සියලු හිමිකම් ඇවිරිණි / All Rights reserved

Provincial Department of Education NWP Provincial Departm

Provincial Department of Education NWP Provincial Departm

First Term Test - Grade 12 - 2019

Index No: Chemistry I Two Hours

Answer all the questions.

• In each of the question 1 to 50, pick one of the alternatives from (1), (2), (3), (4), (5) which is correct or most appropriate and mark your response on the answer sheet with a cross (X) in accordance with the instructions given on the back of the answer sheet.

Universal gas constant $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1} \text{ Avogadro constant } N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ Plank's constant $h = 6.626 \times 10^{-34} \text{J s} \text{ Velocity of light } c = 3 \times 10^8 \text{ m s}^{-1}$

1. Name of the each scientist and their activity is correctly mentioned in,

	The charge of the	Radioactivity	Neutron	Quantization of
	electron			energy
(1)	Thomson	marie and pierre curie	Chadwick	Einstein
(2)	Millikan	Becquerel	Chadwick	Plank
(3)	Millikan	Rutherford	Stoney	Einstein
(4)	Rutherford	Marrie Currie	Marsden	Plank
(5)	Thomson	Becquerel	Chadwick	Rutherford

- 2. Which of the following electromagnetic radiations has the highest wave length?
 - 1. Ultra violet rays.
- 2. Visible rays.
- 3. Infrared rays.

- 4. Micro Waves
- 5. Radar waves.
- 3. The electron configuration of the ion or iron in the molecule of *FeO*.
 - 1. $1S^2 2S^2 2P^6 3S^2 3P^6 3d^5 4S^2$
 - 2. $1S^2 2S^2 2P^6 3S^2 3P^6 3d^6 4S^2$
 - 3. $1S^2 2S^2 2P^6 3S^2 3P^6 3d^5$
 - 4. $1S^2 2S^2 2P^6 3S^2 3P^6 3d^3 4S^2$
 - 5. $1S^2 2S^2 2P^6 3S^2 3P^6 3d^6$
- 4. Select the pair of atoms which forms a bond only by the linear overlapping of two p orbitals?
 - 1. H and H

- 2. H and Cl
- 3. Cl and Cl

4. O and O

5. N and N

	2.	Among the elements of the P block, there exist the elements belong to three states of solid, liquid and gas.												
	3.	The modern	perio	dic table	is pre	pare	d, based or	the ato	mic n	umbei	r.			
	4.	Nuclei of all	-		-	-						3		
	5.	Within first				-		-					n gaseous	state at
		the room tem	perat	ture.										
8.	The	e number of re	sonan	ice structu	ires c	an be	e drawn for	the ior	n <i>HCC</i>) ₃ is,				
	1.	2	2.	3		3.	4	4	. 5		5.	1		
•		nsidering the adiation havin		_				-					ies of the	atomio
		ctrum of hydro	_	equency	01 03	OIIIII	causes to	101111 11	ic msi	IIIIC (oi ba	illici sci	ies of the	atomic
	spe	$h = 6.62 \times 1$	-	T	C	_ 2	v 108 mg	-1						
9.		ect the suitable eve mentioned		gy levels	of hy	/drog	gen atom to	occur	the rel	evant	elect	ron tran	sition to f	form the
	1.	n = 3 to $n =$	= 2		2.	n =	= 2 to n =	: 1	3	3. n =	= 1 to	n=2		
		n = 2 to $n =$					= 3 to n =							
10.	The	e energy of a p	hotor	of the ab	ove r	adiat	tion with th	nat wav	e lengt	h <i>KJ</i>	is,			
		3 x 10 ⁻³⁰					3 x 10 ⁹		_			3 x 10 ⁻¹²	2	
11.	۸ ،	compound whi	ch cc	entains C	and i	U on	ly ic know	n ac a l	hydroc	arhan	Inc	cartain	hydrocar	hon the
11.		_					-		-				-	
		ss percentage of urate relative r							mass	or ma	it Con	ipouna	is about 1	oo. The
			malaa	ular maga	of th	ot br	,draaarh an	10						

2. A, C Only

3. N

Majority of the elements present in the periodic table are metals.

A Only

4. F

3. A, B, C

5. Al

5.

7.

1.

When the following reaction is taking place

The true statements is / are,

A, B Only

Cl

Only B Only

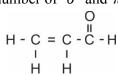
 $CH_2 = CH - CH_3 + H_2 \rightarrow CH_3CH_2CH_3$

(A) The hybridization of C^a changes sp² to sp³
(B) The oxidation number of C^a changes -2 to -3.
(C) The oxidation number of C^b changes -2 to +2.

Select the element, shows a positive electron gain energy.

Which is **not true** regarding the modern periodic table?

2. Na


- 12. Which of the followings is not a property of cathode rays?
 - 1. When an electric field is applied in the path of them, they attract to the positively charged plate.
 - 2. For the cathode rays obtained from the different gasses, e/m ratio is constant.
 - 3. It deflects towards the north pole at a magnetic field.
 - 4. They travel in a straight line.
 - 5. The nature of cathode rays does not depend on the gas inside the cathode ray tube or cathode material.
- 13. The maximum number of electrons possible in the sub energy level given by l=3 is,
 - 1. 32
- 2. 6
- 3. 8
- 4. 18
- 5. 14
- 14. The atomic number of *Se* is 34. The correct orbital diagram of electrons which are present in the valence shells is,
 - (1) 1 1 1 4S 4P

- (5) ↑ ↑ ↑ ↑ ↑ ↑ ↑

- 15. Select the compound which has the highest electronegative \mathcal{C} atom.
 - 1. $COCl_2$
- 2. CH_3Cl
- 3. CH_3F

4. *CH*₄

- 0 || 5. H - C - H
- 16. The number of σ and π bonds present in the following molecule is,

- 1. 7,2
- 2. 8,1
- 3. 8,2
- 4. 7,1
- 5. 5,4
- 17. The mass ratio of S and O in an oxide formed by S is 1:1. The molecular formula of that compound is,
 - 1. *SO*₃
- 2. *SO*
- 3. *SO*₄
- 4. S_2O_3
- 5. *SO*₂

- 18. The IUPAC name of $NaHPO_4$ is,
 - 1. Sodium Phosphate
 - 3. Sodium hydrogenphosphate
 - 5. Sodium Biphosphate

- 2. Sodium hydrogen Phosphate
- 4. Sodiam hydrogenphosphate

19. The variation of atomic radius, first ionization energy and electronegativity across a period left to right and down a group of the periodic table is correctly given by,

		Down the group	Across a period left to
			right
(1)	Atomic radius	increase	increase
(2)	First ionization energy	increase	decrease
(3)	Electronegativity	increase	increase
(4)	Atomic radius	increase	decrease
(5)	First ionization energy	decrease	normally increase

20. The successive ionization data, of 4 consecutive elements A, B, C and D are given below.

Element		Successive ionization energy kJmol ⁻¹						
	I_1	I_2	I_3	I_4				
A	2100	3950	6150	9300				
В	490	4560	6950	9500				
С	736	1450	7750	10500				
D	575	1800	2740	11600				

Select the groups of A, B, C and D in the periodic table.

- 1. 18,1,2,3
- 2. 18, 1, 2, 13
- 3. 8, 1, 2, 13

- 4. 8, 1, 2, 3
- 5. 1, 2, 13, 14
- 21. The solution P is prepared by dissolving 2.13 g of $Al(NO_3)_3$ in $100 cm^3$ of distilled water. $10 cm^3$ of that solution is separated and diluted it up to $1 dm^3$ to prepare the solution Y. The concentration of NO_3^- in the solution Y in ppm, (Al = 27, N = 14, O = 16)
 - 1. 62
- 2. 18.6
- 3. 186
- 4. 184
- 5. 86
- 22. Which of the followings is given by the angular momentum quantum number of azimuthal quantum number.
 - 1. Orientation of the orbital.

2. Spinning of electron in orbitals.

3. Shape of the orbital.

- 4. The number of sub shells.
- 5. The main energy level in which the electrons in the atoms are included.
- 23. Which is false regarding the species N^{-3} , O^{-2} , F^{-} and Ne.
 - 1. Nuclei of them have similar number of protons to the number of protons present in the nucleus of Ne.
 - 2. Their radii vary as $N^{-3} > 0^{-2} > F^{-} > Ne$.
 - 3. They are iso electronic.
 - 4. They have the same electron configuration.
 - 5. Their nuclear charges vary as $N^{-3} < O^{-2} < F^{-} < Ne$

- 24. The processes shown by the following reactions are mentioned correctly in,
 - $X(g) \rightarrow X^+(g) + e$
 - (B) $Y(g) + e \rightarrow Y^{-}(g)$
 - (C) $Z^{-}(g) \rightarrow Z(g) + e$

	Electron gain energy	Electron affinity	First ionization energy
(1)	A	В	C
(2)	В	С	A
(3)	A	С	В
(4)	В	A	С
(5)	С	В	A

- 25. The concentration of a HCl solution with the density of 1.17 gcm^{-3} and the mass percentage of 36.5% in $moldm^{-3}$,
 - 1. 10.32
- 2. 11.7
- 3. 12.42
 - 4. 11.54 5. 12.5

- 26. Select the molecule / ion which has Zero dipole moment.
 - 1. *CH*₃*Cl*
- 2. HCl

- 3. SO_3^{2-} 4. XeF_4 5. PCl_5
- $25cm^3$ of $0.1 \, moldm^{-3} \, AgNO_3(ag)$ is mixed with $10 \, cm^3$ of $0.25 \, moldm^{-3}$ 27. When KCl(aq) solution, AgCl(s) precipitate is formed. The mass of the precipitate formed is, Ag = 108 , Cl = 35.5

The reaction;

$$AgNO_3(aq) + KCl(aq) \rightarrow AgCl(s) + KNO_3(aq)$$

- 1. 362mg 2. 359 mg 3. 361 mg 4. 3.62g 5. 3.59 g

28. Consider the following nuclear reaction.

$${}^9_4 Be + {}^4_2 He \rightarrow {}^{12}_6 C + X$$

X is,

- 1. a β Particle 2. γ radiation 3. a neutron

- 4. a proton 5. an α Particle

By considering the given molecule below, answer the questions number 29 and 30.

- 29. The hybridizations of C atoms mentioned as A, B, C respectively,

 - 1. sp, sp^3 , sp2. sp^2 , sp, sp^2 4. sp^2 , sp, sp^3 5. sp^2 , sp^2 , sp^3
- $3. sp^3$, sp , sp^2

and inst (1) (3) (5)	l (d) given is a cructions given of If only (a) and If only (c) and	estions 31 to 40, or fare correct. Select on your answer she (b) are correct. (d) are correct. umber or combinate Instructions,	t the correct reet, mark (2) If o	sponse/responses in the sponse	in ac	ect.
On	1 nly (a) and (b) are correct	Only (b) and (c) are correct	3 Only (c) and (d) are correct	4 Only (a) and (d) are correct	or	5 Ty other number combination of sponses is correct
	e mass of ^{12}C $\frac{^{12}}{^{6.022 \times 10^{23}}} g$	atom is, b). 12 u		$\frac{1}{10^{23}} \times \frac{1}{12} g$		
	ect the molecule BCl ₃	/ molecules which is	s/ are having non c) SO ₂	zero dipole moment		SF ₆
	ect the molecule BeCl ₂	/ molecules which d	loes not / do not o	bey to the octet rule		PCl ₅
		lecules with a simila b) Fe^{3+}		ired electrons,	d)	Si
eacl	h other.	s / ions which have	•	e electron pair geon		
a)The(a)(b)(c)	$H_2O(l) - H$	$C_2O(l) - H$ bonds	g among the given		d) n corr	ICl ₃ ectly in,

30. The correct order of increasing bond lengths mentioned as a, b, c is,

(d) Xe(g) – London forces

37. Consider the following reaction,

$$MnO_4^- + 5Fe^{+2} + 8H^+ \rightarrow Mn^{+2} + 5Fe^{+3} + 4H_2O$$

Which of the followings is / are the true regarding this reaction?

- (a) The oxidation number of MnO_4^- reduces +6 to +2.
- (b) The oxidation number of MnO_4^- reduces +7 to +2.
- (c) Fe^{+2} Oxidizes to Fe^{+3} .
- (d) MnO_4^- acts as the reducing agent.
- The following 4 oxidation states are shown by N.

The set / sets of examples as compounds / ions for showing the above oxidation states are mentioned correctly according to the given order of their oxidation states is / are,

- (a) N_2O_5 , N_2O , N_2O_3 , NH_4^+
- (b) NO_3^- , N_2O , NO_2 , NH_3
- (c) N_2O_5 , N_2O_3 , N_2O , NH_4Cl (d) NO_2F , NO_2^- , NO_2 , NH_3
- 39. Select the correct electron configuration / configurations among the following electron configurations.
 - (a) $[Ar]3d^{10}4s^1$
- (b) $[Kr]5s^25p^2$
- (c) $[Ar]3d^44s^2$
- (d) $[Ne]3d^23p^6$
- 40. Which of the followings is / are true regarding the chemical bonds?
 - (a) The chemical bonds are formed by the atoms with incomplete octet to fulfill that deficiency.
 - (b) The covalent bonds are formed only by sharing a pair of electrons between two atoms of the same type of an element.
 - (c) In the formation of ionic bonds, the static electric attractions are formed between cations and anions.
 - (d) When the electron pair is provided by one atom to share between both atoms, then a dative covalent bond is formed.
- In question numbers 41 to 50, two statements are given in respect of each question. From the table given below, select the response out of the responses (1), (2), (3), (4) and (5) that best fits the two statements and mark appropriately on your answer sheet.

1st Statement	1st Statement 2nd Statement	
True	True and explains the 1st statement correctly	1
True	True but does not explain the first statement correctly	2
True	False	3
False	True	4
False	False	5

	First Statement	Second Statement
41.	He has the highest first ionization energy	He has only 1s electrons.
	among the noble gases.	
42.	Isotopes of the same molecule have the same	The physical and chemical properties of
	atomic numbers and different mass numbers.	isotopes are similar.
43.	Bond angles of $AlCl_3$ and NH_3 are similar	Around Al and N three electron repulsion units
	each other.	are present in each of them.
44.	The radii of Cl^- ion and the Ar atom are	Both Cl^- ion and Ar atom have the same
	similar each other.	electron configurations.
45.	CF_4 is a polar molecule.	The electronegativity of F is greater than C .
46.	The boiling point of I_2 takes a higher value than Br_2 .	For the molecules with high molecular mass, in determining the physical properties. priority should be given to London dispersion forces.
47.	The ionic nature of the bond of K and Cl is	The ionic or covalent nature is determine by the
	lower than the ionic nature of the bond	electronegativity difference of the 2 atoms of the
	between Na and Cl.	bond in the molecule.
48.	The density of ice is lower than that of water.	At 0^0 C, there are four H bonds present around
		all the water molecules tetrahedrally.
40	The slave and of the same arrows of the	The electron configurations of the elements
49.	The elements of the same group of the	The electron configurations of the elements
	periodic table have the similar physical and	belong to the same group are similar to each other.
50	chemical properties.	
50.	The strength of the metallic bond of Mg is	The radius of Mg^{+2} is larger than the radius of
	higher than the metallic bond of Na.	Na^+ .

	1	ආවර්තිතා වගුව										2						
1	H								Ţ									He
	3	4		€	பூவர்	фф	ळा ४)LL	_ഖഒ	DOM		ļ	5	6	7	8	9	10
2	Li	Be			P	erio	dic	Ta	ıble	,			В	C	N	0	F	Ne
	11	12											13	14	15	16	17	18
3	Na	Mg											٨L	Si	P	S	Cl	Αr
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52.	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cđ	ln	Sn_	Sb	Te	I	Хe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	77	1.12	Bi	Го	At.	Ra
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113	Į				
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Մսե	Uut					
											-							
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	1
			La	Ce	Pr	Nd	Pm	Sm	Eu	G4	Tb	Dy	Но	Er	Tm	Yb	Lu	
			89	90	91	92	93	94	95	96.	97	98	99	100	101	102	103	
			Ac	Th	Pa	ย	Np	Pu	Am	Cm	Bk	Ct	Es	Fm	Md	No	Lr]

සියලු හිමිකම් ඇවිරිණි / All Rights reserved

Provincial Department of Education NWP Provincial Departm II

Provincial Department of Education SWP Pro Detail Department of Education NV Pro Tacial Department of Education NV Provincial Department of Educat Provincial Department of Education NWP Provincial Department of Education NWP Provincial Department of Education NWP Provincial Department of Education - NWP Provincial Department of Education - NWP

First Term Test - Grade 12 - 2019

Index No:	Chemistry II	Three Hours
-----------	--------------	-------------

- * A Periodic Table is provided
- Use of calculators is not allowed.
- Universal gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$
- Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

□ PART A — Structured Essay

- * Answer all the questions on the question paper itself.
- Write your answer in the space provided for each question. Please note that the space provided is sufficient for the answer and that extensive answers are not expected.

□ PART B and PART C — Essay

- * Answer four questions selecting two questions from each part. Use the papers supplied for this purpose.
- * At the end of the time allotted for this paper, tie the answers to the three Parts A, B and C together so that Part A is on top and hand them over to the Supervisor.
- You are permitted to remove only Parts B and C of the question paper from the Examination Hall.

For Examiner's Use Only

Part	Question No.	Marks
	l	
A	2	
	3	
	4	
	5	
В	6	
	7	
	8	
C	9	
	10	
l'otal		
Percenta	ge	

Final Mark

In Numbers	
In Letters	
	Code Numbers

Code Numbers

Examiner	
Checked by	1
	2
Supervised by	

Part - A - Structured Essay

- (01) a). The following questions are related to the second period elements of the periodic table.

 To answer the questions i to v write the symbol or the chemical formula of the element / compound.
 - i. The element, having the highest second ionization energy
 - ii. The element / elements, showing a positive value for the electron gain energy
 - iii. The element which shows the highest boiling point
 - iv. The chemical formula of the compound, formed by the elements with the highest electronegativity and lowest electronegativity.
 - v. The element which forms electron deficient linear covalent compounds usually
- a). i Draw the most acceptable Lewis dot dash structure for (methyl nitrate). The skeletal structure is given below.

ii. The most stable Lewis dot - dash structure for the molecule NO_2F is given below. Draw another 2 Lewis dot dash structures (resonance structures). Mention the relative stability of them. Give reasons for the stability.

iii. By considering the Lewis dot dash structure given below, mention the followings in the given table.

- I. VSEPR pairs around the atom.
- II. Electron pair geometry around the atom.
- III. Shape around the atom.
- IV. Hybridization of the atom.
- V. Oxidation number

The atoms are numbered as follows,

	Atom	O^2	C ₃
I.	VSEPR pairs around the atom.		
II.	Electron pair geometry around the atom.		
III.	Shape around the atom.		
IV.	Hybridization of the atom.		
V.	Oxidation number		

iv. Mention the atomic / hybrid orbitals which participate for the formation of the following σ bonds of the Lewis dot - dash structure given in the part (iii) above.

I.
$$H - O^2$$

II
$$0^2 - C^3$$

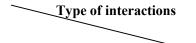
$$0^2 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \qquad \qquad C^3 \ \ldots \ldots \ldots \ldots \ldots \ldots$$

III.
$$C^3 - C^4$$

IV.
$$C^4 - 0^6$$

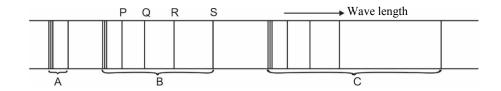
$$C^4$$

Identify the atomic orbitals which participate for the formation of the following π bonds given in the Lewis dot - dash structure of the (iii) above.


I.
$$C^3 - O^7$$

II.
$$C^4 - O^6$$

Arrange the followings in to the increasing order of the properties given in the brackets. (Reason are not required)


	(i)	NH_3	$_3$, NH_2^- , NH_4^+ (Electronegativity of N atom)
	(ii)	 NO	Cl , NO_2^- , NO^+ ($N-O$ bond length)
	(iii)	Mg	CO_3 , $BeCO_3$, $CaCO_3$ (decomposition temperature)
(02)	a)	i.	Write the electron configuration of Cr with the atomic number of 24 and the number of unpaired electrons of Cr atom, exists in the ground state.
		ii.	Write the electron configuration of Cr .
		iii.	Write the electron configurations of $+3$ and $+6$ cations formed by Cr .
		iv.	How many electrons present in the outer most shell of $+3$ ion of Cr .
		V.	Name an anion of Cr , having the oxidation state of $+6$. Write the IUPAC name of it.
		vi.	Write IUPAC names of the following compounds. NaClO
			Fe_2S_2

vii. Fill in the table regarding the primary and secondary into.

Substance	Primary interactions	Secondary interactions
i. liquid bromine.		
ii. Solid sodium.		
iii. Hydrogen Fluoride		
iv. Ice.		
v. Para nitrophenol		

b) The variation of the line spectrum of H with the wave length is given below.

i.	Identify the series of lines A, B, and C. Mention the relevant regions of electromagnetic radiation in which each of the series belong.
ii.	Mention the values of n_f and n_i relevant to the line with the highest wave length of each series of lines.
iii.	Explain the reasons to exist each series of lines of the emission spectrum of <i>H</i> separately.

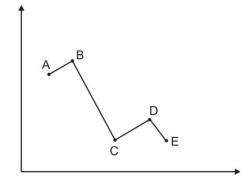
iv. What are the colours of each lines P, Q, R, S of series B.

	Quantum number	n	1	m _l	Atomic orb					
	I			+1	2P					
	II	4	2	-2						
	III				3S					
i.	Calculate the ene	rgy of a photon of	red light, having the	e wave length of 70	0nm.					
ii.	Calculate the ene	rgy supplied by a r	mole of photon of re	d light.	••••••					
Wr	ite the half ionic re	actions and hence t	he balanced chemica	al equations for the	following rea					
i.	Reaction of KM	nO_4 and $SO_2(g)$,	, Mn^{2+} and SO_4^{2-}	ions are formed as	s main produc					
			•••••	•••••	• • • • • • • • • • • • • • • • • • • •					

b) i. A compound which is having the molecular formula of MSO_4 . xH_2O contains 36% of H_2O by mass. Calculate the value of x.

	(M = 64 , S = 32 , O = 16 , H = 1)
ii.	Calculate the mass of CuO required, to obtain $200kg$ of Cu , in Cu extraction using CuO . (Cu = 63.5, O = 16)
(04) a) i.	A compound which is having a molar mass of $248 \mathrm{gmol^{-1}}$ contains 18.5% of Na, 25.8% of S and 51.6% of O and 4.0% of H by mass. Determine the molecular formula of that compound.
	(Na = 23, O = 16, S = 32, H = 1)
ii.	If all <i>H</i> atoms are present as water molecules only, write the chemical formula of the compound.

		i) in ppt
		ii) in ppm
b)		00 cm^3 of standardized 0.01 moldm^{-3} HNO_3 acid solution is required to react completely 125.00 cm^3 of a $Ba(OH)_2$ solution with an unknown concentration.
	i.	Write the balanced chemical equation for the reaction between HNO_3 and $Ba(OH)_2$
		3 ()2
	ii.	Calculate the concentration of $Ba(OH)_2$ solution.
		`


First Term Test - 2019

Chemistry - Grade 12 Part B - Essay

• Answer two questions only

(05) (a) A, B, C, D are E are 5 consecutive. elements of the periodic table. The variation of First ionization energies of them are represented below.

First ionization energy

Atomic number

- i. Which of the above elements shows the ns^2np^1 configuration?
- ii. Explain the reasons to increase the first ionization energy of D than the first ionization energy of E.
- iii. Sketch the variation of the second ionization energies of the elements A,B, C, D and E
- iv. Mention the variation of the atomic radius of the above elements.
- v. Write the chemical formula of the compound which is formed by combining the elements A and D together.
- (b) Write the oxidation number of the underlined atom of the following species.

i. $KMnO_4$

ii.
$$H_2O_2$$
 iii. $H\underline{Cl}O_3$

iv. $\underline{N}H_4^+$

v.
$$Cr_2O_7^{2-}$$

(c) $10.2 \text{ g of solid } KNO_3$, which is contaminated with impurities heated strongly to obtained a constant mass of a residue. The mass of that residue was 8.92g.

When KNO_3 (s) undergoes thermal decomposition, KNO_2 (s) and O_2 (g) are obtained as products. (K=39, O=16, N=14)

- (i) Write the balance equation for the thermal decomposition of KNO_3 (s).
- (ii) Calculate the mass percentage of KNO_3 (s) in the above mixture.
- (06) (a) A label of a commercial H_2SO_4 acid bottle is mentioned below.

 $\left(\frac{w}{w}\right)\% = 49.0\%$ Density = 1.2 gcm^{-3} Molar mass = 98 $gmol^{-1}$

- i. Calculate the concentration of H_2SO_4 acid above in the unit of $moldm^{-3}$.
- ii. $25cm^3$ of the above H_2SO_4 acid is added to a volumetric flask and diluted up to $250cm^3$. calculate the concentration of new H_2SO_4 solution prepared.
- iii. Calculate the volume of H_2SO_4 acid solution prepared in part (ii) above required to react completely with $30 cm^3 1moldm^{-3} NaOH$ solution.

 $H_2SO_4 + NaOH \rightarrow Na_2SO_4 + H_2O$

- (b) $50cm^3$ of $0.25 \, moldm^{-3} \, Ba(OH)_2$ solution and $25 \, cm^3$ of $0.25 \, moldm^{-3} \, H_2SO_4$ solution are mixed. BaSO₄ is precipitated here.
 - i. Write the balanced chemical equation for the above reaction.
 - Calculate the mass of BaSO₄ formed. ii.
 - Calculate the unreacted Ba^{2+} ions in the solution. iii.

$$(Ba = 137, S = 32, O = 16, H = 1)$$

- (07) (a) Explain whether the following statements are true or false, by giving reasons.
 - i. C O bond length of $H CO_3^-$ is identical.
 - ii. Ionic properties of AgF, AgCl and AgI is varied as AgF > AgCl > AgBr
 - The electronegativity of S atom of the species of SO_3^{2-} , SO_4^{2-} , SO_2 and SO_3 is varied as, $SO_3^{2-} < SO_4^{2-} < SO_2 < SO_3$
 - iv. $H\hat{O}H$ bond angle of H_2O is lower than $H\hat{S}H$ bond angle of H_2S .
 - v. The electron gain energy of F is lower than the electron gain energy of Cl.
 - In a sample of chlorine gas, two isotopes were found as $^{35}_{17}Cl$ and $^{35}_{17}Cl$. If the average (b) relative atomic mass of chlorine is 35.5, calculate the relative abundance percentages of each isotope.
 - ii. Draw an energy level diagram to show the formation of the lines of lyman series and paschen series of emission spectrum of hydrogen.
 - iii. Draw the line diagram of it to the direction of increasing frequency.

Part C

- Answer two questions only.
- Derive the shapes of the following species around the central atoms. (08) (a)(i)

 - i. SCl_4 ii. XeF_2
- iii. NO_2^-

- iv. H_3^+O v. $KMnO_4$
- (b)(i) Write the IUPAC names of the following compounds.

 - ii. N_2O_5 ii. FeC_2O_4
- iii. NaClO₄
- iv. H_2SO_3 v. Fe_2S_3
- (c) Balance following nuclear reactions.

 - (ii) ${}_{4}^{9}Be + \frac{}{}_{2}He \rightarrow \frac{}{}_{6}C$

- (09) (a) (I) i. In a certain compound, 24.27% of C and 4.07% of C are present by mass and the rest is Cl. Determine the empirical formula of this compound. (C = 12, Cl = 35.5)
 - ii. If the molar mass of that compound is $99g \text{ mol}^{-1}$ determine the molecular formula of it.
 - (II) i. The atomic number of Cu is 29. write the electron configuration of it as $1S^2 2S^2 \dots$
 - ii. How many unpaired electrons are present in Cu^{2+} ion, formed by Cu.
 - iii. Write the set of quantum numbers relevant to the last electron of Cu.
 - (b) (I) i. Calculate the frequency of a radiation having wave length of 305nm. $(C = 3x10^8 ms^{-1})$, $h = 6.624 \times 10^{-34} JS$
 - ii Calculate the energy of one moles of photon of the above radiation.
 - (II) Consider the following reaction takes place in acidic radium.

$$H^+ + MnO_4^- + C_2O_4^{2-} \rightarrow Mn^{2+} + CO_2 + H_2O_4^{2-}$$

- i Write the oxidation and reduction half reactions of the above reaction.
- ii Write the balance chemical equation for the above reaction.
- (10) (a) i. Describe that how to prepare $250cm^3$ of $1.5 \, moldm^{-3} \, HCl$ solution by mixing $3 \, moldm^{-3} \, HCl$ and $1 \, moldm^{-3} \, HCl$ solutions.
 - ii. 0.5 mol of NaCl is dissolved in 90g of H_2O . Calculate the mole fractions of NaCl and H_2O .
 - iii. Calculate the composition of *NaCl* in the solution in ppm unit.
 - (b) i. Contrast the differences of a σ bond and a π bond considering 3 facts.
 - ii Write three information's each that can be obtained directly and cannot be obtained directly by a Lewis structure.
 - iii. Write separately the number of repletion units (VSEPR pairs) and lone pairs of electrons present around *C* atom mentioned as * in the following molecule / ion. Mention the hybridization of those *C* atoms.

(i)
$$CH_3 \overset{*}{COCI}$$
 (ii) $S\overset{*}{CN}$ (s - C - N)

ආවර්තිතා වගුව ஆவர்த்தன அட்டவணை Periodic Table

	· ·																	2
1	H																	He
-	3	4											5	6	7	8	9	10
2	Li	Be											В	C	N	0	F	Ne_
	11	12	1										13	14	15	16	17	18
3	Na	Mg											AL	Si_	P	S	CI	Αr
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Şc	T	V	Cr.	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	٨s	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	ln	Sn	Sb	Te	I	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	I'b	Bi	Po	<u>At</u>	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113					
7	Fr	Ra	Lr	Rf	DЬ	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Unt					
																		_

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
L	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96.	97	98	99	100	101	102	103
Ac	Th	Pa	ย	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Provincial Department of Education - NWP First Term Test - 2019 - Grade 12

Chemistry I

(1) - 2	(11) - 2	(21) - 3	(31)	(41) - 2
(2) - 5	(12) — 3	(22) - 3	(32) — 2	(42) — 3
(3) -5	(13) -5	(23) — [(33) — 4	` (43) - ,
(4) - 3	(14) - 3	(24) - 2	(34) - 4	(44) — 4
(5) — [(15) - 4	(25) — 4	(35) —	(45) — 4
(6) - 3	(16) — 🚶	(26) —5	(36) -5	(46) — أ
(7)一个	(17) - 5	(27) — 2	(37) - 2	(47) — 1
(8) _ 3	(18) - 2	(28) - 3	(38) - 3	(48) — Z
(9) - 1	(19) - 5	(29) - 4	(39) —4	(49) - 5
(10) - 5	(20) - 2	(30) — 3	(40) - 3	(50) —3

Part - A - Structured Essay

- (01) a). The following questions are related to the second period elements of the periodic table. To answer the questions i to v write the symbol or the chemical formula of the element / compound.
 - i. The element, having the highest second ionization energy Li

 - iv. The chemical formula of the compound, formed by the elements with the highest electronegativity and lowest electronegativity.
 - v. The element which forms electron deficient linear covalent compounds usually

5x5 marks = 25

a). i Draw the most acceptable Lewis dot - dash structure for (methyl nitrate). The skeletal structure is given below.

10 marks

ii. The most stable Lewis dot - dash structure for the molecule NO_2F is given below. Draw another 2 Lewis dot dash structures (resonance structures). Mention the relative stability of them. Give reasons for the stability.

- iii. By considering the Lewis dot dash structure given below, mention the followings in the given table.
 - I. VSEPR pairs around the atom.
 - II. Electron pair geometry around the atom.
 - III. Shape around the atom.
 - IV. Hybridization of the atom.
 - V. Oxidation number

The atoms are numbered as follows,

Atom	O^2	. C ₃
I. VSEPR pairs around the atom.	4	3
II. Electron pair geometry around the atom.	tetrahedral	triangular planer
III. Shape around the atom.	angular.	triangular planer
IV. Hybridization of the atom.	Sp ³	sp²
V. Oxidation number	-2	+3

10 x 1: marks = 10

iv. Mention the atomic / hybrid orbitals which participate for the formation of the following σ bonds of the Lewis dot - dash structure given in the part (iii) above.

I.
$$H - O^2$$

II.
$$O^2 - C^3$$

IV.
$$C^4 - O^6$$

III.

$$C^{3} = SP^{2} h \cdot O$$
 $C^{4} = SP^{2} h \cdot O$
 $C^{4} = SP^{2} h \cdot O$
 $O^{6} = 2P/2p^{2}h \cdot O$
 $O^{6} = 2P/2p^{2}h \cdot O$

8x 1 marks = 8

v. Identify the atomic orbitals which participate for the formation of the following π bonds given in the Lewis dot - dash structure of the (iii) above.

I.
$$C^3 - O^7$$

$$11 \quad C^4 - C^6$$

 $4 \times 2 \text{ marks} = 8$

- Arrange the followings in to the increasing order of the properties given in the brackets. (Reason are not required)
- (i) NH_3 , NH_2^- , NH_4^+ (Electronegativity of N atom)

(ii)
$$NOCl$$
, NO_2^- , NO^+ ($N - O$ bond length)

(iii) $MgCO_3$, $BeCO_3$, $CaCO_3$ (decomposition temperature)

(02) **a)** i. Write the electron configuration of Cr with the atomic number of 24 and the number of unpaired electrons of Cr atom, exists in the ground state.

$$15^2 28^2 2p^6 38^2 3p^6 3d^5 48^1$$
no. of unpaired electrons = 6

ii. Write the electron configuration of Cr.

iii. Write the electron	configurations of +3 and +6 car	tions formed by Cr .		
Cr ^{6†}	Cr ^{3†} = 15 ² 25 ² 2p ⁶ 35 ² 3p ⁶ 3d ³ Cr ^{6†} = 15 ² 25 ² 2p ⁶ 35 ² 3p ⁶			
iv. How many electro	ons present in the outer most she			
v. Name an anion of	chromate,	f +6. Write the IUPAC name of it.		
NaClO Sod				
Fe_2S_3	on (111) Sulpide.	6 x 4mark3 = 24		
Fill in the table regard	ing the primary and second	ary into.		
Type of interactions	Primary interactions	Secondary interactions		
liquid bromine.	pure ovalent	London forces.		
Solid sodium.	_	metallic bonds.		
. Hydrogen Fluoride	polar covalent	London forces, H bonds.		
. Ice.	polar covalent	London forces		
Para nitrophenol	polar covalent	H bonds, London forces.		
variation of the line spe	ectrum of H with the wave	length is given below. 10×2 marks = 2		
P Q R	S	Wave length		
radiation in which ea	ach of the series belong.	tion the relevant regions of electromagnetic		
P - 13 (1) (1)	series - 7	altraviolet region		
C - Dasch	en series -	visible region. Infra red region. Examarks		
Mention the values of	n , and n , relevant to the 1:-	6 x 2 marks		
Mention the values of	n_f and n_i relevant to the m	ne with the highest wave length of each series <u>rr</u> 2		
A Series		3		
D		4		
		6 K2 Marks =		
energy d	ifference among	f the emission spectrum of H separately. the Brurgy levels of and derably different from		
the prom	differen am	ng the energy levels of an		
series of		02 marks -		

vii.

b) The

i.

ii.

iii.

iv. What are the colours of each lines P, Q, R, S of series B.

Р	-	Purple.	R - blue green	
Q	-	blue.	S - red	
			04 marks	١.

c) Fill in the table considering the quantum number n, l, m_l which is used to describe the atomic

Quantum number	n	1	m_l	Atomic orbital
I	2	1	+1	2P
II	4	2	-2	4-0
III	3		O	3S

i. Calculate the energy of a photon of red light, having the wave length of 700nm.

Calculate the energy of a photon of red light, having the wave length of 700nm.

$$E = hc = 6.626 \times 10^{-34} \text{ Js} \times 3 \times 10^{8} \text{ ms}^{-1}$$

$$700 \times 10^{-9} \text{ m}$$

$$= 2.84 \times 10^{-19} \text{ J}$$
Calculate the energy supplied by a mole of photon of red light.

ii. Calculate the energy supplied by a mole of photon of red light.

$$E \times 6.022 \times 10^{23} \text{ J mol}^{1}$$
= 2.84 × 10⁻¹⁹ × 6.022 × 10²³ J mol¹ V
= 17.1 × 10⁴ J mol¹

2 × 4 marks = 8.

(03) a) Write the half ionic reactions and hence the balanced chemical equations for the following reactions.

Reaction of $KMnO_4$ and $SO_2(g)$, Mn^{2+} and SO_4^{2-} ions are formed as main products.

$$\frac{\text{IM}_{\text{N}}O_{4}^{-} + 5e + 8H^{+} \rightarrow \text{Mn}^{2+} + 4H_{2}O - 0}{\text{SO}_{2} + 2H_{2}O \rightarrow \text{SO}_{4}^{2-} + 2e + 4H^{+} - 2}$$

$$2\text{KM}_{\text{N}}O_{2} + 5\text{SO}_{2} + 2H_{2}O \rightarrow \text{DM}_{\text{N}}SO_{4} + K_{2}SO_{4} + 2H_{2}SO_{4} \rightarrow 3 \times 10 \text{ marles} = 30$$

ii. Reaction of $KMnO_4$ and Fe in basic medium, Fe^{2+} and MnO_2 are formed as main products.

$$MnO_4 - +3e + 2H_0 \longrightarrow MnO_2 + 4OH - ()$$

Fe + Fe²⁺ +2e - (2)

 $2KMnO_4 + 3Fe + 4H_0 \longrightarrow 2MnO_2 + 3Fe (OH)_2 + 2KOH_2$
 $3 \times 10 \text{ marks} = 30$

b) i. A compound which is having the molecular formula of MSO₄.xH₂O contains 36% of H₂O by mass. Calculate the value of x.

$$(M=64, S=32, O=16, H=1)$$
 $r.m.m = 160 + 18x$

$$\frac{(8x)}{(160+18x)} = 36$$

$$\frac{(800x)}{(152x)} = 36(160+18x)$$

$$\frac{1152x}{(152x)} = 5760$$

$$\frac{x}{(160+18x)} = 36$$

ii. Calculate the mass of CuO required, to obtain 200kg of Cu, in Cu extraction using CuO.

(Cu=63.5, 0=16)
molar mass of Cu0 = 63.5 +16 = 79.5 gmoī'
$$\nu$$

percentage of Cu = 63.5 × 100 = 79.9% ν
79.5
Cu0 mass required = 100 × 200 ν
79.9
= 250.3 Kg/ ν Ax5marks=20

(04) a) i. A compound which is having a molar mass of 248 gmol⁻¹ contains 18.5% of Na, 25.8% of S and 51.6% of O and 4.0% of H by mass. Determine the molecular formula of

	(Na = 23, O = 1)	6, S = 32, H = 1	S	0	Н	
	m a55	18,5	25 - 8	1-7	4	V
	molar ratio	18.5	25 - 8	1 <u>.7</u>	<u>4</u>	~
		23	32	46	. 1	
		O · 80	D,80	3.73	4	V
Simple	molar ratio	0 -8ව	0 - 80	<u>3,23</u>	<u>4</u>	V
'		0.80	O-80	0%	0-80	
		t	l l	4.0	5	~
		formula			✓	
	mass of m	olecular formu	la = (mabs	of empir	ical formula	a)n v
		248	= 124	×n		
		n	= 2	,		
		notecular formu	ila = Naz	S208 H10 V		

ii. If all H atoms are present as water molecules only, write the chemical formula of the compound.

 Na2 5,00	, 5 H ₂ O	✓			
			10 × 4	marks	=40

Calculate the composition of K_2SO_4 present in a solution which is prepared by dissolving 20mg of K_2SO_4 in 500g of water,

- i) in ppt
- ii) in ppm

mass fraction =
$$\frac{20 \times 10^3 \text{ g}}{500.029}$$

composition in ppt =
$$0.029 \times 10^3$$
 = 0.039 ppt
 500.029

in ppp = 0.029×10^3 = 39.9 ppm
 500.029
 $4 \times 5 \text{ marks} =$

 $20.00 \ cm^3$ of standardized $0.01 \ moldm^{-3}$ HNO_3 acid solution is required to react completely with 25.00 cm^3 of a $Ba(OH)_2$ solution with an unknown concentration.

Write the balanced chemical equation for the reaction between HNO_3 and $Ba(OH)_2$

Calculate the concentration of $Ba(OH)_2$ solution. ii.

Calculate the concentration of
$$Ba(OH)_2$$
 = 2:1

H NO₂: $Ba(OH)_2$ = 2:1

no · Of noles of HNO₂ required = 0·01 moldm³ x20 dm³

= 0·0002 mol

Ba(OH)₂ moles in 25-00cm³ = 0·0002 mol

$$=\frac{0.0001}{25} \times 1000 \text{ mold m}^3$$

=
$$0.004 \text{ moldm}^3$$

 $5 \times 8 \text{ marks} = 40$

```
Essay, - Answers
```

05 narks (5) (a) (i). E V The general configuration of D is ng2 and (11) it is a stable configuration. The general configuration of E is ns22pl and V it is an unstable configuration \mathfrak{D} trom the ... The removal of an electron having a polstable configuration is difficult implicative to E. . The first ionization energy of D is greater than that of E 04x6 = 24 monks (آآن second ionizatio energy (2×5) +(1×2)=12 E atomic number Atomic radius., C>D>=>A>B (05 marks QV) (~) DA2 104 marks) (b) Co K MnO4 ACIO3 (iii) 45 (10x5) 30 marics (O1) (C) (1) 2 KNO3 (5) A 2 KNO2 (5) + O2 (9) (06 marks) =(10.2 - 8.92)g Oz mass evolved رننح = 1.289 V = 0-04 mol = 1-289 On moles evolved 329 mol / Stoichiometry of Q: KNZ = 1:2 moles of KND, in the sample = 2x0.04 mol = 0.08 mol. knog mass in the sample = 0-08 mol x lolg moil = 0.0 8g.

> (04 x 11 = 44 morks) -6-

10.29 = 79,2 %

mass percentage of KND = 8.08 g x 100%

```
(a) is mass of 1cm3 of the solution = 1.29.
             mass of \frac{1000000}{1000} = 1.29 x 1000
Of the solution \frac{1}{2} = 12009 \sim
      mass of 4504 in 1dm of the = 1200g x 49
     moles of 4,500 in Idm of the = 1200 J x 49 or solution
                                        ~ 9.8 g moil x 100
        .. the concentration of Hesoy = 6 molding
                                           [5x5 = 25 marks]
(II) H2504 moles in 25cm of H2504 acrd = 6 x 25
                                        = 1-5 x 10 mo)
    throughoutes in 250 cm3 of throughouten = 1.5 x10' mol
    .. The concentration of the new theory = 1.5 x 101 x 1000
                                solution
                                        = 0.6 mold m v
(ili). H2504 + 2 Na OH -> Ng SO4 + 240
       H2504 : NaOH
     number of moles of NaoH = 1 1000
                                  = 0-03 mol.
     .. the moles consumed = 0.03 x 1
                                 = 0.015 mg/
     The volume of H2504 2 = 0.019 × 1000 cm³ v
                                   = 25 cm² V
                                  5 x8 = 40 marks.
```

```
(b) (i) Ba (OH)2 + H2SO4 → BaSO4 + 2HOV
       (P) BacoH), moles added = 0.25 x50
                                                                                                    = 0.0125 mol -
                             H<sub>2</sub>SO<sub>4</sub> moles added
                                                                                                    = 0.25 x 25
                                                                                                       = 0.00 625 mol V
                  Ba (OH) + H2SO4 -> Baso4 + 2 H2O
    Initial 12.5 x 10-3 6. 25 x 10-3
        moles
       reacted 6.25 × 103 6.25 × 103 V
                                                                                     6. 25 x103
     Len reacted 6.25 x 163
              moles
                     Baso, moles formed = 6.25 × 103 mol V
                                                                                                    = 6,25 × 10 mol x
             Bason mass formed
                                                                                                                                 2339 mol1
                                                                                                      = 1.45g. V
(11) unreacted Ba(OH)2 moles in the = 6,25 × 103 mol
               unreacted Ba2+ moles in the solution] 6,25 x 163 mol v
               concentration of unreacted Ba2+2 = 6.25 × 153 mol
                                                   in the solution
                                                                                                             = 0.083 moldm3
                                                                                                         ( 5 x 13 = 65 marks)
  (07) cas (1) lewis structure: 0:
                                                              H-0-0-0:-
           resonance; struct axes; ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - ;0: - 
         No: resonance hybrid 10: -12 Date: 1-12 H-0 -0: -12 V
     HCO3- exists as a hybrid as above v
            C-0 bond length of C-0 bonded to H is different
                     to the other c-o bond lengths ~ concreasing)
              : C-O bond lengths in Hcg- are not
                                     îdentical.
                 -: Statement is false v
                                                                                                              (2×7 = 14 marks)
```

رائل	AgF	Ag Cl	Ag I	
c	ammon catio	n Ag	+	· · · · · · · · · · · · · · · · · · ·
 •:	polarising pow	er is co	nstant.	V
in anio	ns, char	ge is the	same	V
	rany as			
	olarizability			
. 7,	covalent ch			
	ionic otrope	rtres 1	tg F >	Ag(1 > Agt V
7	. statemen	t is tru	ie -	
-			(2×2	7 = 14 marks)
Optional	answer.			•
	common eleme	int is t	ts V	3
electr	onegativity of	vary as F	> (1 >	1 _3
'elec-	n diff	cence	AGFT	Agcl > AgJ 3
	conic proper	tres Ac	jF 7 Ag	ci7AgI 3
r.	r. Statement	True	r @	

(111)	50/3	2- S O4	SO2	SO3
hybr:	sp3	sp³	sp2	Sp2 V
charge on Ohoms.	0	0	0	0
oxid. num. on				
central atom	+4	+6	+4	+6
when S charact	ter 1	e techn geting	1	
positive nature		xidation num	ber of	the central
atom then		tronegitinty 1		<u>ر</u>
electrong		sog?-<	50q2- < 9	SO ₂ < SO ₃

both the life are angular v

Electrongativity of 0 > Electronugativity of S v

bond electrons of 0-H more close to the contral

atum than the bond pins of S-H.

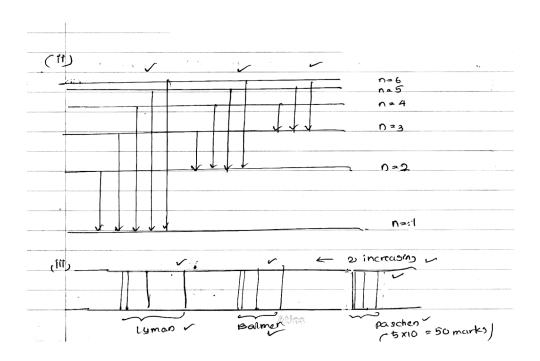
Trepulsions of 0-H in the > rerulsions of S-H m

this

The bond angle > HSH band

angle.

Statement -> false.


(V) Both F, Cl release energy when gaining

an electron v

If the alemic radius 1 then the nucleurs is

Therefore the releasing energy of F

Should be greater than cl. v Date: _/_/
but in F, radius is too small
also added electron feels a small repulsion
. The energy releasing in F when garning
tan electron is less than that OFCI
··· Electron gaining energy of F 18 smaller
than that OF CI
a statement is true.
(b) (i) it relative abundance of one isotope of cl (12cl)
36.5 / = 35 × 2 V + 37 × (100-x)
100 100
3550 = 35% + 3700 - 37%
2× = 150
α = 75 _{×5}
relative abundance of 12C1 = 75%
of 37c1 = 25y
(5x6 = 30 marks)

o bonds = 4
lone pairs = 1 v

- shape is see-saw ~

election pairs around central orton = 5

VSEPR pairs =5.

O bonds =2

l.p. =3

shape is linear

ti) NO₂ -

electron pairs around cen. atom = 4

VSEPR pairs = 3

5 bonds = 2

2.p. = 1

.. Shape is angular. =

```
Hz SQ
  ((V)
          elect. p. around can atom=5
                VSEPE Pairs
                     or bonds
                                  = 9
                       2.p.
                                  = 1
                    shape - pyramidal
        KMnO
  6(1)
           e'n p. an cent at = 7
              , USE PR Pa.
                  orbands
                    lop.
              Shape , therehedral
                                    112x5 = bomarks
        (11) Egoson - mon (11) oxalate.
         (111). Nacloy - sodium perchorate.
         (in). H2SO3 - Sulfurous acid.
         (4). Fezs3 - iron (III). Sulfide.
                                       (10 ×5)
  cii).
      is.
       69. (a). I)(1).
              C: H: C1
  maes ratio 22000 24.27 : 4.07 : 71.66 V
  mole ratio 12 12 1 10-66 /
                 2.02 : 4.07 : 2.01 /
                \frac{2.02}{2.01} : \frac{4.07}{2.01} : \frac{2.01}{2.01}
                 1:0 : 5.05 :1
              1 : I : 1
```

```
English States 1 1 11 11 1
      Empirical formula CHCI
           D = \frac{99}{(12+x+35.5)}
cii).
            n = 99
49.5 3
    molecular romula C2H4Cl2/
(1) (1) 200 - 12, 52, 56, 32, 36, 39,0 #8, ~
  air Cu2+ 152 252 27 6352 386389 450
          (4,0,0,+), )~
                                           (10×3)
65C= 2 = 23
                                               30 marks
            3×108m51 = 20× 305 ×109m /
                    2 = 3 x108 m 51
                          305 × 109 m
                     \pi = \frac{6 \cdot 8 \times 10^{-1}}{3} \times (8 \times 5)
     Energy of a mote of photon,
                                              [12marks]
                                E = 6.624×1075×9.8×1451
                                          × 6 075×1053
                        E = 390.9 x 103 J.
                        E= 390.9 KJ/ (6x2)
  in it a market marting
             C_2 e_2^2 \longrightarrow 2CO_2 + 2e \checkmark
    reduction half-reaction.

8H++SE +Mrof -> Mr2+ + 4H20.
  Cis 5 C204 + 16H++ 2MDO4 -> 2M2+ 10 C02+8H20.
                                             (15×3)
                                             36 marks
```

```
(10. (essis). 3 mol d=3
Hcl
V cm3
                                          1201923
                                             Hel
                                             (250 -v ) cm3
                       \frac{3 \times V}{1000} + \frac{1 \times (250 - V)}{1000} = \frac{1.5 \times 250}{1000} \times (5 \times 3)
                          31 + 250 - 1 = 375
                                         20 = 125
                                          V = 62.5 cm3/ 10 marks
  When 62.8 cm³ of i3 moldm³ Hc1 and 187.5 cm³ of
        McI and mixing together inside a beakers
       250 cm3 of 1.5 moldings Hat is Obtained is
         modes of the = The good -1
                make or \frac{1}{2} = 5 moly

mole fraction of \frac{1}{2} = \frac{0.5}{570.5}
            composition of Nacl = 1 × 10 ×
                                          = 90909.09 ppm V
                                      ~ bond
                                                          (40 marks
                                     * cenergy is low.
      sobitals overlap
                             laterally overlap.
      the unby Bridssed orbitals and orbitals between unby bridssed Orbitals.
(5×6)
```