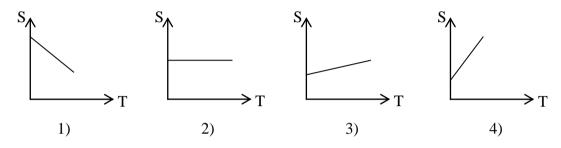


NALANDA V Nalanda Vidyalaya — Colombo 10 DA VIDYALAYA

NALANDA VIDYALAY

Unit Test Project

NALANDA VIDYALAYA


Grade 11

Science

Unit: 03 - Mixtures

MCQ Questions

Compound A is purified by recrystallization. Accordingly which is the most probable graph (1) that illustrates the vibration of solubility (s) of compound A versus temperation (T).

(2) Example for a solid – solid heterogeneous mixtures are,

 $A \rightarrow brass$

 $B \rightarrow iron powder and KMnO_4$

 $C \rightarrow \text{iron powder and sulphur}$

 $D \rightarrow KMnO_4$ and water

- 1) A and B
- 2) B and C
- 3) C and D
- 4) B and D
- If 25 ml is taken from 0.2 moldm⁻³ NaOH solution and added water to it until the volume (3) becomes 50 ml, the concentration of that solution is,
 - 1) 0.1 moldm^{-3}
- 2) 0.2 moldm^{-3}
- 3) 0.3 moldm⁻³ 4) 0.4 moldm⁻³
- **(4)** What is the substance that can be obtained by solvent extraction?
 - 1) Obtaining salt from sea water.
 - 2) Obtaining sugar from molasses.
 - 3) Separate substance in plants which have medicinal properties.
 - 4) All of the above.
- If salts such as MgCl₂ is deposited on salts obtained from salterns. (5)
 - 1) A bitter taste and a characteristic colour will occur.
 - 2) Salt becomes moisture and a characteristic colour will occur.
 - 3) Salt become bitter and moisture.
 - 4) Salt become bitter and dry.
- (6)The method of separating essential oil is,
 - 1) Steam distillation

2) Solvent extraction

3) Fractional distillation

4) Crystallization

(7)	The technique used to separate the components of chlorophyll is,						
	1) Cry	stal	lization	2) Solvent extraction			
	3) Dis	tilla	tion	4) Chromatography			
(8)	Which of the following is the type of salt precipitates in large shallow tanks of saltern.						
	1) Calcium carbonate			2) Sodium chloride			
	3) Calcium sulphate			4) Magnesium chloride			
(9)	Which is the method used in refining crude oil?						
	1) Fractional distillation			2) Steam distillation			
	3) Sol	vent	extraction	4) Crystallization			
(10)	Koholle dissolves in kerosene oil. This is because,						
	1) Both koholle and kerosene oil are polar states.						
	2) Both koholle and kerosene oil are nonpolar states.						
	3) Kol	holle	e is polar and kerosene of	il is nonpolar.			
	4) Koholle is nonpolar and kerosene oil is polar.						
			Struc	ctured Essay Questions			
(1)	A) i)		solution of 100 g is prester at 25 °C.	epared by dissolving a mass of 30 g of solid MgCl ₂ in pure			
		a)	State the reason for sele	ecting water to prepare MgCl ₂ solution.			
		b)	Calculate the compositi	ion of the MgCl ₂ solution prepared above as a mass function			
			(m/m).				
	ii)	a)	30g of MgCl ₂ was adde	Cl ₂ was deposited at the bottom of the beaker, when another ed to the MgCl ₂ solution prepared i) above stirred well and What is the special name used to introduce this type of			
		b)	The beaker with the sol	lution in a) above was heated upto a temperature of about 60 observation that could be made here,			
		c)		vant to the observation stated in b) above.			

B) Th	ree instances relevant to separation of components from mixtures are given below.				
	1) \rightarrow Separation of various minerals from mineral sand.				
	$2) \rightarrow$ Separation of petroleum by the mineral oil.				
	3) → Obtaining components in chlorophyll pigment.				
i)	Write the separation method used in the instances 1), 2) and 3) above, respectively.				
ii)	Calculate the mass of sodium hydroxide to prepare a $100 \mathrm{cm}^3$ of $1.00 \mathrm{\ moldm}^{-3}$ sodium hydroxide solution. (Na -23 , O -16 , H -1)				
	Essay Questions				
	treatment is given to many patients treated in hospitals. A normal saline solution is ed by dissolving 9g of sodium chloride in 1 dm ³ of distilled water.				
	ecording to the "nature of the resulting saline solution" to what type of solution is it an				
	ample for?				
	hat is the reason for your answer.				
	ate the composition of a normal saline solution with respect ti its mass and volume (m/v) .				
ĺ	hen preparing standard solution in the laboratory the composition of the solution are				
	pressed as concentration.				
-	Define the term "Concentration"				
b)	What is the amount of NaCl moles in the above saline solution, if its concentration is				
	0.15 moldm^{-3} ?				
c)	State one main purpose of using each instrument stated below, when preparing standard				
	solutions in the laboratory.				
	i) Chemical balance				
	i) Chemical balance				
	ii) Volumetric flask				

(1)

iv) Wash bottle

(2) Given below are information as regards several mixtures prepared by a group of students.

Mixture	Method of preparation	
A	Adding some wheat flour to a test tube about half filled with water	
	and shaking thoroughly.	
В	Adding $1-2$ drops of kerosene oil to a test tube half filled with water	
	and shaking thoroughly.	
С	Taking 30 cm ³ of liquid NaCl to a 100 cm ³ volumetric flask. Adding	
	water till the total volume was 100cm ³ .	
D	Dissolving 50g of CuSO ₄ in 150g of water completely.	
Е	Adding 15g of urea (CO(NH ₂) ₂) to a 500 cm ³ volumetric flask adding	
	water till the total volume was 500cm ³ .	

- i) Of the above mixture, give 2 examples for heterogeneous mixture.
- ii) What is the best method to express the composition of the mixture C, according to the data given in the table.
- iii) What is the composition of the mixture D as a percentage by (m/m)
- iv) What is the amount of urea $[CO(NH_2)_2]$ used to prepare the solution E.

$$(C = 12, H = 1, N = 14, O = 16)$$

- v) What is the concentration of the solution E.
- vi) Name the instrument that should be used for the following.
 - a) To measure 30 cm³ of liquid NaCl accurately.
 - b) To transfer 15g of urea to the volumetric flask.