

Third Term Fest - Grade 13-2018

Index No :
Chemistry I
Two Hours

Important

- Periodic Table is provided.
- Answer all the questions.
- Use of calculator is not allowed.
- Write your Index number in the space provided in the answer sheet.
- In each of the questions 1 to 50 , pick one of the alternatives form (1), (2), (3), (4), (5) which is correct or most appropriate and mark your response on the answer sheet with a cross (x) in accordance with the instructions given on the back of the answer sheet.

$$
\begin{array}{l|l}
\text { Universal gas constant } \mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} & \text { Avogadro constant } \mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1} \\
\text { Planck's constant } \mathrm{h}=6.626 \times 10^{34} \mathrm{Js} & \text { Velocity of light } \mathrm{C}=3 \times 10^{8} \mathrm{~ms}^{-1}
\end{array}
$$

1. The scientists who contributed for creating the period table are,
2. Newlands, Thompson
3. Mendeleev, Lother Mayer
4. Newlands, William crooks
5. Chadwick, Thompson
6. Rutherford, Chadwick
7. Which of the following statements is true regarding the provided molecules below?
$\mathrm{NO}_{2}, \mathrm{OF}_{2}, \mathrm{CS}_{2}, \mathrm{NCl}_{3}, \mathrm{SiF}_{4}$
8. All molecules have different shapes.
9. There are not dative bonds in any molecule.

3 Every molecule obeys the octet rule.
4. The number of molecules having lone pairs are greater than two.
5. There is not any molecule given here which is having unpaired electrons.
3. What is the IUPAC name of the following compound?

1. propyl 2 - formyl - 3 - hydroxy -4 -methyl -2 - hexanoate
2. propyl 2 - formyl - 3 - hydroxy - 4-methylhex - 2 - enoate
3. propyl 2 - formyl - 3-hydroxy - 4-ethyl - 2 - pentenoate
4. propyl - 2 - formyl - 3 - hydroxy - 4-ethyl -2 - pentenoate
5. propanol - 2 - formyl - 3-hydroxy - 4-ethyl - 2 - pentenoate
6. The element which shows the highest stable oxidation state is,
7. Cr
8. F
9. N
10. $M n$
11. S
12. Naphtha ($C_{6} H_{14}(g)$) gives $\mathrm{CO}(g)$ and $\mathrm{H}_{2}(g)$ in partial oxidation with oxygen. What is the mass of gases can be collected when $112 l$ of naphtha is reacted under STP?
($O=16, H=1, C=12$) Under STP volume of one mole of a gas is 22.4l.
13. 910 g
14. 182 g
15. 150 g
16. 1390 g
17. 1110 g
18. The species, which does not show the trigonal bipyramidal shape for the electron pair geometry around the central atom?
19. PCl_{5}
20. $S F_{4}$
21. ClF_{3}
22. $X e F_{2}$
23. $X e F_{4}$
24. At 298 K , the solubility of CaSO_{4} is $3 \times 10^{-3} \mathrm{~mol} \mathrm{dm}$-3 and the solubility of $\mathrm{Ca}(\mathrm{OH})_{2}$ is $1 \times 10^{-2} \mathrm{~mol} \mathrm{dm}{ }^{-3}$. The ratio of $\frac{K_{S P}\left[\mathrm{CaSO}_{4}(\mathrm{~s})\right]}{\left.K_{S P}[\mathrm{Ca(OH})_{2}(S)\right]}$ at 298 K is, ,
25. $\frac{9}{2}$
26. $\frac{9}{4}$
27. $\frac{3}{10}$
28. 3
29. $\frac{3}{2}$
30. The number of electrons can exist for the quantum numbers $n=4$ and $m_{l}=0$ is,
31. 4
32. 6
38
33. 10
34. 12
35. Which of the following statements is false regarding the S block metals ?
36. All metals of group I react with cold water and evolve H_{2} gas.
37. Metals of group II react with conc. acids and liberate H_{2} gas.
38. When all metals of group II, are heated in air not only the oxide but also the nitride is formed.
39. Down the group of S-block the reducing property of elements is increasing.
40. Metals of group I react with dil. acids to evolve H_{2} gas.
41. At T K temperature the total pressure of the equilibrium system,
$2 A(s) \rightleftharpoons 2 B(s)+C(g)+D(g)$ is $4.0 \times 10^{5} \mathrm{~Pa}$. The value of K_{P} at $T K$ is,
42. $16 \times 10^{15} \mathrm{~Pa}^{2}$
43. $16 \times 10^{10} P a^{2}$
44. $1 \times 10^{10} P a^{2}$
45. $4 \times 10^{20} P a^{4}$
46. $4 \times 10^{10} P a^{2}$
47. The correct increasing order of the melting point of the given elements is,
48. $N a<K<M g<A l$
49. $\mathrm{Na}<\mathrm{Mg}<\mathrm{Al}<\mathrm{K}$
50. $\mathrm{Na}<\mathrm{K}<\mathrm{Al}<\mathrm{Mg}$
51. $\mathrm{K}<\mathrm{Na}<\mathrm{Mg}<\mathrm{Al}$
52. $\mathrm{K}<\mathrm{Al}<\mathrm{Mg}<\mathrm{Na}$
53. A sodium lamp emits yellow light (580 nm) it generates 2×10^{20} photons within 8 seconds. The energy released in this light per one second is,
54. 7.23 J
55. 7.05 J
56. 8.56 J
57. 6.81 J
58. 5.95 J
59. $\mathrm{C}(\mathrm{S})+\mathrm{H}_{2} \mathrm{O}(g) \rightarrow \mathrm{CO}(g)+\mathrm{H}_{2}(g)$
$\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad 40$
40
Select the true statement for the reaction, $2 \mathrm{CO}(g) \rightarrow \mathrm{C}(s)+\mathrm{CO}_{2}(g)$
$\Delta S^{5} K^{-1} \mathrm{Jmol}^{-1}$
140

In this reaction,

1. $\Delta H=170 \mathrm{KJ} \mathrm{mol}^{-1} \Delta S=-190 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
2. $\Delta H^{\varnothing}=-170 \mathrm{KJ} \mathrm{mol}^{-1} \Delta S^{\varnothing}=-190 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
3. $\Delta H=-170 \mathrm{KJ} \mathrm{mol}^{-1} \Delta S=-190 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
4. $\Delta H^{\varnothing}=-180 \mathrm{KJ} \mathrm{mol}^{-1} \Delta S^{\varnothing}=+190 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
5. $\Delta H=-90 \mathrm{KJ} \mathrm{mol}^{-1} \Delta S=-90 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
6. At $27^{0} \mathrm{C}$ and 10 atm pressure $X(g)$ is placed in a closed rigid vessel of the volume $5 \mathrm{~m}^{3}$. At $27^{\circ} \mathrm{C}$ and 20 atm pressure $Y(g)$ is placed in another closed rigid vessel of $10 \mathrm{~m}^{3}$ volume. When these two vessel connected through a tube with a negligible volume, the total pressure of this system is,
7. 13.33 atm
8. 50.00 atm
9. 16.67 atm
10. 3.33 atm
11. 35.00 atm
12. At $298 \mathrm{~K}, 50 \mathrm{~cm}^{3}$ of $0.05 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{CH}_{3} \mathrm{COOH}$ and $50 \mathrm{~cm}^{3}$ of $0.025 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{KOH}$ are mixed to from a buffer solution, If the dissociation constant of $\mathrm{CH}_{3} \mathrm{COOH}$ acid at 298 K is $1.8 \times 10^{-5} \mathrm{~mol} \mathrm{dm}{ }^{-3}$ the P^{H} value of this buffer solution is,
13. 6.74
14. 5.25
15. 4.74
16. 4.25
17. 4.52
18. The stable Grignard regent is,
(1).

(2).

(3).

(4). $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2} \mathrm{MgBr}$
(4). $\mathrm{CH}_{3}-\stackrel{1}{\mathrm{C}}=\stackrel{\mathrm{C}}{\mathrm{C}}-\mathrm{MgBr}$
19. The reaction $A+B+C \rightarrow$ product,

Proceeds through the following basic steps.
$A+C \rightleftharpoons X$ (fast)
$X+C \rightleftharpoons Y$ (fast)
$Y+B \rightleftharpoons Z$ (slow)
$Z+n C+n B \quad \rightarrow \quad$ products (fast)
the rate expression for the above reaction is,

1. $R=k[Y][B]$
2. $R=k[X][C]$
3. $R=k[Y][B][C]$
4. $R=k[A][B][C]$
5. $R=k[A][B][C]^{2}$
6. Which of the following statements is correct regarding the electrochemical cell prepared by using the half cells $A l^{3+}(1.0 \mathrm{M}) / A l(s),\left(E^{\theta}=-1.66 \mathrm{~V}\right)$ and $C u^{2+}(1.0 \mathrm{M}) / C u(s),\left(E^{\theta}=0.34 \mathrm{~V}\right)$ with a salt bridge.
7. When the concentration of $A l^{3+}(a q)$ is increasing the electro motive force is increasing.
8. Here the cell reaction is $A l(s)+C u^{2+}(a q) \rightarrow A l^{3+}(a q)+C u(s)$
9. To increase the electromotive force of this cell, the temperature should be reduced.
10. The ions of a half cell move to the other half cell through the salt bridge.
11. The electromotive force of this cell is 2.1 V .
12. The density of a gas sample containing CO_{2} is $2.2 \times 10^{-2} \mathrm{~g} \mathrm{~cm}^{-3}$ When $4 \mathrm{dm}^{3}$ of this gas sample is passed through a $\mathrm{Ba}(\mathrm{OH})_{2}$ solution, CO_{2} reacts completely with $\mathrm{Ba}(\mathrm{OH})_{2}$ and yields $1.97 \times 10^{-6} \mathrm{~g}$ of BaCO_{3}. The Concentration of CO_{2} in the gas sample in ppm is,
13. 100
14. 200
15. 300
16. 400
17. 500
18. In which of the following compounds does not change the existing colour upon the addition of $\mathrm{HBr}(\mathrm{aq})$?
19. $\mathrm{K}_{2} \mathrm{CrO}_{4}$
20. BaSO_{4}
21. AgNO_{3}
22. con $\mathrm{H}_{2} \mathrm{SO}_{4}$
23. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
24. At 298 K for the reaction $\mathrm{H}_{2}(g)+\mathrm{C}(g)+\mathrm{O}_{2}(g) \rightarrow \mathrm{HCOOH}(g)$
$\Delta H^{\theta}=-411 \mathrm{~kJ} \mathrm{~mol}^{-1}$ The bond dissociation enthalpies of $H-H, O=O, C=O, C-O$ and $O-H$ bonds are $436 \mathrm{~kJ} \mathrm{~mol}^{-1}, 496 \mathrm{~kJ} \mathrm{~mol}^{-1}, 743 \mathrm{~kJ} \mathrm{~mol}^{-1}, 360 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $436 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. The bond dissociation enthalpy of $\mathrm{H}-\mathrm{C}$ bond is,
25. $-555 \mathrm{Kj} \mathrm{mol}^{-1}$
26. $-223 \mathrm{Kj} \mathrm{mol}^{-1}$
27. $+223 \mathrm{Kj} \mathrm{mol}^{-1}$
28. $-446 \mathrm{Kj} \mathrm{mol}^{-1}$
29. $+446 \mathrm{Kj} \mathrm{mol}^{-1}$
30. Which of the following statements is true regarding the 3d elements.
31. Only non transition elements of 3d elements form white colour oxides.
32. All the complex ions formed by aqueous cupper ions with conc. HCl is yellow in coclour.
33. The amphoteric oxides of MO_{2} type are formed by Mn and Cr
34. CuCl is a white colour compound which is used as catalyst.
35. All the complex formed by 3 d elements with NH_{3} are colourful,
36. $A B(s) \leftrightharpoons C(s)+D(g)$
$\Delta H_{f}^{\theta} A B(s)=-1208 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta H_{f}^{\theta} C(s)=-600 \mathrm{~kJ} \mathrm{~mol}^{-1}$,
$\Delta H_{f}^{\theta} D(g)=-500 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Which of the following statements is true for the above reaction.
37. $\Delta H^{\theta}=-108 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and when the pressure is increasing products are formed more.
38. $\Delta H^{\theta}=108 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and the value of $K p$ is increasing with increasing temperature.
39. $\Delta H^{\theta}=108 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and value of K_{C} is decreasing with increasing temperature.
40. $\Delta H^{\theta}=108 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and the value of $K p$ does not change although the pressure is reduced.
41. $\Delta H^{\theta}=216 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and here $K_{P}=K_{C} R T$
42.

What is the product obtained when this compound is reacted with $\mathrm{NaOH}(\mathrm{aq})$?
(1).

(2).

(3)

(4)

, $\mathrm{CH}_{3} \mathrm{COO} \mathrm{Na}^{+}$
(5).

25. The compound "A" reacts with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to form B and a gas with a pungent smell. B reacts with $\mathrm{NaNO}_{2} / \mathrm{HCl}$ liberating N_{2} gas, and C. That C reacts with $2,4-D N P$. The compound "A" should be,
(1).

(2).

(3)

(4)

(5)

26. Which of the following statements is false regarding the photochemical smog.

1. $\mathrm{NO}_{2_{(g)}}, \mathrm{CO}_{(g)}$ and $\mathrm{CO}_{2_{(g)}}$ which contain in the automobile exhausts are convert to ozone aldehydes, peroxiacytyl nitrates at the presence of sunlight and temperatures above $15^{\circ} \mathrm{C}$
2. The decomposition of NO_{2} gas in to NO and O is the initial reaction of the formation of photochemical smog.
3. $\mathrm{NO}_{2_{(g)}}$ undergoes photolysis by absorbing the sunlight.
4. Photo chemical smog is a yellow colour hazy fumes that reduces the visibility.
5. O_{3} of photochemical smog reduces the quality of rubber and fabric materials.
6. Which of the following statements is false regarding the electrolysis of an aqueous solution of CuSO_{4} using inert electrode.
7. The blue colour of the solution is changed. 2. The mass of the cathode is increasing.
8. It is impossible to form Cu^{+}however.
9. It is possible to evolve H_{2} gas at the cathode.
10. It can be evolved O_{2} gas at the anode.
11.

 Consider the polymer can be formed using this compound as the repeating unit. Which of the following statements is true regarding that polymer.

1. $\quad H$ is a thermosetting polymer.
2. The repeating unit of that polymer is

3. This polymer becomes hard and rigid, once it is moulded and can not be soft by heating.
4. It is a condensation polymer.
5. The polymer is cross linked in order to from a 3D structure.
6. Select the unexpectable compound to form when dil NaOH is added to a mixture of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$ and $\mathrm{CH}_{3} \mathrm{CHO}$.
(1).

(2.)

(3.)

(4).

(5.)

- For each of the questions 31 to 40 , one or more responses out of the four responses (a), (b), (c) and (d) given is /are correct. Select the correct response/responses in accordance with the instructions given on your answer sheet, mark
(1) If only (a) and (b) are correct.
(2) If only (b) and (c) are correct.
(3) If only (c) and (d) are correct.
(4) If only (d) and (a) are correct.
(5) If any other number or combination of responses is correct.

Summary of above Instructions,

1	2	3	4	5
Only (a) and (b) are correct	Only (b) and (c) are correct	Only (c) and (d) are correct	Only (a) and (d) are correct	Any other number or combination of responses is correct

30. When the liquids P and Q are mixed to from a solution, the temperature decreased slightly. which is / are true regarding this ?
a) The resultant solution shows a negative deviation to Roults law.
b) When $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ and CHCl_{3} are mixed the above observation can be occurred.
c) Here the Phenomenon of inter molecular forces is are $f_{P-P}>f_{P-Q}, f_{Q-Q}>f_{P-Q}$
d) When P and Q are mixed volume expansion can be occurred than the total of the initial volumes.
31. Which of the following statement/s is / are true?
a) The exothermic reactions with a negative entropy is spontaneous in law - temperatures.
b) The endothermic reactions with a negative entropy is spontaneous in high temperatures.
c) The exothermic reactions with a positive entropy is non-spontaneous in law temperatures.
d) The endothermic reactions with a positive entropy is spontaneous in high temperatures.
32.

(A)
(B)

Which of the following statement/s is / are true regarding the above reaction.
a) The products of the above reaction is A and B only.
b) The main product of the reaction is A .
c) If the medium is aqueous instead of been alcoholic, the above reaction yields pentane $-2,3-$ diol
d) SP hybridized carbon atoms can be seen only in one compound of the products formed here.
33. Which is / are true regarding the manufacture of soap?
(a) In manufacture of soap esters undergo basic hydrolysis.
(b) Glycerol is obtained as a sub product of soap.
(c) The base which is used in manufacture of baby soap is KOH .
(d) In manufacture of soap acetic acid is used to neutralize the unreacted excess base.
34. Which of the following statement / s is / are incorrect regarding the rate of a reaction?
(a) When the size of the particles of the solid reactants is decreasing the rate of the reaction is decreasing
(b) When the pressure is increasing in gaseous reactions the rate of the reaction is increasing.
(c) When a catalysts is used the reaction changes its path which is having a low activation energy and increases the rate of the reaction.
(d) When the temperature of an exothermic reaction is increasing then the rate of the reaction is decreasing.
35. In the reaction between $\mathrm{CH}_{2}=\mathrm{CH}_{2}$ and $\mathrm{Br}_{2} / \mathrm{CCl}_{4}$ What is / are the possible step / s can be occurred.
(a).

(b). ${ }^{+} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
(c). $\mathrm{CH}_{3}-\underset{\substack{1 \\ \mathrm{Br}}}{\mathrm{CH}_{2}}$
(d).

36. Which is / are true regarding the compounds with lattice structures,
(a) Chemical properties depend on the bonding nature arouse in the formation of a lattice.
(b) Homogeneous and heterogeneous lattice structures are created by the covalent bonding among the atoms.
(c) Ionic lattices are formed by the strong static electric attractions arouse between negative and positive ions.
(d) When the materials with ionic lattices are fused it conducts electricity due to the existence of mobile electrons.
37. The equilibrium constant of the following reaction at 298 K is 9 .

At $298 K A(g)+B(g) \rightleftharpoons C(g)+D(g)$
At 298 K one mole each of the gases A and B are mixed in a closed rigid vessel. After a certain period of time 0.6 mol of $C(\mathrm{~g})$ has formed. Which of the following statements is/ are true regarding this system.
(a) This system is in the equilibrium.
(b) In this system there is 0.4 moles of $\mathrm{A}(\mathrm{g})$ in the equilibrium.
(c) This system has not reached the equilibrium.
(d) The forward reaction occurs more to reach the equilibrium.
38. The phase diagram of $\mathrm{H}_{2} \mathrm{O}$ is given below.

Which of the following statements is / are true regarding the ábôve phase diagram?
(a) When the pressure of a water sample which exists under 347.15 K and 2 atm pressure reduces to 0.001 atm liquid water converts to water vapours.
(b) At the point T , the three species of $\mathrm{H}_{2} \mathrm{O}$, ice liquid $\mathrm{H}_{2} \mathrm{O}$ and water vapour are in equilibrium.
(c) At higher temperatures than 647.4 K , It is impossible to convert water vapours to liquid water by applying a high pressure.
(d) AT curve shows the relevant temperature and pressure to exist liquid water and water vapour in equilibrium.
39. Select the compound / s which is / are showing the stereoisomerism.
(a).

(b).

(c).

(d).

40. Which of the following statement $/ \mathrm{s}$ is / are true regarding the main cycles ?
(a) The photosynthesis is the only way of fixation of carbon in an eco-system.
(b) In the absence of decomposition bacteria, carbon in dead plants and animals can accumulate as fossil fuels.
(c) Water molecule are breaking by photolysis and give usable oxygen.
(d) Denitrifying bacteria converts nitrates to atmospheric nitrogen again.

- In question numbers 41 to 50, two statements are given in respect of each question. From the table given below, select the response out of the responses (1), (2), (3), (4) and (5) that best fits the two statements and mark appropriately on your answer sheet.

$\mathbf{1}^{\text {st }}$ Statement	$\mathbf{2}^{\text {nd }}$ Statement	Response
True	True and $1^{\text {st }}$ tatement is explained correctly	1
True	True and $1^{\text {st }}$ statement is not explained correctly	2
True	False	3
False	True	4
False	False	5

	$1^{\text {st }}$ Statement	$\mathbf{2}^{\text {nd }}$ Statement
41.	In XeOF_{2} the elecron geometry around the central atom $X e$, is Octahedral.	In XeOF_{2} there are 6 VESPR pairs around the central atom $X e$.
42.	 oxides with $\mathrm{H}^{+} / \mathrm{KMnO}_{4}$ and forms	Under the conditions of which primary and secondary alkyl groups oxidise, tertiary alkyl groups do not oxidise.
43.	$\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons \quad 2 \mathrm{NH}_{3}(g), \Delta H<0$ By increasing the temperature and the pressure, of this reaction NH_{3} Production can be increased.	When the temperature is increasing the rates of the forward and the reverse reactions are increasing.
44.	Zn^{2+} does not form any complex with ammonia.	$Z n$ is not a transition element.
45.	Amines are more basic than alcohols.	The stability of an alkyl oxonium ion relative to to an alcohol is higher than the stability of an alkyl ammonium ion relative to an amine.
46.	CO_{2} dissolves more in warm water than the cold water.	Water solubility of a gas is an exothermic reaction.
47.	To show the bleaching action of $\mathrm{Ca}(\mathrm{OCl})_{2}$ the moisture should be present.	When moisture is present then $C l_{2}(g)$ is liberated by $\mathrm{Ca}(\mathrm{OCl})_{2}$
48.	Propanoic acid and Methyl ethanoate are two functional group isomers.	Both propanoic acid and Methyl enthanoate have the same molecular formula.
49.	In acid medium it is impossible to distinguish between SO_{2} and $\mathrm{H}_{2} \mathrm{~S}$ gases by $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	In acidic medium orange colour $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ reduces to yellow colour $\mathrm{K}_{2} \mathrm{CrO}_{4}$
50.	CO_{2} gas consists of non-polar molecules.	There are dispersion forces in solid CO_{2} (dry ice)

- Periodic Table is provided.
- Use of calculations is not allowed.
* Part A - Structures Essay
- Answer all the questions on the question paper itself'
- Write your answer in the space provided for each question. Please note that the space provided is
- sufficient for the answer and that extensive are not expected.
* Part B and Part C - Essay
- Answer four questions selecting two questions from each part. Use the paper supplied for this purpose.

Part A - Structured Essay

Answer all four questions on this paper itself. (Each question carries 10 marks)
(01) (a) The Skeletal structure of the anion $\mathrm{H}_{2} \mathrm{X}_{2} \mathrm{O}_{4}{ }^{2-}$ is given below. The element X belongs to P black.

(i) If the charges are there for the atoms, mention those charges on the atoms of the above structure.
(ii) By considering the structure with minimum charges as the most stable one, draw the most acceptable Lewis structure for the above ion.
(iii) Identify the element X , if the atomic number of X is smaller than 18
(iv) Considering the structure drawn in above (ii) Fill in the table

Property	X atom bonded to both H atoms	Central O atom	X atom bonded to four O atoms.
(a) Number of VSEPR pairs			
(b) Electron pair geometry			
(c) Hybridization			
(d) Basic shape			

(v) For the above anion draw the other possible structures except the drawn Structure in part (ii) Mention the stability of them.
(b) Arrange the followings according to the ascending order of the given property inside the brackets.
i. $\mathrm{H}_{2} \mathrm{O}_{(S)}, \mathrm{CO}_{2_{(S)}}$ and $\mathrm{SiO}_{2_{(S)}}$ (melting point)
\qquad $<$ \qquad
ii. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$ (boiling point)
\qquad < \qquad < \qquad
iii. $\mathrm{H}_{2} \mathrm{O}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{NH}_{3}$ and $\mathrm{C}_{2} \mathrm{H}_{2}$ (acidity)
\qquad .. $<$ \qquad $<$ \qquad
iv. $\mathrm{F}^{-}, \mathrm{OH}^{-}, \mathrm{NH}_{2}^{-}$and CH_{3}^{-}(basicity)
\qquad .< \qquad $<$ \qquad
\qquad
v. $\mathrm{Mg}^{2+}, \mathrm{N}^{3-}, \mathrm{Na}^{+}, \mathrm{F}^{-}$and O^{2-} (ionic radius)
\qquad $<$ \qquad $<$. \qquad $<$ \qquad $<$. \qquad

vi. $\mathrm{AlCl}_{3}, \mathrm{NaCl}$ and MgCl_{2} (ability of hydrolysis)

\qquad . $<$ \qquad . \qquad
(02) (a) The element M belongs to the third period. It gives H_{2} by reacting with dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$. When M reacts with con. $\mathrm{H}_{2} \mathrm{SO}_{4}$ it gives a gas which shows bleaching properties. The sulphate of M is used in purification of drinking water. When M is combusted in air, both oxide and the nitride are formed.
(i) Identify the metal M \qquad
(ii) Write the balance equation for the reaction of M and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
\qquad
(iii) What is the oxidation state of M shown in the compounds?
(iv) Although N_{2} is inert when M is combusted in air, N_{2} reacts with it. Explain the reasons.
\qquad
\qquad
(v) Write a use of the chloride of M.
(b) The aqueous solution of the following compounds are provided in the vessels labelled from A to E . $\mathrm{BaCl}_{2}(\mathrm{aq}), \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq}), \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}), \mathrm{Mn} \mathrm{Cl}_{2}(\mathrm{aq}), \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$
To distinguish the above compounds, carried out tests and their observations are given in the following table.

Solution	Addition of aqueous NaOH	Addition of aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$
A	A clear solution	A gas is evolved and the solution is not clear.
B	A clear solution	A white precipitate is obtained
C	A white precipitate	A clear solution is obtained.
D	White precipitate is obtained and it turns to black within a short period of time.	A clear solution is obtained
E	A white precipitate is obtained.	A white precipitate is obtained

(i) Identify the solution A to E .
A
B
C
D
E \qquad
(ii) Write the balance equations for the reactions relevant to each of the above observations.
\qquad
(c) X and Y are two elements of the second period of the periodic table. The electron affinities of them are positive values. The first ionization energy of X is less than the first ionization energy of Y .
(i) Identify the elements.
$X=$
$Y=$
(ii) Write the electron configuration of an excited atom of X .
(iii) When X is combusted in air it reacts with Y . Write the chemical equation for the reaction using the chemical symbols.
(iv) Write the balanced chemical equations for the reactions taken place when the followings react with the oxide of X .

1. dil. HCl
2. aqueous NaOH
(v) Write the balance equation for a suitable reaction to prepare a sample of the element Y in the laboratory.
(vi) Write two uses of the element Y.
\qquad
\qquad
(03) (a) Consider the following data at 298 K

Standard lattice enthalpy of $\mathrm{LiCl}(s)$	$=-848 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Standard lattice enthalpy of $\mathrm{NaCl}(\mathrm{s})$	$=-776 \mathrm{~kJ} \mathrm{~mol}$
Standard enthalpy of hydration of $\mathrm{Li}^{+}(\mathrm{g})$	$=-499 \mathrm{~kJ} \mathrm{~mol}$
Standard enthalpy of hydration $\mathrm{Na}^{+}(\mathrm{g})$	$=-390 \mathrm{~kJ} \mathrm{~mol}$
Standard enthalpy of hydration $\mathrm{Cl}^{-}(\mathrm{g})$	$=-381 \mathrm{~kJ} \mathrm{~mol}$

(i) Define the standard lattice enthalpy.
(ii) Standard lattice enthalpy of LiCl is more exothermic than NaCl . What is the reason for that?
\qquad
\qquad
(iii) For an ionic compound what is the relationship among the lattice enthalpy $\left(\Delta H^{\theta}{ }_{L}\right)$ hydration enthalpies $\left(\Delta H^{\theta}{ }_{\text {hyd }}\right)$ of ions and enthalpy of dissolution $\left(\Delta H^{\theta}{ }_{\text {dissolution }}\right)$
(iv) The enthalpy diagrams, relevant to the above two ionic compounds are given below.

Mention the relevant values for A, B, P and Q given in the above enthalpy diagrams.
A \qquad B \qquad P \qquad Q \qquad
(v) Calculate the standard enthalpy of dissolution $\left(\Delta H^{\theta}{ }_{\text {dissolution }}\right)$ of $\mathrm{LiCl}(s)$
\qquad
\qquad
\qquad
(vi) Calculate the standard enthalpy of dissolution $\left(\Delta H^{\theta}{ }_{\text {dissolution }}\right)$ of $\mathrm{NaCl}(c s)$
(b) At $400^{\circ} \mathrm{CHI}(\mathrm{g})$ partially decomposes as follows.

$$
2 H I(g) \rightleftharpoons H_{2}(g)+I_{2}(g)
$$

At $400^{\circ} \mathrm{C}$ for the decompose reaction of HI the initial rates are measured relevant to the initial concentration of $\mathrm{HI}(\mathrm{g})$ as follows.

Initial $[\mathrm{HI}]\left(\mathrm{moldm}^{-3}\right)$	1.67	3.34	5.01	6.68
Initial rate $\left(\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~S}^{-1}\right)$	0.41	1.64	3.69	6.56

[^0](ii) At $400{ }^{0} \mathrm{C}$ the activation energy of the forward reaction is $184 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and the activation energy for the backward reaction is $163 \mathrm{~kJ} \mathrm{~mol}^{-1}$ Draw the diagram for the variation of energy versus the reaction co ordinate for the above reaction. Mark the activation energy of it.
(iii) Calculate the enthalpy change of the decompose reaction of $\mathrm{HI}(g)$.
\qquad
\qquad
\qquad
(iv) How does the increasing of temperature affect for the decomposition of $\mathrm{HI}(\mathrm{g})$? Explain by giving reasons.
(v) At that temperature when the reaction is allowed to take place in the presence of the catalyst the activation energy of the reverse reaction is $85 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Calculate the value of the activation energy of the forward reaction.
\qquad
\qquad
\qquad
(C) Conc. HNO_{3} reacts with iodine (I_{2}) to yield $\mathrm{HIO}_{3}, \mathrm{NO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ Derive the balanced chemical equation for the reaction.
\qquad
\qquad
\qquad
\qquad
\qquad
(04) (a) The empirical formula of the organic compound B is $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ and it is an ester. The r.m.m. of it is about 87.5.
(i) What is the molecular formula of B?
(ii) The esters $\mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z are structural isomers of B . Draw the structures of them.

(iii) Starting with $\mathrm{CH}_{3} \mathrm{Br}$, Show how you would synthesize a sample of the above compound "A". The number of steps should not exceed six.
(iv) When the above B undergoes acidic hydrolysis, the resultant alcohol is $\mathrm{C} . \mathrm{C}$ reacts with acidified $K_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ to give the product D. D forms a yellowish orange precipitate with $2,4-$ DNP. But D does not react with $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{AgNO}_{3}$.

1. What is the functional group should exist in D , to react with $2,4-D N P$
2. Why does not D react with $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{AgNO}_{3}$
3. Write the structural formula of C and its IUPAC name.
\qquad
4. What is the structure of B , among W, X, Y and Z.
(b) (i) Draw the structure of the main products obtained when the following reactions are taken place Mention the reaction type as,
Nucleophilic Addition $\left(A_{N}\right) \quad$ Electrophilic Addition $\left(A_{E}\right)$

Nucleophilic Substitution $\left(S_{N}\right) \quad$ Electrophilic Substitution $\left(S_{E}\right)$ Elimination (E)

Number	Reactant	Reagent	Main Product	
1	$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{OH}$	$\mathrm{Br}_{2}(\mathrm{l})$		
2	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}$	$\mathrm{CH}_{3} \mathrm{NH}_{2}$		
3	$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{Cl}$	aqueous NaOH		
4	O- $^{-} \mathrm{COCH}_{3}$	RMgX		
5	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	PCl_{5}		
6	$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$	HBr		

(ii) Write the mechanism of the reaction relevant to the (3) above.
(C) (i) Starting with methanol, show how you would synthesize a sample of Ethane-1,2diol (ethylene glycol) The number of steps should not exceed five.
(iv) Write a use of Ethane - 1, 2 - diol

Third Term Test - 2018 Chemisty 2018-PART B - Grade 13
 - Answer two question only (Each question carries 15 mark)

(05) (a) One mole of $\mathrm{N}_{2}(g)$ and three moles of $\mathrm{PCl}_{3}(g)$ were placed in a closed vessel and the temperature was increased up to 500 K . The system was allowed to reach the following equilibrium.
$\mathrm{PCl}_{5}(g) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
The total pressure of the equilibrium system was $2.08 \times 10^{5} \mathrm{~Pa}$. By assuming the ideal behaviour of the relevant gases under the given conditions, answer the following questions.
(i) Calculate the total number of moles in the equilibrium system.
(ii) Calculate the number of moles of $P C l_{5}(g), P C l_{3}(g), C l_{2}(g)$ and $N_{2}(g)$ in the equilibrium system.
(iii) Calculate the partial pressures of the above four gases in the equilibrium system.
(iv) Hence calculate K_{p} for the system.
(v) Using the calculated value of K_{p} in part (iv) above. Calculate the value of K_{c}
(vi) Under the same conditions, if the above equilibrium system is formed, without adding N_{2} gas at the beginning, calculate the partial pressures of $P C l_{5}(g)$, and $P C l_{3}(g), C l_{2}(g)$ the total pressure.
(vii) When the system is reached the equilibrium without N_{2} does the value of K_{p} change or not ? Explain your answer.
(b) Standard hydrogen electrode is the recommended reference electrode to measure the potential of a simple electrode. But it is inconvenient to use the standard hydrogen electrode practically. So silver - silver chloride electrode is the commonly used practical reference electrode.
(i) When Zn metal is dipped in an aqueous solution of Zn^{2+}, how does the electric potential create?
(ii) Why is it impossible to measure the absolute electrode potential, shown in part (i) above ?
(iii) What are the standard conditions should be used in the formation of the standard hydrogen electrode?
(iv) Silver - silver chloride electrode can be used to measure the potential of a simple electrode. Draw a labelled diagram of the silver - silver chloride electrode.
(v) What are the advantages of using silver - sliver chloride electrode as a reference electrode?
(vi) Silver - silver chloride electrode is used to measure the electrode potential of a Zn electrode prepared by a student in the laboratory. The value obtained is -0.91 V
$E^{e} \quad \mathrm{Zn}^{2+}{ }_{a q} / \mathrm{Zn}(\mathrm{s})=-0.76 \mathrm{~V}$
$E^{e} \mathrm{Ag} / \mathrm{AgCl} \quad=+0.23 \mathrm{~V}$
(A) Write the cell notation for the cell when silver - solver chloride electrode is connected with Zn electrode.
(B) How do you explain the obtaining -0.91 V for the electrode potential.
(06) (a) (i) The ionic solid $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}(S)$ is sparingly soluble in water. Derive an expression for the solubility product of $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}$
(ii) Calculate the maximum mass of $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}$ can be dissolved in $50 \mathrm{~cm}^{3}$ of pure water. The molar mass of $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}=487 \mathrm{gmol}^{-1}$ $K_{S P} \quad=1.08 \times 10^{-7} \mathrm{~mol}^{3} \mathrm{dm}^{-9}$
(iii) Calculate the molar solubility of $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}{ }_{(s)}$ in the aqueous solution of $0.02 \mathrm{~mol} \mathrm{dm}{ }^{-3} \quad \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$.
(iv) A solution mixture is prepared by adding $200 \mathrm{~cm}^{3}$ of $0.01 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s})$ and $100 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{Na}\left(\mathrm{IO}_{3}\right)_{(S)} \quad$ solutions together. Calculate the molar solubility of $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2_{(S)}}$ in the above solution mixture.
(b) (i) $B O H$ is a weak base. By considering the initial concetration of $B O H(a q)$ as C and the degree of dissociation of the weak base as α, derive an expression for the dissociation constant of the base K_{b}
(ii) Calculate the $p H$ value of $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{BOH}(a q)$ solution $K_{b}=1.0 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$
(iii) Calculate the $p H$ value of the solution mixture prepared by mixing $100 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~mol} \mathrm{dm} \mathrm{m}^{-3} \quad \mathrm{BOH}$ and $100 \mathrm{~cm}^{3}$ of $0.01 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ Solutions.

$$
k w=1.0 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}
$$

(c) The mixture of A and B shows ideal behaviour. At 400 K equi-molar mixture of A and B undergoes fractional distillation. The resultant solution also undergoes the fractional distillation. Calculate the mole fraction of A in the final distillate.
At $400 \mathrm{~K} \quad P^{0} A=40 \mathrm{KPa}$ $P^{0} B=50 \mathrm{KPa}$
(07) (a) (i) Show how you would synthesize as the only organic starting compound.

(ii) Identify X_{1} to X_{6} and R_{1} to R_{6} in order to complete the following reaction scheme.

(b) Explain the reasons for the followings.
(i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$ is more basic than $\mathrm{CH}_{3} \mathrm{CONH}_{2}$
(ii) The boiling point of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ is greater than that of $\mathrm{CH}_{3} \mathrm{OCH}_{3}$
(c) (i.) A mixture is prepared by dissolving aniline and phenol in ether. How to distinguish between aniline and phenol.
(i) Complete the following conversion.

Part - C ESSAY

- Answer two question only (Each question carries 15 marks)

(08) (a) The compound A contains two salts which are formed by combining an anion with two different cations. The aqueous solution of A light green in colour. The tests carried out for the aqueous solution of A and their observations are given below.

(i) Write the chemical formula of the species caused to the colour of the aqueous solution of A. Write the IUPAC name of it.
(ii) Write the chemical formula of the precipitates D, G and F
(iii) What is the gas C .
(iv) Write the balanced equation for the reaction occured when $Z n$ dust is added to the solution H.
(v) Write the chemical formulae of the two salts contain in A .
(b) An aqueous solution consists of $\mathrm{Cu}^{2+}(a q)$ and $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}(\mathrm{aq})$. The following experiment is carried out to determine the molar ratio of $\mathrm{Cu}^{2+}(a q)$ and $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}(a q)$ in the given solution.
First the aqueous solution is acidified by dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$. The volume of $22.6 \mathrm{~cm}^{3}$ of $0.02 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{KMnO}_{4}$ is required for complete oxidation of the $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}(\mathrm{aq})$ ions of the above solution. The resultant solution is neutralized by adding $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$ solution.
Then the solution is acidified by the acetic acid and excess $K I$ is added. To reduce the liberated I_{2} from it, $11.3 \mathrm{~cm}^{3}$ of $0.05 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})$ is required.
(i) Write balanced equations for all reactions could be taken place here.
(ii) Calculate the molar ratio of the ions $\mathrm{Cu}^{2+}: \mathrm{C}_{2} \mathrm{O}_{4}^{2-}(\mathrm{aq})$ consisting in the solution.
(c) Write the balanced equations for the reactions taking place with the followings.
i. $\mathrm{Cl}_{2}{ }_{(\mathrm{g})}$ with excess $\mathrm{NH}_{3}(\mathrm{~g})$
ii. $S_{(S)}$ with aqueous NaOH
iii. Excess $\mathrm{H}_{2} \mathrm{~S}_{(g)}$ with aqueous NaOH
iv. $\mathrm{H}_{2} \mathrm{O}_{2}$ and PbS
(09) (a) The following questions are based on the extraction of iron by blast furnace method.
(i) Name two iron ore used as raw materials.
(ii) Limestone and coke are also used as raw materials. Mention the purpose of using them in the process.
(iii) Write the balanced equation for the reactions takenplace at the higher temperatures than $1000^{\circ} \mathrm{C}$ in the blast furnance.
(iv) At the higher temperatures the reaction $2 \mathrm{CO}(g)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$ is not taking place. Explain the reasons for the above fact.
(v) Write the balanced equations for the reactions taken place inside the blast furnance at the temperatures lower than $1000^{\circ} \mathrm{C}$
(vi) What is the function of slag in the iron extraction?
(vii) 'Iron corrosion' taken place in the neutral medium is an electrochemical process,

1. Write the balanced equation for the reaction at the anode.
2. Write the balanced equation for the reaction at the cathode,
3. Write the balanced equation for the cell reaction occurred in the corrosion.
(b)

Here, R_{1}, R_{2}, R_{3} are natural raw materials Q_{1} and Q_{2} are the raw materials required in the production of M_{5}
$M_{1}, M_{2}, M_{3}, M_{4}, M_{5}, M_{6}, M_{7}$, and M_{8} are the manufacturing processes.
$P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}, P_{7}, P_{8}, P_{9}, P_{10}$ are the products obtained.
(i) Name the R_{1}, R_{2}, R_{3} natural raw materials.
(ii) Identify the raw materials given as Q_{1} and Q_{2}
(iii) Identify the process I and process II.
(iv) Identify the processes M_{1} to $\quad M_{8}$
(v) What are the products obtained as P_{1} to P_{10}
(vi) Write the balanced equations for the reactions taken place in each of $M_{1}, M_{2}, M_{3}, M_{4}, M_{5}, M_{6}, M_{7}, M_{8}$ manufacturing processes.
(vii) Write one use each of P_{1} and P_{10} products.
(10) (a) A few compounds which can be used as repeating units in polymer industry is given below.

$$
\begin{gathered}
\mathrm{CH}_{3} \\
\mathrm{HCHO}, \mathrm{CH}_{2}=\mathrm{CHCl}, \mathrm{CH}_{2}=\mathrm{C}-\mathrm{CH}=\mathrm{CH}_{2}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH} \\
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CH}_{2}, \quad \mathrm{H}_{2} \mathrm{~N}-\left(\mathrm{CH}_{2}\right)_{5}-\mathrm{COCl}, \mathrm{CF}_{2}=\mathrm{CF}_{2}
\end{gathered}
$$

Considering only the naturally synthesized polymers and the polymers can be formed by using the above Compounds as the repeating units, answer the following questions.
(i) What is the thermoplastic polymer which can withstand high temperatures?
(ii) What is the additional polymer which is having a weak elasticity.
(iii) What is the linear polymer of the condensation type ?
(iv) What is the thermosetting polymer ?
(v) What is the condensation polymer which is having a three dimensional structure.?
(vi) What is the addition polymer which does not catch fire easily?
(vii) Draw the structures of the polymers those you have mentioned in (i), (ii) and (iii) above.
(b) The various types of plastics which are using in our day to day life, are made up of polymers.
(i) Mention three environmental problems of using plastics.
(ii) Suggest three methods to reduce the environmental pollution occurred due to the plastic usage.
(iii) What are the substances which involve in the formation of photo chemical smog. What are the favourable conditions for the formation of photo chemical smog?
(iv) Explain the adverse effects of photochemical smog towards the man and plants.
(v) The substances which affect for the depletion of ozone layer known as the depleting agent. What is the major depleting agent in ozone layer depletion? How does it form?
(vi) Write the equations for the reaction of ozone dissociation by the major contributor, mentioned in part (v) above.
(viii) Write two environmental problems can arise due to ozone layer depletion.
(c) The following data were obtained, in an experiment carried out to determine the distribution coefficient of ethanoic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ among butanol and water at 298 K .

- The volume of NaOH required to react completely with $25 \mathrm{~cm}^{3}$ of the water layer was $5.0 \mathrm{~cm}^{3}$
- To react completely with $10 \mathrm{~cm}^{3}$ of the butanol layer $40 \mathrm{~cm}^{3}$ of the same NaOH solution was required
i. Calculate the distribution coefficient of $\mathrm{CH}_{3} \mathrm{COOH}$ among $\mathrm{H}_{2} \mathrm{O}$ and butanol at 298 K .
ii. At $298 \mathrm{~K}, 50 \mathrm{~cm}^{3}$ of $0.05 \mathrm{moldm}{ }^{-3} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$ acid solution was mixed with $25 \mathrm{~cm}^{3}$ of butanol and shaken vigorously. Then the mixture was kept to reach the equilibrium. $20 \mathrm{~cm}^{3}$ of a aqueous layer the equilibrium mixture was separated and titrated with $0.20 \mathrm{moldm}^{-3} \mathrm{NaOH}$ solution. Calculate the reacted volume of NaOH , at the end point.

$\begin{aligned} & 57 \\ & \text { La } \end{aligned}$	$\begin{aligned} & 58 \\ & \mathrm{Ce} \end{aligned}$	$\begin{aligned} & 59 \\ & \mathrm{Pr} \end{aligned}$	$\begin{gathered} \hline 60 \\ \mathrm{Nd} \end{gathered}$	$\begin{array}{\|c\|} \hline 61 \\ \mathrm{P}_{\mathrm{m}} \end{array}$	$\begin{gathered} 62 \\ \mathrm{Sm} \end{gathered}$	$\begin{aligned} & 63 \\ & \mathrm{Eu} \end{aligned}$	$\begin{aligned} & 64 \\ & G d \end{aligned}$	$\begin{aligned} & 65 \\ & 75 \end{aligned}$	$\begin{aligned} & 66 \\ & \text { Dy } \end{aligned}$	$\begin{aligned} & 67 \\ & \mathrm{He} \end{aligned}$	$\begin{aligned} & 68 \\ & \mathrm{Er} \end{aligned}$	$\begin{gathered} 69 \\ \mathrm{~T}=\mathrm{m} \end{gathered}$	$\begin{aligned} & 70 \\ & \mathrm{Yb} \end{aligned}$	$\begin{aligned} & 71 \\ & \mathrm{La} \end{aligned}$
89	90	91	92	93	94	95	96.	97	98	99	100	101	102	103
Ae	Th	Pa	U	Ny	Pu	Am	Ca	13k	Cr	Es	Fri	Md	No	Lr

Part I

$(1) 2$	$(11) 4$	$(21) 5$	$(31) 4$	$(41) 5$
$(2) 4$	$(12) 3$	$(22) 4$	$(32) 5$	$(42) 1$
$(3) 2$	$(13) 3$	$(23) 2$	$(33) 5$	$(43) 4$
$(4) 4$	$(14) 3$	$(24) 3$	$(34) 4$	$(44) 4$
$(5) 1$	$(15) 3$	$(25) 5$	$(35) 4$	$(45) 4$
$(6) 5$	$(16) 2$	$(26) 1$	$(36) 2$	$(46) 3$
$(7) 2$	$(17) 5$	$(27) 3$	$(37) 3$	$(47) 4$
$(8) 3$	$(18) 3$	$(28) 2$	$(38) 5$	$(48) 1$
$(9) 2$	$(19) 5$	$(29) 3$	$(39) 5$	$(49) 1$
$(10) 5$	$(20) 2$	$(30) 3$	$(40) 5$	$(50) 1$

Part II

$$
\begin{aligned}
& \text { is Ammonium carbonate: } \\
& \text { iv. } \mathrm{CO}_{2} \text { and } \mathrm{NH}_{3} \\
& \text { b) i. } \mathrm{CO}_{2}<\mathrm{H}_{2} \mathrm{O}<\mathrm{SiO}_{2} \text {. } \\
& \text { ii. } \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}<\mathrm{CH}_{2} \mathrm{H}_{5} \mathrm{COOH} \\
& \text { iii. } \mathrm{NH}_{3}<\mathrm{C}_{2} \mathrm{H}_{2}<\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}<\mathrm{H}_{2} \mathrm{O} \\
& \text { iv. } \mathrm{F}^{-}<\mathrm{OH}^{-}<\mathrm{NH}_{2}{ }^{-}<\mathrm{CH}_{3}^{-} \\
& \text {v. } \mathrm{Mg}^{2+}<\mathrm{Na}^{-t}<\mathrm{F}^{-}<\mathrm{O}^{2-}<\mathrm{N}^{3-} \\
& \text { vi. } \mathrm{NaCl}<\mathrm{MgCl}_{2}<\mathrm{AlCl}_{3}
\end{aligned}
$$

(iv')

a	4	4	4
b	tetrahedral tetrahedral	tetrahedral	
c	$s p^{3}$	$s p^{3}$	$s p^{3}$
d	trigonal Pyramidal	angular	tetrahedral

(v)

(-) charge on
more electronegitive Oxygen.
($)$ charge on oxygen

* charge dotribution ishigh

For structures $05 \times 3=15$ monks.

* t charge on oxygen.

$$
\text { stability } \quad 03 \times 3=\frac{09}{24} \text { marks }
$$

(2) (a) $i . M=\dot{A l}$. (O7 merts)

$$
\text { ii. } 2 \mathrm{Al}+6 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Al}_{2} \mathrm{CSO}_{4} 2_{3}+3 \mathrm{SO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

iii. $\quad+3$
(03 marks) (ofsmarks)
iv. $\mathrm{Al}+\mathrm{O}_{2} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}$. this is (formation
of $A_{2} \mathrm{O}_{3}$) is highly exothermic.
Due to the released heat here, dissociatone of $N \equiv N$ is Rasy.
v. Use as a catalyst in organic chemistry.
(b)

$$
\text { i. } \begin{aligned}
A & =\mathrm{NaS}_{2} \mathrm{O}_{3} \\
B & =\mathrm{BaCl}_{2} \\
C & \left.=\mathrm{ZnCNO}_{3}\right)_{2} \\
D & =\mathrm{MnCI}_{2} \\
E & \left.=\mathrm{PbCNO}_{3}\right)_{2}
\end{aligned}
$$

(O2 morks)
ii. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{SO}_{2}+\mathrm{B}+\mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& \mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+2 \mathrm{HCl} \\
& \left.2 n\left(\mathrm{ZO}_{3}\right)_{2}+2 \mathrm{NaOH}_{2} \rightarrow 2 \mathrm{ZnCOH}\right)_{2}+2 \mathrm{NaNO}_{3} \\
& \mathrm{MnCl}_{2}+2 \mathrm{NaOH}_{2} \rightarrow \mathrm{MnCOH}_{2}+2 \mathrm{NaCl}_{2} \\
& \left.\mathrm{PbCNO}_{3}\right)_{2}+2 \mathrm{RaOH}_{2} \rightarrow \mathrm{PbCOH}_{2}+2 \mathrm{NaNO}_{3} \\
& \left.\mathrm{PbCNO}_{3}\right)_{2}+\mathrm{HSO}_{4} \rightarrow \mathrm{PbSO}_{4}+2 \mathrm{HNO}_{3} \\
& \left(\mathrm{O}_{4} \times 6\right.
\end{aligned}
$$

(C) i1. $\quad 1 s^{2} 2 s^{1} 2 P^{1}$

$$
\left(0_{4}\right. \text { morks) }
$$

$$
\begin{aligned}
& \text { iill } 3 \mathrm{Be}+\mathrm{N}_{2} \longrightarrow \mathrm{Be}_{3} \mathrm{~N}_{2} \text { - (O4mark) } \\
& 1 \mathrm{~V}-2 \mathrm{HCl}+\mathrm{BeO} \rightarrow \mathrm{BeCl}_{2}+\mathrm{H}_{2} \mathrm{O} \\
& 2 \mathrm{NaOH}+\mathrm{BeO} \rightarrow \mathrm{Na}_{2} \mathrm{BeO}_{2}+\mathrm{H}_{2} \mathrm{C}
\end{aligned}
$$

$$
\begin{array}{ll}
\mathrm{NH}_{4} \mathrm{NO}_{2} & \rightarrow \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
\left.\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} & , \mathrm{~N}_{2}+\mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{H}_{2} \mathrm{O}
\end{array}
$$

*. NH_{3} production..
*: Filling tyres

* liquid N_{2} as a rocket fuel $\quad 02 \times 2=04$ marks)
(03) (a) i. The change in enthalpy that takes place When one mole of an ionic compound in the Solid state is formed from gaseous positive ions and negative ions at the standard state. (0. 05 marks)
. II \& ionic radius of Li^{+}is smaller than that of Na^{+} * Aurous in bott are the same. Ceil?
*. inter -ionic distance in lick lattice is shore.
Therefore bond strength among the ions of Licl lattice

$$
\begin{aligned}
& \text { iii. } \Delta H^{\theta}=\Delta H^{\theta}=\text { yd }-\Delta H_{L}^{\theta} \\
& \text { iv. } A=-880 \text { Fjmot. } \\
& B=-848 \mathrm{kmol}^{-1} \\
& P=-771 \mathrm{kjmol} \\
& Q=-776 \mathrm{kjmol}^{-1} \quad(02 \times 4=08 \mathrm{monk}) \\
& V, \Delta H_{\text {sol }} \text { of } L_{i C l}(s)=-880-(-848) \mathrm{kjmol}^{-1} \\
& =-32 \mathrm{kjmoi} / / \mathrm{V} \text { (os } \times 2 \text { 210merks) } \\
& \Delta H \theta_{\text {sol }} \text { of } \mathrm{NaCl} \text { (s) }=-771-(-776) \mathrm{kjmot} \\
& =+5 \mathrm{kjmol}^{\prime} \\
& \text { (0204 08mank) } \\
& \text { (05 marks) } \\
& \text { Sol } \quad=-32 \mathrm{kjmol}^{-1}
\end{aligned}
$$

(b). When the concentration of HI is doubled © from 1.67 moldm 3 to $3.34 \mathrm{~mol}^{3}$. 3 . The initial rode 0.41 is increased uptas 1.64 , ie e increased by fosti fourtimes. Therefore the order w.rot HI is two.

$$
\therefore K=K H I]^{2}, ~(05 \times 2=10 \text { marks) }
$$

II

III.

$$
\text { III. } \begin{aligned}
& \Delta H=(184-163) \mathrm{kjmoi}^{\prime} \quad(02 \times 6212 \text { marks) } \\
&=+21 \mathrm{kjmoi}^{\prime} \\
& \text { IV. Decomposition of } \quad \text { * }
\end{aligned}
$$

* When temperature is increased, forward is reaction is fare favourable (shifts to right) according to the Le chatelliers priaiciple.
*. Therfore the decomposition is high?

$$
\left(03 \times 3=0 q_{\text {mako }}\right)
$$

v. $\Delta H=$ Activation Energy - Activation Energy of forward reaction of the backward reaction (reverse)
$\left.\begin{array}{l}\therefore \text { Activation energy } \\ \text { of the forward reaction }\end{array}\right\}=\Delta H+\begin{gathered}\text { ac. En. of } \\ \text { reverse react }\end{gathered}$ reverse reaction

$$
=21+85=106 \mathrm{kjmol}^{-1}
$$

(C)
0.4

$$
\begin{aligned}
& \left.10 \mathrm{HNO}_{3}+I \longrightarrow \text { (05 } \longrightarrow 2=10 \mathrm{maks}\right) \\
& \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2} \longrightarrow 2 \mathrm{IO}_{3}-12 \mathrm{H}^{+}+1 \mathrm{Pe} \text {. } \\
& \text { (works) } \\
& \text { (O2 make) } \\
& \text { (02 marks) } \\
& \text { i. } n=\frac{r . m \cdot m}{m a s s \text { of the empirical formula. }} \\
& =\frac{87.5}{44} \simeq 2 \\
& \text { III Molecular formula }=\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} \\
& \text { (06 maras) }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{H}-\mathrm{C}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \\
& \mathrm{CH}_{3}-\mathrm{C}_{2}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{3}
\end{aligned}
$$

III. 1. carbonyl group.

$$
\text { (03 } 04=12 \text { marks) }
$$

2. absence of -CHO
3.

(b)
1.

Reaction type.

$$
S_{E}
$$

2.

SN
3.

$$
\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{OH}
$$

$$
S_{N}^{\prime}
$$

4.

 A_{N}
5. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$
S_{N}
6. $\mathrm{CH}_{3}-\mathrm{CH}_{\mathrm{H}}-\mathrm{CH}_{3}$
(marks)
ii. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{Cl} \longrightarrow \mathrm{CH}_{2}=\mathrm{CH}^{+} \mathrm{CH}_{2}+\mathrm{Cl}^{-}$
$\mathrm{CH}_{2}=\mathrm{CH}-\stackrel{+}{\mathrm{C}} \mathrm{H}_{2} \mathrm{COH}^{-} \rightarrow \mathrm{CH}_{2}=\mathrm{CH}^{-} \mathrm{CH}_{2}-\mathrm{OH}$
(OD $\times 6=12$ marks $)$
(c) i. $\mathrm{CH}_{3} \mathrm{OH} \xrightarrow{\mathrm{PCC}} \mathrm{HCOH} \xrightarrow{\mathrm{HCN}} \xrightarrow[\substack{\mathrm{CN}}]{\mathrm{OH}-{\underset{C N}{i}}_{1}^{i}-H}$

5 ii, $\therefore \cdots \cdots, \cdots, \cdots \quad$. $\because, \cdots R$

$$
\mathrm{CH}_{3}-\mathrm{OH} \longrightarrow \mathrm{H}-\mathrm{C}^{\mathrm{C}}-\mathrm{H} \quad \mathrm{CH}_{3} \mathrm{AgBr}
$$

(oz $\mathrm{O}_{2} 7=14 \mathrm{marks}$)
(5). (i) By assuming the ideal behaviour of the

$$
P V=n R T
$$

$$
\begin{aligned}
n=\frac{P V}{R T} & =\frac{2.08 \times 10^{5} \mathrm{Nm}^{-2} \times 100 \times 10^{-3} \mathrm{~m}^{3}}{8.314 \mathrm{JmOl}^{-1} \times 500 \mathrm{~K}}(04+1) \\
& =50 \mathrm{mal}
\end{aligned}
$$

$$
=50 \mathrm{~mol}
$$

$$
\begin{aligned}
& \text { Initial } \\
& \text { moles }
\end{aligned}
$$

moles at Equilibrium

$$
\begin{array}{ll}
n n_{2} & =2 m o l \\
n \mathrm{Pcl}_{3} & =1 \mathrm{~mol} \\
n_{2} & =1 \mathrm{~mol} \\
n \mathrm{Ar}_{2} & =1 \mathrm{~mol}
\end{array} \quad 02 \times 4=(08)
$$

(iii)

$$
\begin{aligned}
P_{P c i s c g} & =\frac{2}{5} \times 2.08 \times 10^{5} \mathrm{Nm}^{-2} \\
& =0.832 \times 10^{5} \mathrm{Nm}^{-2} \\
P_{P c b} & =\frac{1}{5} \times 2.08 \times 10^{5} \mathrm{Nm}^{-2} \\
& =0.416 \times 10^{5} \mathrm{Nm}^{2} \\
D_{\sin } & =5 \times 2.08 \times 10^{5} \mathrm{Nm}^{2}=0.416 \times 10^{5} \mathrm{Nm}^{2}
\end{aligned}
$$

$$
\begin{align*}
& \mathrm{PCl}_{5} \mathrm{cg}, \quad(02+1) \tag{ii}\\
& x \quad x \quad(05) \\
& \text { Total moles }=3+x+1=5 \mathrm{~mol} \\
& x=1 \text { moi (O2) }
\end{align*}
$$

$$
P_{N_{2}}=0.416 \times 10^{5} \mathrm{Nm}^{-2} \quad(03 \times 4=12) \quad 12
$$

iv. $\left.\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3} \mathrm{cg} 2+\mathrm{Cl}_{2} \operatorname{cg}\right)$

$$
\begin{aligned}
& K_{P}=\frac{P_{P C l 3}(g)}{} \times P_{C_{2}^{1}(g)}(05) \\
& P_{P(5-(g)} \\
&=\frac{0.416 \times 10^{5} \mathrm{Nm}^{2} \times 0.416 \times 10^{5} \mathrm{Nm}^{2}}{0.832 \times 10^{5} \mathrm{Nin}^{2}}(04+01) \\
&=2.08 \times 10^{4} \mathrm{Nm}^{2} \times(04+01)
\end{aligned}
$$

(v).

$$
\begin{align*}
K_{p} & =K_{c}(R T)^{\Delta n}(03) \\
& =K_{c}(R T)^{2-1}(02)=K_{c}(R T) \\
K_{c} & =\frac{K_{p}}{R T}
\end{align*}
$$

(vi) Partial pressures do not change.

$$
\begin{align*}
& P_{P_{C l}}(g)=8.32 \times 10^{4} \mathrm{Nm}^{-2} \\
&=P_{P(3)(9)}=4.16 \times 10^{4} \mathrm{Nm}^{-2} \\
& P_{C l_{2}} \\
& P_{T}=(8.32+4.16 \times 2) \times 10^{4} \quad(02 \times 3=06 \text { marks }) \tag{10}\\
&=1.664 \times 10^{5} \mathrm{Nm}^{-2} \quad 04
\end{align*}
$$

(vii).

The value of K_{p} does not change.
K_{p} depends only on the temperature 05 $5 a-80$
(b) i. $\quad z_{n(s)}^{r}$

solution.
The following reaction is established.

$$
Z_{n}(s) \rightleftharpoons z_{n}^{2+} \rightleftharpoons 2 e .
$$

Metal ions are released to the solution, by the oxidising the metal. As a result electrons arc collected on the surface of the metal and positive ions are aggregated in the solution around the metal. sa a bilager is formed and a potential difference is arsed ($03 \times 4=12$ maks)
ii. In the instrument, used to measure the potential difference, another metal should be connected to the other terminal. Then the potential difference is measured between the two metals.
Therefore it is a relative potential (not an absolute potential?

$$
\because \text { (05manks) }
$$

*

$$
\left[\mathrm{H}_{\text {(aq) }}^{+}\right]=1 \mathrm{~mol} / \mathrm{dm}^{-3}
$$

+pressure of $\mathrm{H}_{2}(\mathrm{~g})=1 \mathrm{~atm}$

$$
\binom{01 \times 4=04}{\text { maks. }}
$$

* Tempercitaico metal $25^{\circ} \mathrm{C}$
*. Allow to react on the net al surface of the pt (s)
(iv)
 ceramic junction
V. does not need a Sat bridge. (10 marks)
* low cost. to prepare.
* does not evolve any gases; so no need to control the pressure.
1*. easy to handle.
*. Should not be controlled the concentration of the electrolyte.

$$
\left(\sigma_{2} \times S=10 \text { marg }\right)
$$

(vi)

$$
\begin{align*}
\text { Expected eletrometive force } & =E_{\mathrm{cu}}^{\theta}-E_{\text {An }}^{\theta} \text { (03) } \\
& =0.23 \mathrm{~V}-(-0.76) \mathrm{V} \\
& =0.99 \mathrm{~V} \quad(04) \tag{04}
\end{align*}
$$

(B) $\left[\mathrm{En}^{2+}(a q)\right]$
Temperature $\quad \therefore$ is not 1 mol dm ${ }^{-3} \quad r 5^{\circ} \mathrm{C}$ (15)

Due to the personal errors can be occurred in obtaining the readings. $0_{2} \times 2=04$
(i) $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{ \pm}(\mathrm{s}) \rightleftharpoons \mathrm{Ba}_{(a q)}^{2+}+2 \frac{b-70}{\mathrm{IO}_{3}^{-} \text {(aq) }}$

$$
\begin{aligned}
& K_{c}=\frac{\left[\mathrm{Ba}_{(a q)}^{2+}\right]\left[I \mathrm{O}_{(a q)}\right]^{2}}{\left[{\left.\mathrm{Ba}\left(I O_{3}\right)_{2(a q)}\right]}^{2}\right.} \\
& K_{c}\left[\mathrm{Ba}_{\mathrm{a}}\left(I \mathrm{O}_{3}\right)_{2(\mathrm{~s})}\right]=\left[\mathrm{Ba}_{(a q)}^{2+}\right]\left[\Gamma \mathrm{O}_{3}^{-}\right.
\end{aligned}
$$

concentration of a solid is a cons

$$
\therefore K_{s p}=\left[\mathrm{Ba}_{(\mathrm{aq})}^{2+}\right]\left[\mathrm{IO}_{(a q)}\right]^{02}
$$

(11) By considering the solubility of $\mathrm{Ba}_{\mathrm{a}}\left(\mathrm{IO}_{3}\right)_{2}{ }_{25} 15$ in water as x moldm $^{-3}$.

$$
\begin{aligned}
K_{s p} & =\left[\mathrm{Ba}_{\text {(aq) }}^{2}\right]\left[I \theta_{3}^{-c a q)}\right]^{2} \\
& =4 x^{3} \\
x & =\sqrt[3]{\frac{k_{s p}}{4}}=\sqrt[3]{1.08 \times 10^{-7} \mathrm{~mol}^{3} \mathrm{dm}^{-9}} \\
& =3 \times 10^{-3} \operatorname{moldm}^{-3}
\end{aligned}
$$

number of moles,

$$
\begin{align*}
\text { in } 50 \mathrm{~cm}^{3} & \left.=3 \times 10^{-3} \times \frac{50}{1000} \mathrm{~cm}^{3}=0.15 \times 10^{-3} \mathrm{~mol}\right) \tag{2}\\
\text { inc mass } & =3 \times 10^{-3} \times \frac{50}{1000} \times 487 \mathrm{gmoi} \tag{63}\\
& =0.15 \times 10^{-3 \mathrm{~mol}} \times 7305 \mathrm{~g} \\
& =73.05 \mathrm{mg} \tag{01}
\end{align*}
$$

(iii) By considering the molar solubility of $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}$ in $\mathrm{Ba}\left(\mathrm{Na}_{3}\right)$

$$
1.08 \times 10^{-7} \mathrm{moldm}^{-9}=0.02 \mathrm{moldm} 1 \times(2 y)^{-3}
$$

$$
y^{2}=\frac{1.08 \times 10^{-7} \mathrm{~mol}^{3} \mathrm{dm}^{-9}}{0.02 \mathrm{moldm}}
$$

$$
y=0.0864 \times 10^{-7} \mathrm{~mol}^{2} \mathrm{dm}^{-6}
$$

$$
4=8.64 \times 10^{-9} \text { molds }^{3}
$$

(iv) The concentration $\mathrm{IO}_{3}, \quad\left[\mathrm{IO}_{3}\right]$ in the initial Solution.

$$
\begin{aligned}
& K_{S p}=\left[\mathrm{Ba}^{2+}{ }_{\text {(aq) }}\right]\left[\mathrm{IO}_{\text {(aq) }}\right]^{2}
\end{aligned}
$$

$\left.\therefore \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{NaIO}_{3}(\mathrm{aq}) \rightarrow \mathrm{BaCO}_{3}\right)_{2(\mathrm{SO}}+2 \mathrm{NaNO}_{3}$
$n_{\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}}=\frac{0.01}{1000} \times 200$

$$
=2 \times 10^{-3} \mathrm{~mol}
$$

Initial

$$
\begin{aligned}
\operatorname{valog}_{3} \text { eq) } & =\frac{0.1}{1000} \times 100 \mathrm{~mol} \\
& =\underline{1 \times 10^{-2} \mathrm{~mol}}=10 \times 10^{-3} \mathrm{~mol} \mathrm{~V}
\end{aligned}
$$

$\mathrm{Na}_{\mathrm{IO}}^{3}$ reacted $=n$

$$
\left.\mathrm{BaCNO}_{3}\right)_{2} \times 2
$$

unreacted $\mathrm{IO}_{3}^{-}=1 \times 10^{2} \mathrm{~mol}-2 \times 2 \times 10^{-3}$

$$
\begin{aligned}
\left.\mathrm{NaIO}_{(\mathrm{og})} \rightarrow \mathrm{Nat}_{\text {(aq) })}+I \mathrm{G}_{(\text {aq } s)}\right) & =\left(10 \times 10^{-3}-4 \times 10^{-6}\right) \mathrm{mol} \\
& =6 \times 10^{-3} \mathrm{~mol}
\end{aligned}
$$

$$
\left[I_{G}^{-c a q}\right]=\frac{6 \times 10^{-3} \mathrm{~mol}^{-1}}{300 \mathrm{~cm}^{3}} \times 1000 \mathrm{~cm}^{3}
$$

$$
=2 \times 10^{-2} \mathrm{moldm}^{-3} \mathrm{~V}
$$

if the solubility of $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}$ is $7 \mathrm{moldm}^{-3}$.
$\mathrm{Ba}\left(\mathrm{IC}_{3}\right)_{2}$ (S) $\rightleftharpoons \mathrm{Ba}{ }^{2+}{ }_{(\mathrm{Caq})}+2 \mathrm{IO}_{3}{ }_{\text {(aq) }}$
Byepossuming z is too small, $c^{2}(2 z+0.02)=(2 z+0.02)=$
$K_{s p}=\left[\mathrm{Ba}_{\text {(aq) }}{ }^{2+}\right]\left[1 \mathrm{O}_{3}{ }_{(a q)}\right]^{2} 2^{2} \mathrm{moldm}^{3} \mathrm{~L}^{2}$
$1.57 \times 10^{-9} \mathrm{~mol}^{3} \mathrm{dm}^{-9}=Z \times\left(0.02 \text { moldm }{ }^{-3}\right)^{2}$

$$
z=\frac{1.08 \times 10^{-7} \mathrm{~mol}^{3} \mathrm{dm}^{-9}}{\left(2 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{3}\right)^{-9}}
$$

$$
\begin{aligned}
& =\frac{1.08 \times 10^{-7} \mathrm{~mol}^{3} \mathrm{dma}^{-9}}{\left(2 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{3}\right)^{2}} \\
& =0.27 \times 10^{-3} \mathrm{moldm}
\end{aligned}
$$

(b). $\left.\mathrm{BOH}_{\text {(aq) }} \rightleftharpoons \mathrm{B}_{\text {(aq) }}^{+}+\mathrm{OH}_{\text {(aq) }}^{-} \mathrm{O}_{3 \times 10}=30 \mathrm{maks}\right)$

$$
\begin{array}{ccc}
1 & - & - \\
l i \alpha & \alpha & \alpha \\
c(1-\alpha) & e_{\alpha} & c \alpha \tag{2}
\end{array}
$$

$$
\begin{align*}
K_{b} & =\frac{\left[B_{(a q)}^{+}\right]\left[\mathrm{OH}_{(a q)}^{-}\right]}{[B O H(a q)]} \tag{03}\\
& =\frac{C \alpha-C \alpha}{(\text { (mal! }-1-\alpha} \simeq(1-\alpha)
\end{align*}
$$

By assuming α is too small, $\left.1-\alpha \simeq_{1}(1-\alpha) \quad(1-\alpha) \quad{ }_{2}\right)$

$$
\therefore K_{b}=\frac{c \alpha^{2}}{\frac{x^{x+1+2}}{}}
$$

(ii). $\begin{array}{r}\mathrm{BOH} \text { caq) } \\ \mathrm{CHO})\end{array} \mathrm{B}_{\mathrm{Caq}}^{+}+\mathrm{CH}_{\mathrm{Caq}}^{-}$

$$
\begin{align*}
{\left[\mathrm{OH}^{-}\right]_{b} } & ={ }_{c \alpha}^{c \alpha}\left(\sigma_{4}\right)^{c \alpha} \\
K^{2} & =\sqrt{\frac{k_{b}}{c}(02)=\frac{1 \times 10^{-5}}{0.1}} \\
& =1 \times 10^{-2} \tag{2}
\end{align*}
$$

$$
\begin{aligned}
{\left[\mathrm{OH}_{\text {(aq) }}^{-}\right] } & =0.1 \mathrm{moldm}^{-3} \times 1 \times 10^{-2} \\
& =1 \times 10^{-3} \mathrm{moldm}^{-3} \\
\mathrm{POH} & =-\log \left[\mathrm{OH}_{\text {(aq) }}^{-}\right] \\
\mathrm{PH}^{\circ} & =3 \\
& =14-3 \\
& =11
\end{aligned}
$$

$$
\begin{aligned}
& \text { = } 0.01 \mathrm{mal} \text { (oz) (or } \\
& n \mathrm{HCl}=0.01 m o l d i^{3} \times 0.1 \mathrm{din}^{3} \\
& =0.001 \mathrm{mal} \\
& \text { (2) } 2 \\
& \text { linreacted }{ }^{n} \quad=(0.01-0.001) \mathrm{mol} \\
& =0.009 \mathrm{~mol} \\
& {[\mathrm{BOH}(\mathrm{aq})] \text { at equilibrum }=\frac{0.009 \mathrm{~mol}}{0.2 \mathrm{dm}^{3}}} \\
& \begin{aligned}
& {\left[\mathrm{BCl}_{3} \text { caq) }\right]_{a}^{a t} \text { equilibrium } }=0.045 \mathrm{mold} \\
& 0.001 \mathrm{~mol} \\
& 0.2 \mathrm{dm}-3
\end{aligned} \\
& =5 \times 10^{-3} \mathrm{moldm}^{-3} \quad 0.005 \mathrm{maldm}^{3} \mathrm{CO}_{2}
\end{aligned}
$$

(b) (c).

$$
\begin{aligned}
P_{A} & =P_{A}^{0} X_{A} \sim \\
& =40 \mathrm{kpa} \times 0.5=20 \mathrm{kpa} \\
P_{B} & =P_{B}^{0} X_{B}- \\
& =50 \mathrm{kpu} \times 0.5=25 \mathrm{kpu}
\end{aligned}
$$

In the vapour of the first distillate, mole fraction of A is Y_{A} molefraction of B is Y_{B} total pressure is P_{T}.

By assuming the vapour is ideal,

$$
\begin{align*}
P_{A} & =P_{T} \times Y_{A} V \\
20 \mathrm{kpa} & =P_{T} Y_{A}-\mathbb{C} \\
P_{B} & =P_{T} \times Y_{B} L \\
25 \mathrm{kPa} & =P_{T} \times Y_{D}-E \tag{2}
\end{align*}
$$

in the vapour of the second distillate, The molestation of A is Y_{A}^{\prime} the mokituetim of B is y_{B}^{\prime} total proser is P_{T},

$$
\begin{align*}
& P_{A}=40 \mathrm{kPa} \times 4=160 \mathrm{kpu} \\
& P_{B}=50 \mathrm{kPa} \times 5=250 \mathrm{kPa}- \\
& P_{A}=P_{T} Y_{A}, \\
& 160 \mathrm{kpn}=P_{T} Y_{A}^{\prime}
\end{align*}
$$

$$
\begin{aligned}
& P_{B}=P_{T} Y_{B}^{\prime} \\
& 250 \mathrm{kPa}=P_{T} \cdot Y_{B}^{\prime} \text {-(2) } \\
& \text { (1) } 250=\frac{Y_{A}^{\prime}}{Y_{B}^{\prime}}=\frac{16}{25}
\end{aligned}
$$

\therefore molefratien of $A: B$ in theseconal $\begin{array}{r}\text { dishilline }=16: 25\end{array}$
\therefore the mal suntion of $A=\frac{16}{41}$

$$
01 \times 20=20 \text { mulas }
$$

$$
C \rightarrow 20
$$

A

$$
\begin{align*}
P^{O H} & =P^{K b}+\log _{10} \frac{\left[\mathrm{BCl}_{3}\right]}{[\mathrm{BOH}]} \\
& =-\log 1 \times 10^{-5}+\log _{10} \frac{[\mathrm{BCl}]}{[\mathrm{BOH}]} \\
& =-\log 1 \times 10^{-5}+\log \frac{5 \times 10^{-3}}{4.5 \times 10^{-2}} \\
& =5+\log \frac{5}{45} \\
& =5+\log 1 / 9 \\
& =5+\log 0.1111 \\
& =5+1.0458 .14 .0458 \text { (os) } \\
P^{H} & =14-0.0458
\end{align*}
$$

(b) i, og mals.
ii. oq maly.
(c) whin whore is added to the mixture phenol is entered to the aqueous lager.
k. Later, the agcuous layer is seperated by ether: when an acid is added to it, can be separated.
(6) ix.
+. when dir HCl is added to the mixture aniline is entered to the ancuouslager.

* Then, the aqueous lager is seperated by ether. When NaH is added tort, (o) NH_{2} can be seperated.
(ii).

$$
(05 \times 4=20 \mathrm{mar} / \mathrm{s} .)
$$

$$
\left(05 \times 7 \text { malls } 235^{\circ}\right)
$$

(08) (a) i. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}(10)$ Hexaqquai ron c(11) ion. (0 5)

$$
\begin{array}{ll}
\text { ii. } \quad \mathrm{Fe}(\mathrm{OH})_{2} \quad G=\mathrm{Fe}(\mathrm{OH})_{3} \quad F=\mathrm{BaSO}_{4} \\
& (05 \times 3.15 \mathrm{marts})
\end{array}
$$

$$
\begin{equation*}
\text { iii. } \quad \mathrm{C}=\mathrm{NH}_{3} \tag{10}
\end{equation*}
$$

iv. $2 \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{Zn} \longrightarrow 2 \mathrm{Fe}_{(a q)}^{2+}+\mathrm{Zn}^{2+}(\mathrm{aq})$
v. $\mathrm{FrCO}\left(\mathrm{SO}_{4}(0) \mathrm{SO}_{4}\right.$
(e),

$$
\text { i. } \left.3 \mathrm{Cl}_{2}+8 \mathrm{NH}_{3} \longrightarrow \mathrm{~N}_{2}+6 \mathrm{NH}_{4} \mathrm{C}\right)
$$

$$
\text { ii. } 4 \mathrm{~S}+\mathrm{bNaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{~S}+\mathrm{Nq}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+31 \text {, }
$$

$$
\text { iii. } \mathrm{H}_{2} \mathrm{~S}+\mathrm{NaOH} \longrightarrow \mathrm{NaMS}+\mathrm{H}_{2} \mathrm{O}
$$

$$
\text { iii. } \mathrm{H}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{PbS} \rightarrow \mathrm{PbSO}_{4}+4 \mathrm{H}_{2} \mathrm{O} 10 \times_{4}^{2}
$$

(aq) (a), i., Hematite, Magnetite, Siderite, limonite Iron pyrites $\quad(02 \times 2=04$ marts)
ii. functions of limestones: CaCO_{3} decomposes to cal and CO_{2} gas CaO reacts with silicate impuntie. .. SiO_{2} and AlO_{3} and removes forms $\operatorname{slag}\left(\mathrm{CaSiO}_{3}\right)$ find $\mathrm{Ca}\left(\mathrm{AlO}_{2}\right)_{2}$]
functions of coke:- coke burns producing heat witheitrequired for the parmance.
*. Converts formed $\mathrm{CO}_{2} \rightarrow \mathrm{CO}$

* $\quad \therefore=\mathrm{FeO}$ is directly reduced by $C O$ and C III At high temperature $\quad \subset$ Above $1000{ }^{\circ} \mathrm{C} \int^{02 \times 4=08 \text { males) }}$

$$
\begin{aligned}
\mathrm{C}+\mathrm{O}_{2} & \longrightarrow \mathrm{CO}_{2} \\
\mathrm{CO}_{2}+\mathrm{C} & \longrightarrow 2 \mathrm{CO} \\
\mathrm{CaO}+\mathrm{Al}_{2} \mathrm{O}_{3} & \longrightarrow \mathrm{CaCAlO})_{2} \\
\mathrm{CaO}+\mathrm{SiO}_{2} & \longrightarrow \mathrm{CaCSiO})_{3} \\
\mathrm{FeO}+\mathrm{C} & \longrightarrow \mathrm{Fe}+\mathrm{CO}_{2}
\end{aligned}
$$

iv. For the reaction, $2\left(\mathrm{O}_{(g)}+\mathrm{O}_{2(9)} \longrightarrow 2\left(\mathrm{O}_{2}\right.\right.$ (g),

$$
\Delta H=(-)
$$

$$
\Delta S=(-)
$$

According to $\Delta G=\Delta H-T \Delta S_{\sim}$ at a high temperature, $C-$ re value of $T \Delta S$ is greater Therefore $\Delta G=(t)$ be:
\therefore At high temperatures the reaction is not faveura ble coot occurred)

$$
(02 \times 6=12 \text { morlos })
$$

v,

$$
\begin{aligned}
& \mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2} \\
& 3 \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{CO} \rightarrow 2 \mathrm{Fe}_{3}+\mathrm{CO}_{2} \\
& \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{CO} \rightarrow 3 \mathrm{FeO}+\mathrm{CO}_{2} \\
& \mathrm{FeO}+\mathrm{CO} \rightarrow \mathrm{Fe}+\mathrm{CO}_{2} \cdot(\mathrm{CO} \times 4=20 \mathrm{marts})
\end{aligned}
$$

vi. The density of slag is lower than that of molten ion: so slag floats on molten. iron (into the bottom), slag protects iron from oxirdzing by the air which is blown in the bolo

$$
\begin{aligned}
& \text { 3. } 2 \mathrm{Fe}(\mathrm{~s})+\mathrm{O}_{2 \mathrm{cg}}+\mathrm{RH}_{2} \mathrm{Cl}_{\mathrm{cl}} \rightarrow \mathrm{Fe}_{\mathrm{caq},}+4 \mathrm{OH}^{2} \\
& a-80
\end{aligned}
$$

(b). i. $R_{1}=$ air.

$$
\begin{aligned}
& R_{1}=\text { air. } \\
& R_{2}=\text { brine solution. }
\end{aligned}
$$

$$
Q_{2}=H_{2}(g) \cdot \checkmark
$$

ii. $Q_{1}=N_{2}$ ($Q_{2}=H_{2}(g) \cdot \checkmark$
iii process - I fractional elistillation of
process - II - aneierohic decomposition.
iv. M_{1} - reaction of brine solution with $N H_{B} \sim$
M_{2} - reaction of ammoniated brine with CO_{2}
M_{3} - decomposition of NaHCO_{3}
M_{4} - roast the irmestone.
M_{5} - production of NH_{3} / Haber process.
M_{6} - oxidation of NH_{3} by air
M_{7} - oxidation of NO cs, by air \sim
M_{8} - Manufacture of HNO_{3}.
v. $P_{1}=\mathrm{NH}_{3} \quad \sim \quad P_{2}=\mathrm{Na}_{2} \mathrm{CO}_{3} \quad P_{3}=\mathrm{CO}_{2}$

$$
\begin{aligned}
& P_{4}=\mathrm{CaO}_{5}=\mathrm{NH}_{4} \mathrm{Cl}_{\sim} \quad P_{b}=C_{a} \\
& \begin{array}{r}
P_{F}=\mathrm{CaCl}_{2}, \quad P_{8}=\mathrm{NO}, \quad P_{9}=\mathrm{NO}_{2} \\
P_{10}=\mathrm{HNO}_{3}
\end{array} \\
& \text { ri. In } M_{1} \Rightarrow \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4} \mathrm{OH} \text { - } \\
& \text { In } \mathrm{M}_{2} \Rightarrow \mathrm{OH}^{-}+\mathrm{CO}_{2} \rightleftharpoons \mathrm{HCO}_{3} \\
& \mathrm{HCO}_{3}^{-}(a q)+\mathrm{Na}_{\text {(aq) }} \text { (aq) } \longrightarrow \mathrm{NaHCO}_{3} \text { (s) } \\
& \text { OR } \\
& \begin{array}{l}
\mathrm{NaCl}+\mathrm{CO}_{2}+4 \mathrm{O}+\mathrm{NH}_{3} \rightarrow \mathrm{NC}_{2} \mathrm{HCO}_{3}+\mathrm{NH}_{4} \mathrm{Cl} \\
\mathrm{In} \mathrm{M}
\end{array} \mathrm{aNaNCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{2}+\mathrm{HO}_{2}- \\
& \text { In } \mathrm{M}_{4} \Rightarrow \mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}
\end{aligned}
$$

In $M_{5} \Rightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3} . r$
In $\mathrm{M}_{6} \Rightarrow 4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \longrightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{In} \mathrm{M}_{7} \Rightarrow 2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$
In $M_{8} \Rightarrow 4 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \rightarrow 4 \mathrm{HNO}_{3}$.
Vii. $P_{2}=\mathrm{Na}_{2} \mathrm{CO}_{3}$ Manutaeture of glass
softening of land water. Manufacture of soap Monu-fersturx of detergents.
$P_{10}=\mathrm{HNO}_{3}$ used in explosives.
used in the synthesis of $\mathrm{NH}_{4} \mathrm{NO}_{3}$
for use as a fertilizers.
for uses $\rightarrow(02) \quad\left[\begin{array}{l}02 \times 9=18 \\ m u r l s\end{array}\right)$ $b-70$
a) i. Teflon:
ii. Natural rubber.
iii - Nylon - 6
iv. Phenol formaldehyde (Bakelite)
\checkmark phenol formaldehyde.
v: P.V.C.

vii.

(05 $\times 9=45$ mantes)
(b).i. *. Since plastics are mat degradable easily, when Hey are dumping in open area, threat of mosquitoes
can be spread.
*. When plastics are burning in oped area the toxic gases such as furan, dioxin are added to the atonosphere.
anger
 such as pt, Hg are added to the groundwater. It

* The water cays (dramarerstan cot pes) are blacked by the light plastics and caused in floods in rainy season
* when food waste in dumps are eaters by animals the plastic wrappers, lunch sheets elite cause in harmful effects towards the health of animals sometimes death. $\quad(03 \times 3=09$ marks)
ii. * Avoiding the burning plastics in open areas.
* Avoiding the dumping of plastic materials to the ground.
* recydting
* minimizing the un-reusable (un recyclable) ployties.
* using biodegrabible plastics.
* Implementation oof the rules ane regulations. Ex: "Monfesture than optics is man lancerdenstio,
(03x3 0 ogmartes)
iii. NOD, unburnt hydrocarbons.
favourable conditions (02 (02 204 marts)
favourable conditions :- $*$ light, temperate
iv. Mar - $*$ eye irritations $\quad\left(O_{2} \times 2=04\right.$ mats $)$
*. disturb the vision
*. Respiratory problems such as caughong asthma.
plants -. * sunlight is blocked by the smog. it clesturts the phatosyntheses decrease the growthratof the plants. *.
* Substances of the smog is toxic to the plants.
(02 $02=10 \mathrm{mar} / \mathrm{s}$)
V. *. Chlorine free radicals (Cl°) (on)
* EFE decompose the compounds of CFC.

ri.

$$
\left[\begin{array}{rl}
\rightarrow \mathrm{Cl}^{\circ}+\mathrm{O}_{3} & \rightarrow \mathrm{ClO}^{\circ}+\mathrm{O}_{2} \\
\begin{array}{l}
\mathrm{O}_{2} \mathrm{~h}_{2} \\
\mathrm{Cl0}^{\circ}+0
\end{array} & \\
\text { overall reaction }
\end{array}\right.
$$

vol * Causes to skin cancers. $\quad(02 \times 4=08$ monks $)$

* cataract formation
* weakened the immunity system of man.
* destruction of the Fish copulation in water bodies.
* Increase the rate of degractation of the materials such as rubber and plastics.

$$
\left.\frac{(02 \times 2}{b-55}=04 \text { marks }\right)
$$

(G) ($16 \mathrm{H}^{+}+2 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2}^{2} \rightarrow 2 \mathrm{Mn}^{2}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
(8)(b) $2 \mathrm{Cu}^{2+}+2 I^{-} \longrightarrow 2 \mathrm{Cu}^{+}+I_{2}$ (05)

$$
I_{2}+2 S_{2} \mathrm{O}_{3}^{2-} \longrightarrow 2 I^{-}+\mathrm{S}_{4} \mathrm{O}_{6}^{2-} \text { (05) }
$$

$$
\begin{aligned}
n_{\mathrm{C}_{2} \mathrm{O}_{4}^{2}}={ }^{\mathrm{NMO}_{4}} \times \frac{5}{2} & =0.02 \mathrm{moldm}^{3} \times 22.6 \times 10^{3} \mathrm{dm}^{3} \times \frac{5}{2} \\
& =1.13 \times 10^{-3} \mathrm{~mol} .
\end{aligned}
$$

${ }^{n} \mathrm{Cu}^{2+}=n_{\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2+}}$

$$
=0.05 \text { moldmi }{ }^{3} \times 11.3 \times 10^{-3} \mathrm{dm}^{3}
$$

$$
\begin{aligned}
n_{\mathrm{Cu}^{2} t} & =0-0.565 \times 10^{-3} \mathrm{~mol} . \quad n_{I_{2}}=0.2825 \times 10^{-3} \mathrm{~mol}
\end{aligned}
$$

${ }^{n} \mathrm{C}_{2} \mathrm{O}_{4}^{2-}: \mathrm{ncu}^{2+}$

$$
1.13 \times 10^{-3}, \quad 0.565 \times 10^{3} \quad\left(565^{2} \times 10^{5}: 113.0 \times 10^{-5}\right)
$$

$$
\begin{aligned}
& 2: 1 \\
& =\quad 05 \times 6=30 \\
& b-50
\end{aligned}
$$

10
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \longrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-\mathrm{Nat}+\mathrm{H}_{2} \mathrm{O}-20}$

$$
n \text { Naor } \quad=x \operatorname{mold\operatorname {min}^{3}\times 5\times 10^{-3}d_{m^{3}}=5x\times 10^{-3}\mathrm {mol}.}
$$

$$
\mathrm{CH} \mathrm{CH} \mathrm{COOH} \quad=5 x \times 10^{-3} \mathrm{~mol}
$$

By Considering the

$$
\begin{aligned}
& \left.\left[\mathrm{CH}_{3} \mathrm{COOH}\right] \log =\frac{5 x \times 10^{-3} \mathrm{mal}}{25 \times 10^{-3} \mathrm{dm}^{3}}=\frac{x}{5} \mathrm{moldm}^{-3}\right] \\
& \text { the }
\end{aligned}
$$

ittration or the bytanol s lager,

$$
\begin{aligned}
\mathrm{PNOH}_{\mathrm{NH}} & =x \mathrm{moldm}^{-3} \times 40 \times 10^{-3} \mathrm{dm}^{3} \\
& =40 x \times 10^{-3} \mathrm{mal} \\
\mathrm{H}_{\mathrm{CH} \mathrm{couH}} & =40 x \times 10^{-3} \mathrm{~mol}
\end{aligned}
$$

At the equiltbrium, if the $\quad=250 \times 10^{-5} \mathrm{mal}$ of of moles of $\mathrm{CH}_{3} \mathrm{COOH}$ gome to butonol layer is x,
The remaining $n_{\text {cheoor in aquer }} \begin{aligned} & \text { lager }\end{aligned}=\left(250 \times 10^{-5}-x\right)$

$$
\begin{aligned}
{[\mathrm{CHCOOH}]_{\text {butanol }} } & =\frac{n \times 1000}{25}=40 x \mathrm{moldin}{ }^{3} \\
& =\frac{\left(250 \times 10^{-5}-n\right) 10^{3}}{52}=20\left(250 \times 10^{-5} \times 2\right) \mathrm{moldm}^{3} \\
\frac{1}{20} & =\frac{20\left(250 \times 10^{-5}-\mathrm{mx}\right)}{40 x} \\
x & =6 \times 10^{-5}
\end{aligned}
$$

$$
\begin{aligned}
& n \mathrm{CH} \mathrm{COOH} \text { in aqueouslayer }=250 \times 10^{-5}-6 \times 10^{-5}=2.44 \times 10^{-3} \mathrm{molam} \\
& n \mathrm{CH}_{3} \mathrm{COOH} \text { in } 20 \mathrm{~cm}^{3}=\frac{2.44 \times 10^{-3} \times 20}{50}=9.76 \times 10^{-4} \mathrm{~mol}
\end{aligned}
$$

$$
n_{\text {NaOH }} \text { required }=9.76 \times 10^{-4} \mathrm{~mol}
$$

$$
\text { volum of it }=\frac{9.76 \times 10^{-4} \mathrm{~mol}}{0.2 \mathrm{moldm}}
$$

$$
=4.88 \times 10^{-4} \mathrm{dm}^{3}
$$

$$
c-50
$$

$$
\begin{aligned}
& \therefore\left[\mathrm{CH}_{3} \mathrm{COO}\right]_{\text {butund }}=\frac{40 x \times 10^{-3} \mathrm{mal}^{1}}{10 \times 10^{-3} \mathrm{dm}^{3}}=4 x \mathrm{~mol} \mathrm{dm}^{3} \\
& \begin{aligned}
K_{D} & =\frac{\left[\mathrm{C}_{3} \mathrm{COOH}\right]_{a q}}{[C H \operatorname{coOH}]_{\text {nutamol }}} \\
& =\frac{x / 5 \mathrm{~mol} \mathrm{dms}^{3}}{4 x{\mathrm{mal} \mathrm{dm}^{-3}}^{[C /}}=\frac{1}{20}
\end{aligned} \\
& \text { (i) Initially } \\
& (02 \times 10=20 \text { marks) } \\
& =0.05 \mathrm{moldm} \mathrm{~m}^{3} \times 50 \times 10^{-3} \mathrm{dms}^{3} \\
& =250 \times 10^{-5} \mathrm{mal}
\end{aligned}
$$

[^0]: (i) write the rate expression for the decompose reaction of $\mathrm{HI}(g)$ by giving reasons.

