_{MN_{2}} + V_{w_{1}E}$$

$$V_{N_{2}} = V_{MN_{2}} + V_{w_{1}E}$$

$$V_{N_{2}} = V_{MN_{2}} + V_{w_{1}E}$$

$$Sin d = V Sin \Theta$$

$$U$$

$$U^2 - V^2 sin^2 \Theta$$

If the time taken for the first plane is t_1 , $t_1 = \frac{d}{Lin}$.

If the time taken for the second plane is t_2 , $t_2 = \frac{d}{LN}$. (5)

$$f_1 - f_2 = q \left\{ \frac{n_3 \cos_3 \gamma - N_3 \cos_5 \sigma}{n \cos \gamma + N \cos \sigma} \right\}$$

$$= \frac{2dV\cos\theta}{u^2\cos^2\alpha - V^2\cos^2\theta}$$

$$= \frac{2dV\cos\theta}{u^2\left(\frac{u^2 - V^2\sin^2\theta}{u^2}\right) - V^2\cos^2\theta}$$

$$= \frac{2dV\cos\theta}{u^2\cos^2\theta}$$

$$= 2dV \cos \Theta$$

$$u^2 - V^2$$

Time taken for P, to come back to the point = $\frac{d}{LN_2}$

: both planes reaches A at the Same time 5

$$\frac{a}{M,E} = F$$

$$\frac{a}{m,E} = f + F$$

for the system,

$$P = (M+m) F + m \cos x f = 0$$

(m) 1/m) mg sind = m (f+F(0sx)(10)

g sind = f + F (0) & -(2)

10 - 20x mcosd

$$P-mg \sin \alpha \cos \alpha = F(M+m-m\cos^2\alpha)$$
 (5)

$$F = P - mg \sin \alpha \cos \alpha$$

$$M + m \sin^2 \alpha$$

$$\text{S}$$

by (2)

$$9 \sin \alpha - \left(\frac{P - mg \sin \alpha \cos \alpha}{M + m \sin^2 \alpha}\right) \cos \alpha = f \quad (s)$$

$$f = \frac{Mg \sin \alpha + mg \sin^3 \alpha - P \cos \alpha + mg \sin \alpha \cos^2 \alpha}{M + m \sin^2 \alpha}$$

=
$$Mg \sin \alpha + mg \sin^3 \alpha - P \cos \alpha + mg \sin \alpha (1 - \sin^2 \alpha)$$

 $M + m \sin^2 \alpha$

$$= \frac{(M+m) g \sin \alpha - P \cos \alpha}{M + m \sin^2 \alpha}$$

30

In for the particle to move upwards along the plane or to f=0 or f>0 (10) come to nest

$$\frac{(M+m) g \sin d - P \cos d}{M+m \sin^2 d} \ge 0 \quad (6)$$

$$\frac{(M+m) g \sin d}{\cos d} \Rightarrow P \otimes$$

If when P=0, $E = -\ln a \sin a \cos a$

$$F = -\frac{mg \sin \alpha \cos \alpha}{M + m \sin^2 \alpha}$$

$$f = \frac{(M+m) g \sin d}{M + m \sin^2 \alpha}$$

relative to the earth | F

$$= \sqrt{(E+t\cos \kappa)^2 + (t\sin \alpha)^2}$$
 (10)

$$= \sqrt{\frac{mg \sin d \cos d}{M + m \sin^2 d}} \frac{2 mg \sin d \cos d}{2} \times \frac{(M+m)g \sin d \cos d}{M + m \sin^2 d} \times \frac{(M+m)g^2 \sin^2 d}{(M+m \sin^2 d)^2}$$

$$= \frac{g \operatorname{sind}}{M + m \operatorname{sin}^{2} d} \sqrt{\frac{M^{2} + m \operatorname{sin}^{2} d}{M^{2} + m \operatorname{sin}^{2} d}} + 2mM(1 - \cos^{2} d)$$

$$= \frac{9 \sin \alpha}{M + m^2 \sin^2 \alpha} \sqrt{M^2 + m^2 \sin^2 \alpha} + 2mM \sin^2 \alpha$$

E=0 0 mq

Principle of Conservation of energy,

-mga + $\frac{1}{2}$ mu² = -mgacos Θ + $\frac{1}{2}$ mv² (10)

-2ga + U^2 = -2gacos Θ + V^2 V^2 = U^2 + 2gacos Θ - 2ga G

F=ma

 $R - mg \cos \theta = \frac{m v^2}{a}$

$$R = \text{mg} \cos \theta + \frac{m}{a} \left(u^2 + 2ga \cos \theta - 2ga \right)$$
$$= \frac{m}{a} \left(u^2 + 3ga \cos \theta - 2ga \right) (5)$$

25

for the particle to leave the Circular path R=0.0

$$\frac{m}{a} \left(u^2 + 3ga \cos \theta - 2ga \right) = 0$$

$$3ga \cos \theta = 2ga - u^2$$

$$\cos \theta = 2ga - u^2 \leq 3ga$$

when it leaves the circular path = <0<5 5

$$\cos \frac{\pi}{2} < \cos \varphi < \cos \pi$$
 (5)

$$0 > \frac{29a-u^2}{39a} > -1$$

30

to complete the circular path when
$$0=\pi$$
,

$$V_{\theta=\pi}^{2} = u^{2} + 2ga (\cos \pi) - 2ga$$

$$= u^{2} - 2ga - 2ga$$

$$= u^{2} - 4ga$$

$$V_{\theta=\pi} > 0$$

$$U^{2}-49a \geq 0$$

$$U^{2} > 49a \qquad (5)$$

$$R_{\sigma=x} = \frac{m}{a} \left(u^2 + 3ga \cos x - 2ga \right)$$
$$= \frac{m}{a} \left(u^2 - 5ga \right)$$

To satisfy both conditions u2>59a 5

Jausing
$$d = (u+Jaucoso) + (o)$$

$$d = (u+Jaucoso) + (o)$$

$$d = (u+Jaucoso) + (o)$$

$$h = J3u \sin \theta + -\frac{q}{2}t^{2}$$

$$h = J3u \sin \theta \times \left(\frac{d}{u + J3u \cos \theta}\right) - \frac{q}{2} \left(\frac{d}{u + J3u \cos \theta}\right)^{2}$$

$$10$$

 $2h(u+15u\cos\theta)^{2} = \chi(u+15u\cos\theta) + 3u\sin\theta d - 9d^{2}$ $9d^{2} + 2u^{2}h(1+15\cos\theta)^{2} - 215\sin\theta u^{2}d(1+15\cos\theta) = 0$ $9d^{2} + 2u^{2}(1+15\cos\theta)^{2}h - 2u^{2}5d\sin\theta(1+15\cos\theta) = 0$ 5

$$|a\rangle = 0$$

$$|a+\beta b| = 0$$

Since $\triangle 1 \neq 0$, $|\underline{b}| \neq 0$ and \underline{a} and \underline{b} are non parallel vectors.

$$d = 0.$$

$$d$$

for
$$d\underline{a}+\beta\underline{b}=0$$
, $d=0$ and $\beta=0$

$$\overrightarrow{OP} = \lambda \overrightarrow{ON}$$

$$\overrightarrow{AP} = \mu \overrightarrow{AM}$$

$$\frac{\partial A N A}{\partial N} = \frac{\partial A}{\partial A} + \frac{\partial A}{\partial N} = \frac{\partial A}{\partial A} + \frac{\partial A}{\partial N}$$

$$\frac{\partial A N A}{\partial N} = \frac{\partial A}{\partial A} + \frac{\partial A}{\partial N} = \frac{\partial A}{\partial A} + \frac{\partial A}{\partial N}$$

$$= \lambda \left(\frac{\partial A}{\partial A} + \frac{\partial A}{\partial N} \right) = \frac{\partial A}{\partial N} = \frac{\partial A$$

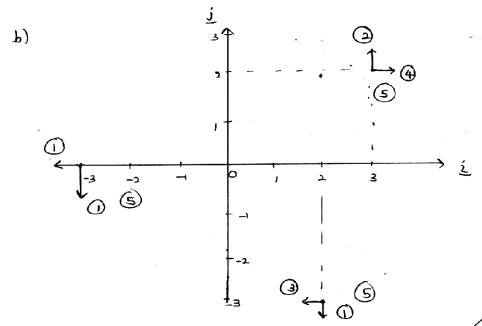
$$\frac{OAP \Delta}{\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP}} = \overrightarrow{OA} + \overrightarrow{AP} = \overrightarrow{OA} + \overrightarrow{OA} = \overrightarrow{OA} = \overrightarrow{OA} + \overrightarrow{OA} = \overrightarrow{OA} + \overrightarrow{OA} = \overrightarrow{OA} + \overrightarrow{OA} = \overrightarrow{$$

$$\overrightarrow{OP} = \lambda \left(\underbrace{a + b}_{2} \right) = \underbrace{a + \mu} \left(\underbrace{b - 1}_{2} \underline{a} \right) \underbrace{3}$$

$$\left(\lambda - 1 + \underbrace{\mu}_{2} \right) \underline{a} + \left(\underbrace{\lambda}_{2} - \mu \right) \underline{b} = \underline{Q} \underbrace{3}$$

$$\lambda - 1 + \underbrace{\mu}_{2} = 0 \underbrace{5} \underbrace{\text{or}} \underbrace{\lambda}_{2} - \mu = 0 \underbrace{5} \underbrace{\text{(since } |\underline{a}| \neq 0)}_{|\underline{b}| \neq 0}$$

$$\underbrace{a_{1} a_{1} \lambda}_{2} \underline{b}$$


$$2\mu + \underline{\mu}_{2} = 1$$

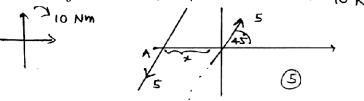
$$\lambda = 2\mu$$
Non paragraphics
$$\lambda = 2\mu$$
Nectors

$$\frac{5M}{2} = 1$$

$$OP = \frac{4}{5} ON \qquad AP = \frac{2}{5} AM$$

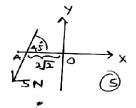
$$M = \frac{2}{5} AM$$

the system to reduce to a couple only R=0, G+0 x =0 and y=0.


$$\rightarrow x = 4 - 1 - 3 = 0$$
 3

$$(G = (4 \times 2) - (2 \times 3) - (1 \times 3) + (3 \times 3) + (1 \times 2)$$

$$= 8 - 6 - 3 + q + 2$$


$$= 10 \text{ Nm } G$$
For the equilibrium a couple of moment 10 Nm should be

$$2 \times 5 \sin 45 = 10 \quad \textcircled{5}$$

$$2 = \frac{1012}{5}$$

For equilibrium a force of 5N should be added at a distance 212 m to the left of O. the given direction.

B
$$F_2$$
 F_2
 F_2
 F_2
 F_3
 F_4
 F_4

$$\phi = \frac{4}{3}$$

$$F_1 = \frac{1}{2} R_1 \quad \textcircled{5}$$

$$F_2 = \frac{1}{2} R_2 \quad \textcircled{5}$$

$$P = F_1 + R_2$$

$$P = \frac{R_1}{2} + R_2$$

$$P = \frac{1}{2} \left(W + \frac{R_2}{2} \right) + R_2$$

$$P = \frac{W}{2} + \frac{5R_2}{4}$$

$$S$$

$$P = \frac{W}{2} + \frac{5}{4} \left(\frac{P+3W}{5} \right)$$

$$= \frac{W}{2} + \frac{P}{4} + \frac{3W}{4}$$

$$\frac{3P}{4} = \frac{5W}{4}$$

$$P = \frac{5W}{3}$$

$$F_1 = \frac{1}{2} R_1 \quad \textcircled{5}$$

$$F_2 = \frac{1}{2} R_2 \quad \textcircled{5}$$

$$P = F_1 + F_2$$

$$P = \frac{R_1}{2} + R_2$$

$$P = \frac{1}{2} \left(W + \frac{R_2}{2} \right) + R_2$$

$$P = \frac{W}{2} + \frac{5R_2}{4}$$

$$S$$

$$\begin{array}{c} (1) \quad P \times \frac{1}{4} \quad Sin \theta + W \times a \cos \theta + F_{2} \times 2a \cos \theta - R_{2} \times 2a \sin \theta = 0 \\ P \times \frac{1}{4} \times \frac{4}{5} + W \times \frac{3}{5} + \frac{R_{2}}{2} \times 2 \times \frac{3}{5} - R_{2} \times 2 \times \frac{4}{5} = 0 \\ P + 3W + 3R_{2} - 8R_{2} = 0 \end{array}$$

$$R_2 = \frac{P+3W}{5}$$

$$P = \frac{W}{2} + \frac{5}{4} \left(\frac{P+3W}{5} \right)$$
$$= \frac{W}{2} + \frac{P}{4} + \frac{3W}{4}$$

$$\frac{3P}{4} = \frac{5W}{4}$$

$$P = \frac{5W}{3}$$

1 = 13 a 10

$$\cos \theta = \frac{d}{\frac{2}{2a}} = \frac{d}{4a}$$

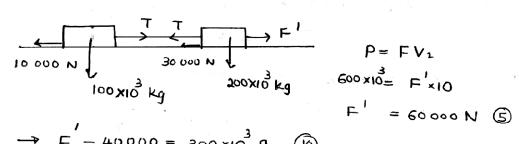
$$\sin \theta = \sqrt{\frac{16a^2 - d^2}{4a}}$$

$$T = \frac{wa}{d}$$
 (5)

$$T = \frac{Wa}{d} \qquad (5)$$

$$= \frac{Wa}{d} \times \frac{\sqrt{16a^2-d^2}}{4a} = \sqrt{\frac{16a^2-d^2}{4d}} W \qquad (3)$$

The reaction at the hinge A, =
$$\int \frac{(16a^2-d^2)}{16d^2} + \frac{q}{16} \qquad W$$


$$R = \int \frac{16a^2+8d^2}{16d^2} \qquad W$$

$$= \left(\frac{2a^2+d^2}{2}\right)^{\frac{1}{2}} \frac{W}{d} \qquad \boxed{10}$$

$$F = 30000N$$

$$V_1 = 36 \times 1000$$

$$F' - 40000 = 300 \times 10^3 \text{ a}$$

$$60000 - 40000 = 300 \times 10^3 \text{ a}$$

$$a = \frac{2}{30} = \frac{1}{15} m^{5^2}$$
 (3)

$$T - 10000 = 100 \times 10^3 \times \frac{1}{15}$$
 (5)

$$= \frac{50 000}{3} N \boxed{5}$$

$$\sin \varphi = 1$$

$$7 F^{11} - 30000 - 300 \times 10^{3} \times 10 \times \frac{1}{30} = 300 \times 10 \times \frac{1}{10}$$

$$F^{11} = 30000 + 100000 + 30000$$

$$P = FV$$
 $600 \times 10^{3} = 160 \times 10^{3} V$
 $V = \frac{60}{16} = \frac{15}{4} \text{ ms}^{-1}$
 S

For the system, $I = \Delta m V$

$$3mV_1 + 2mV_2 - 3m(2u) - 2m(u) = 0$$
 (0)

$$3V_1 + 2V_2 = 8U - 0$$
 (5)

Newton's Law of restitution,

$$V_2 - V_1 = e(2u - u)$$
 (10)

$$V_2-V_1=e_1u$$

$$5V_1 = 8u - 2eu$$

$$V_1 = 2u (4-e)$$
5

$$5V_2 = 8u + 3eu$$

$$V_2 = \underbrace{u(8+3e)}_{5} \quad (s)$$

for sphere A,
$$\rightarrow$$
 I = $\Delta m V$

$$-I = 3m (v_1 - 2u)$$
 §

$$I = 3m \left[2u - \frac{2u}{5} (4-e) \right]$$

$$I = \frac{6mu}{5} (1+e) \odot$$

for sphere B, \rightarrow I = ΔmV

loss of Kinetic energy

$$E = \frac{1}{2} 3m (2u)^{2} + \frac{1}{2} 2m u^{2} - \frac{1}{2} (3m) v_{1}^{2} - \frac{1}{2} (2m) v_{2}^{2}$$
 (10)

=
$$\frac{1}{2}$$
 3m $(2u-V_1)(2u+V_1) + \frac{1}{2}(2m)(u-V_2)(u+V_2)$ (5)

$$= \frac{1}{2} I (2u+v_1) - \frac{1}{2} I (u+v_2)$$
 (5)

$$= \frac{1}{2} I (u+v_1-v_2)$$

$$= \frac{1}{2} I (u-eu)$$

