Fype exuratordieeres / All Rights reserved

 Prosinclal Departanat of Edecation NWF Prenincial Departarat of Education NWP Proninclal Depariment uf Edaration NWP Provinclal Dve

Third Term Test - Grade 12-2018

Index No : \qquad

漛 Periodic Table is provided.

* This paper consists of 08 pages.
* Answer all the questions.
* Use of calculators is not allowed.
* Write your Index Number in the space provided in the answer sheet.
* Follow the instructions given on the back of the answer sheet carefully.
** In each of the questions 1 to 50, pick one of the alternatives from (1), (2), (3), (4), (5) which is correct or most appropriate and mark your response on the answer sheet with a cross (x) in accordance with the instructions given on the back of the answer sheet.

$$
\begin{array}{ll}
\hline \text { Universal gas constant } & R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
\text { Avogadro constant } & N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1} \\
\text { Planck's constant } & h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\
\text { Velocity of light } & c=3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}
\end{array}
$$

1. The Scientist who has the close relationship regarding Rutherford's planetary model of the atom.
2. Dalton
3. Milikan
3 Marsdon
4. Chadwick
5. De-Brogli
6. The correct increasing order of the radius of $\mathrm{N}^{3-}, \mathrm{O}^{2-}, \mathrm{F}^{-}, \mathrm{Na}^{+}$and Mg^{2+} is,
7. $\mathrm{N}^{3-}<\mathrm{O}^{2-}<\mathrm{F}^{-}<\mathrm{Na}^{+}<\mathrm{Mg}^{2+}$ 2. $\mathrm{F}^{-}<\mathrm{O}^{2-}<\mathrm{N}^{3-}<\mathrm{Mg}^{2+}<\mathrm{Na}^{+}$
8. $\mathrm{N}^{3-}<\mathrm{O}^{2-}<\mathrm{F}^{-}<\mathrm{Mg}^{2+}<\mathrm{Na}^{+}$
9. $\mathrm{F}^{-}<\mathrm{O}^{2-}<\mathrm{N}^{3-}<\mathrm{Na}^{+}<\mathrm{Mg}^{2+}$
10. $\mathrm{Mg}^{2+}<\mathrm{Na}^{+}<\mathrm{F}^{-}<\mathrm{O}^{2-}<\mathrm{N}^{3-}$
11. What is the IUPAC name of the following compound ?

12. 5-bromohex-3-ene-2-ol
13. 5-bromohex-3-en-2-ol
14. 5-bromohex-3-ene 2-ol
15. 2-bromo-5-hydroxyhex - 3- ene
16. 5-bromo-2-hydroxyhex-3-ene
17. The number of electrons neutrons and protons in the ion ${ }_{8}^{18} O_{2}^{2-}$ respectively are ?
18. $20,16,20$
19. $20,20,16$
3 18, 20, 16
20. $10,10,8$
21. $20,36,16$
22. Which of the following statement is false regarding quantum numbers of an atom.
23. The number of orbitals possible for which the quantum numbers $\mathrm{n}=3$ and $m_{l}=+1$ is 2 .
24. $2 l+1$ number of orbitals possible [for the sub energy level which the azimuthal quantum number is l.
25. Whole numbers from $-l$ to $+l$ including zero can exist for m_{l}
26. The number of values which can exist for m_{l} directly proportional to the value of l
27. The number of the orbitals possible for which the quantum numbers $n=4$ and $m_{l}=-2$ is 4 .
28. The molecule without a dative covalent bond among following molecules is?
29. $\mathrm{NO}_{2} \mathrm{~F}$
30. NO_{2}
31. $\mathrm{N}_{2} \mathrm{O}_{4}$
32. NO_{3}^{-}
33. NO_{2}^{-}
34. What is the mass of Ethanol should be mixed with 1 kg of water where the mole fraction of ethonal is 0.2 in a mixture of ethanol and water is? $(\mathrm{H}=1, \mathrm{C}=12, \mathrm{O}=16)$ (density of water $1 \mathrm{~g} / \mathrm{cm}^{3}$)
35. $92 g$
36. 638.8 g
37. 833.25 g
38. 200 g
39. 13.89 g
40. $\quad V_{2}$ Volume of a hydrogen peroxide solution was required to react completely with V_{1} volume of $C \mathrm{~mol} \mathrm{dm}{ }^{-3}$ acidified KMnO_{4} Solution. The concentration of hydrogen peroxide solution is?
41. $2 \mathrm{C} V_{1} / 5 V_{2}$
42. $5 C V_{1} / 2 V_{2}$
43. $2 \mathrm{C} V_{1} / 3 V_{2}$
44. $\mathrm{C} V_{1} /\left(V_{1}+V_{2}\right)$
45. Data given was not enough for the calculator.
46. Which of the following statement is true regarding an elements of S - block ?
47. Carbonates of group one are stable for heat.
48. Aqueous solution of MgH_{2} is neutral.
49. Oxygen gas is obtained by the dissociation of LiNO_{3}
50. All the carbonates are insoluble in water.
51. All the hydroxides of group II are insoluble in water.
52. How many resonance structures can be drawn for the ion OCN $^{-}$(Skelton $\mathrm{O}-\mathrm{C}-\mathrm{N}$)
53. 1
54. 2
55. 3
56. 4
57. 5
58. Which of the following statement is true regarding secondary interactions ?
59. Dispersion forces exist among some molecules could be stronger than dipole attractions.
60. NaCl dissolve in water due to the formation of H bonds with water.
61. London dispersion forces exist only among non polar molecules.
62. I_{2} slightly dissolves in water due to ion - induce dipole interactions.
63. Vander Waals attractions among ions become stronger, when the molecular mass of an ionic compound increases.
64. True regarding following enthalpy relationships ?
65. $\Delta H_{f}^{\theta}\left(\mathrm{CO}_{(\mathrm{g})}\right)=\frac{1}{2} \Delta H_{f}^{\theta}\left(\mathrm{CO}_{2}(\mathrm{~g})\right)$
66. $\Delta H_{f}^{\theta}\left(\mathrm{CO}_{(\mathrm{g})}\right)=\Delta H_{c}^{\theta}\left(\mathrm{C}\right.$, graphite) $-\Delta H_{c}^{\theta}\left(\mathrm{CO}_{(\mathrm{g})}\right)$
67. $\Delta H_{f}^{\theta}\left(\mathrm{CO}_{(\mathrm{g})}\right)=\Delta H_{f}^{\theta}(\mathrm{C}$, graphite $)+\frac{1}{2} \Delta H_{f}^{\theta}\left(O_{2(\mathrm{~g})}\right)$
68. $\Delta H_{f}^{\theta}\left(\mathrm{CO}_{(\mathrm{g})}\right)=\Delta H_{f}^{\theta}\left(\mathrm{CO}_{2(\mathrm{~g})}\right)-\frac{1}{2} \Delta H_{f}^{\theta}\left(O_{2(\mathrm{~g})}\right)$
69. All above are false.
70. The gases $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D respectively in the following graph are.
71. $\mathrm{CH}_{4}, \mathrm{H}_{2}, \mathrm{He}, \mathrm{NH}_{3}$
72. $\mathrm{CH}_{4}, \mathrm{He}, \mathrm{NH}_{3}, \mathrm{H}_{2}$
73. $\mathrm{H}_{2}, \mathrm{CH}_{4}, \mathrm{NH}_{3}, \mathrm{He}$
74. $\mathrm{CH}_{4}, \mathrm{He}, \mathrm{H}_{2}, \mathrm{NH}_{3}$
75. $\mathrm{CH}_{4}, \mathrm{H}_{2}, \mathrm{NH}_{3}, \mathrm{He}$

76. Pressure of the gasses NH_{3} and $\mathrm{N}_{2} \mathrm{H}_{4}$ in a rigid closed vessel is 0.6 atm at $300 \mathrm{~K} . \mathrm{NH}_{3}$ and $\mathrm{N}_{2} \mathrm{H}_{4}$ dissociate completely according to following reactions when the temperature increases up to 1000 K
$2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2}(\mathrm{~g})$
$\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g}) \rightarrow \mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{H}_{2(\mathrm{~g})}$
Then the total pressure increases up to 4.8 atm calculate the mole percentage of NH_{3} in the initial mixture.
77. 40%
78. 50%
79. 60%
80. 70%
81. 80%
82. Example for an intensive property?
83. Mass
84. Density
85. Volume
86. Heat capacity
87. Charge
88. Values of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d in the following reaction respectively are ?
$a \mathrm{H}^{+}+b \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+c \mathrm{SO}_{2} \rightarrow$ Products.
89. $10,2,3$
90. $26,6,2$
91. $2,1,3$
92. $13,3,1 \quad 5$.
5,1,3
93. Standard formation enthalpy of water is $-249 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Standard bond dissociation enthalpies of $\mathrm{H}-\mathrm{H}$ and $\mathrm{O}=O$ are $433 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $492 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. Standard mean bond dissociation enthalpy of $O-H$ is?
94. $676 \mathrm{~kJ} \mathrm{~mol}^{-1}$
95. $464 \mathrm{~kJ} \mathrm{~mol}^{-1}$
96. $-464 \mathrm{~kJ} \mathrm{~mol}^{-1}$
97. $232 \mathrm{~kJ} \mathrm{~mol}^{-1}$
98. $-232 \mathrm{~kJ} \mathrm{~mol}^{-1}$
99. When $25 \mathrm{~cm}^{3}$ of $1 \mathrm{~mol} \mathrm{dm} m^{-3} \mathrm{KOH}$ and $25 \mathrm{~cm}^{3}$ of $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HNO}_{3}$ is mixed in a calorimeter, temperature increases by $5{ }^{\circ} \mathrm{C}$. What is the enthalpy Change? (Density of water $1 \mathrm{~g} / \mathrm{cm}^{3}$ standard heat capacity of water $4.2 \mathrm{Jg}^{-1}{ }^{0} \mathrm{C}^{-1}$)
100. $+42 \mathrm{~kJ} \mathrm{~mol}^{-1}$
101. $-42 \mathrm{~kJ} \mathrm{~mol}^{-1}$
102. $+1.05 \mathrm{~kJ} \mathrm{~mol}^{-1}$
103. $-1.05 \mathrm{~kJ} \mathrm{~mol}^{-1}$
104. $-26.25 \mathrm{~kJ} \mathrm{~mol}^{-1}$
105. True among following statements ?
106. Ability to subject in nucleophilic substitution reactions in alkyl halides do not depend on the polarity of $\mathrm{C}-\mathrm{X}$ bond.
107. Nucleophiles can act as bases.
108. Aryl halides are inert to nucleophiles but react readily with Vinyl Chlorides.
109. The main reaction shown by alkyl halides is elimination as competitive reaction.
110. Reactivity of halogens joined to $S P^{2}$ carbon atoms is higher than the halogens joined to $S P^{3}$ carbon atoms.
111. Not a structure relevant to the nitration of benzene.
(1)

(2)

(3)

(4)

(5)

112. Consider the following compound.

113. All carbon atoms are not lie on the same plane.
114. Bond length is $\mathrm{d}<\mathrm{b}<\mathrm{c}<\mathrm{a}$.
115. All hydrogen atoms lie on the same plane.
116. Bond strength is in the order of $\mathrm{d}<\mathrm{b}<\mathrm{c}<\mathrm{a}$
117. There are three $s p$ hybridized carbon atoms.
118. Which of the following reacts with both bromine water and ammonical cuprous chloride is?
119. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$
120. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}$
121. $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCH}_{3}$
122. $\mathrm{CH}_{3} \mathrm{C}=\mathrm{CCH}_{3}$
123. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHBr}$
124. $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$ is an aldehyde or ketone The number of isomers can exist is?
125. 4
126. 5
127. 6
128. 7
129. 8
130. Which of the following is an ether?
131. $\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}$
132.

2.

4.

3.

25. Incorrect regarding the chemistry of $A l$ is?

1. The main oxidation number of $A l$ is +3 in $A l$ containing compounds.
2. $A l$ reacts with acids.
3. Al reacts only with bases.
4. $A l$ is an amphoteric element.
5. Due to the electron deficiency of $A l C l_{3}$ it tends arrange as $A l_{2} C l_{6}$
6. $25 \mathrm{~cm}^{3}$ of 0.4 moldm ${ }^{-3} \mathrm{HCl}$ is mixed with $25 \mathrm{~cm}^{3} 0.1 \mathrm{moldm}^{-3}$ of $\mathrm{Ba}(\mathrm{OH})_{2}$. Concentration of this H^{+}in the solution is?
7. 0.2 M
8. 0.1 M
9. 0.3 M
10. 0.05 M
11. 0.15 M
12. Products obtained when Cl_{2} reacts with excess NH_{3}
13. $\mathrm{N}_{2}(g)+\mathrm{HCl}(g)$
14. $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$
15. $\mathrm{NCl}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$
16. $\mathrm{NCl}_{3}(g)+\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{g})$
17. $\mathrm{N}_{2}(g)+\mathrm{H}_{2}(g)+\mathrm{HCl}(g)$
18. Light green coloured flame was obtained when chloride of S-block heated in the bunsun flame. Metal ion contained in that chloride would be?
19. $N a^{+}$
20. K^{+}
21. Ca^{2+}
22. Sr^{2+}
23. $B a^{2+}$
24. Standard combustion enthalpy of methanol is $-715 \mathrm{kJmol}^{-1}$. Mass of methanol should be burnt to produce 71.5 kJ energy is ?
25. 3.2 g
26. $32 g$
27. 71.5 g
28. 715 g
29. 1.6 g
30. 30.4% of N and 69.6% of Oxygen contained in a gaseous compound by mass. Volume of 5.52 g of this gas at $27^{\circ} \mathrm{C}$ and $1 \times 10^{5} \mathrm{~Pa}$ Pressure is $1.00 \mathrm{dm}^{3}$. Molecular formula of the compound is?
31. NO
32. NO_{2}
33. $\mathrm{N}_{2} \mathrm{O}_{4}$
34. $\mathrm{N}_{3} \mathrm{O}_{6}$
35. $\mathrm{N}_{2} \mathrm{O}_{5}$

- For each of the questions 31 to 40 , one or more responses out of the four responses (a), (b), (c) and (d) given is /are correct. Select the correct response/responses in accordance with the instructions given on your answer sheet, mark
(1) If only (a) and (b) are correct.
(2) If only (b) and (c) are correct.
(3) If only (c) and (d) are correct.
(4) If only (d) and (a) are correct.
(5) If any other number or combination of responses is correct.

Summary of above Instructions,

1	2	$\mathbf{3}$	4	5
Only (a) and (b) are correct	Only (b) and (c) are correct	Only (c) and (d) are correct	Only (a) and (d) are correct	Any other number or combination of responses is correct

31. Which of the following statements is / are true ?
a) Only the atom Pd shows deviation from the Aufbau principle.
b) Electrons filled in to orbitals according to the ascending order of their energy.
c) Orbitals of same energy are filled by electrons that their spins are parallel.
d) Both incomplete s orbitals and d orbitals can exist in an atom.
32. Species with identical geometry is / are ?
a) IOF_{2}^{+}
b) NH_{3}
c) XeOF_{2}
d) $\mathrm{H}_{2} \mathrm{PO}_{2}^{-}$
33. Which of the following is / are true regarding root mean square velocity?
(a) $\overline{C^{2}}$ twices when doubles the temperature.
(b) $\sqrt{\overline{C^{2}}}$ twices when doubles the pressure.
(c) $\overline{C^{2}}$ becomes half when twices the volume of gas.
(d) At given temperature value of $\overline{C^{2}}$ is a constant for any gas.
34. Which of the following is / are true regarding NH_{3} ?
(a) Act as an acid.
(b) Does not react with metals since it is weak base.
(c) Is a reducing agent.
(d) Is an oxidizing agent.
35. Colour of the aqueous solution is / are purple in?
(a) $\mathrm{Ti}^{4+}(a q)$
(b) $T i^{3+}(a q)$
(c) $V^{3+}(a q)$
(d) $\mathrm{Cr}^{3+}(a q)$
36. Which of the following statement is / are true ?
(a) Standard combustion enthalpy of many compounds is a negative value.
(b) Entropy of any compound under standard conditions is a positive value.
(c) Atomization enthalpy of carbon equals to sublimation enthalpy.
(d) Vaporization enthalpy of $B r_{2}$ is not equal to atomization enthalpy.
37. Consider the system formed by adding $10 \mathrm{~cm}^{3}$ of $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}, 10 \mathrm{~cm}^{3}$ of 2 mol dm BaCl_{2} and $10 \mathrm{~cm}^{3}$ of $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}$,
(a) Concentrations of Na^{+}and Cl^{-}equal.
(b) There are Ba^{2+} ions in the solution
(c) Precipitate formed is soluble.
(d) There are two enthalpy changes.
38. Which of the following is / are reach with ethanol?
(a) Na
(b) NaOH
(c) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(d) NaHCO_{3}
39.

a.

b.

40. Which of the following is / are true regarding a real gas ?
(a) Reach to ideal behaviour at high temperature.
(b) Reach to ideal behavioour at high pressure.
(c) Reach to ideal behaviour when possess higher molecular mass.
(d) Reach to ideal behaviour at lower pressure.

- In question numbers 41 to 50, two statements are given in respect of each question. From the table given below, select the response out of the responses (1), (2), (3), (4) and (5) that best fits the two statements and mark appropriately on your answer sheet.

$\mathbf{1}^{\text {st }}$ Statement	$\mathbf{2}^{\text {nd }}$ Statement	Response
True	True and explains the $1^{\text {sts }}$ statement correctly	1
True	True but does not explain the first statement correctly	2
True	False	3
False	True	4
False	False	5

	First Statement	Second Statement
41.	De-Brogli equation can be used to explain the wave and particle duel nature of electrons.	Observations of cathode ray diffraction and interference can be used to study dual nature and properties of electrons.
42.	Green coloured solution of the ion $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ gives a green precipitate in presence of a strong base.	Colour of solid $\mathrm{Ni}(\mathrm{OH})_{2}$ is green.
43.	$\Delta G=\Delta H-T \Delta S$ equation can be used to calculate gibbs energy change of a reaction.	The reaction is spontaneous, only at lower temperatures where $\Delta H>0$ and $\Delta S<0$
44.	Acidity of $\mathrm{Mn}_{2} \mathrm{O}_{7}$ is higher respect to $\mathrm{Mn}_{2} \mathrm{O}_{3}$	Acidic properties increases when electronegativity difference between $M n$ and O increases due to increasing oxidation number of $M n$.
45.	$\mathrm{HOCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{OMgBr}$ can be obtained by the reaction between $\mathrm{HOCH}_{2} \mathrm{CHO}$ and $\left(\mathrm{CH}_{3} \mathrm{MgBr}\right)$ grignard reagent.	Carbon attached to Mg in grigard reagent can act as nucleophile.
46.	σ bonds are formed only by linear overlapping of $S-S$ and $S-P$ orbitals.	π bonds are formed by parallel overlapping of two P orbitals.
47.	A gas cannot be converted to a liquid by exerting any high pressure, at temperatures higher than the critical temperature.	Critical temperature of any gas at constant pressure and constant volume is identical.
48.	$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ ions oxides to CrO_{4}^{2-} ion in acidic medium.	Oxidation number of Cr in $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ and CrO_{4}^{2-} ion is +6 .
49.	Reaction between $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$ and NaOH takes place in two steps.	Neucliophilic substitution reactions of alkyl halides as two step reaction, when formation of a new bond takes place, after breaking bonds.
50.	PCC can be used to oxidize both primary alcohols and secondary alcohols.	Alcohol oxidize only, when H lie on the C where, OH group is attached.

థలరరీిు రథల

 Periodic Table

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cr	Es	Fm	Md	No	Lr

Index No ：

Chemistry II

＊A Periodic Table is provided
＊Use of calculators is not allowed．
＊Universal gas constant．$R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
类 Avogadro constant，$N_{A}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
－PART A－Structured Essay
娄 Answer all the questions on the question paper itself．
类 Write your answer in the space provided for each question．Please note that the space provided is sufficient for the answer and that extensive answers are not expected．
－PART B and PART C－Essay
瘠 Answer four questions selecting two questions from each part．Use the papers supplied for this purpose．
半 At the end of the time allotted for this paper，tie the answers to the three Parts \mathbf{A}, B and \mathbf{C} together so that Part A is on top and hand them over to the Supervisor．
粦 You are permitted to remove only Parts B and C of the question paper from the Examination Hall．
For Examiner＇s Use Only

Part	Question No．	Marks
A	1	
	2	
	3	
	4	
B	5	
	6	
	7	
	9	
	10	
Total		
Percentage		

Final Mark

In Numbers	
In Letters	

Code Numbers

Examiner	
Checked by	1
	2
Supervised by	

Part - A - Structured Essay

- Answer all four questions on this paper itself. (Each questions carries 10 marks)
(01) a. I. Methyl nitrate is methyl ester of nitric acid and has the chemical formula $\mathrm{CH}_{3} \mathrm{NO}_{3}$. It is a colourless volatile liquid and it is explosive. Its Skelton given below.

i. Draw the most acceptable Lewis structure for methyl nitrate.
ii. Draw resonance structures for above molecule. Giving reasons comment on their stabilities.
iii. Draw a sketch of the structure of above molecule giving approximate bond angles.
II. State the following considering hypothetical Lewis structure given below,
i. Electron pair geometry around the atom.
ii. Shape around the atom.
iii. Hybridization of the atom given in the table.

		The N atom	The O atom attached to N and Cl atoms
i	Electron pair geometry		
ii	Shape		
iii	Hybridization		

(b) Identify atomic / hybrid orbitals involved in the formation of the folowing bonds in the lewis structure given below.

$$
\begin{array}{cc}
H-\underset{1}{\underset{N}{\sim} \sigma} \underset{1}{\ddot{\omega}}-H \\
H \quad H
\end{array}
$$

i. $\quad N_{\odot}-N_{\odot} ; N_{\odot}$

ii. $\quad \mathrm{N}_{\odot}-\mathrm{H} ; \mathrm{N}_{\odot}$

H \qquad
(c) $\mathrm{Xe}, \mathrm{I}_{3}^{-}, \mathrm{CH}_{4}$, aqueous $\mathrm{NaCl}, \mathrm{HF}$
of the substances given above, which one/ones will have the forces given below.
i. Ion-Induce dipole interaction \qquad
ii. Ion - dipole interactions - \qquad
iii. London dispersion forces \qquad
iv. Hydrogen bonds \qquad
(02) (a) Test tubes labelled A to E contain following solids (not in order)
$\mathrm{KNO}_{3},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}, \mathrm{LiNO}_{3},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{NH}_{4} \mathrm{NO}_{2}$
Description of the products formed when each of these solids is heated is given below.

Solid	Description
A	- A green coloured powder. - A colourless diatomic gas at room temperature. - Water vapour
B	- A white oxide reacts with water to farm a basic solution. - Colourless diatomic gas at room temperature. - A reddish brown gas.
C	- Three products which are in the gaseous state.
D	- White Powder - Colourless di atomic gas at room temperature.
E	- Two products which are in the gaseous state.

(i) Identify solids A to E.
A \qquad B \qquad
C
D \qquad
E \qquad
(ii) Write the balanced chemical equations for the reactions take place on heating each of solid A to E. (Mention physical states of reactants and products.)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(II) Write one simple experiment each to identify gaseous products obtained when heating solid C.

Gaseous Product	Experiment

(b)(I) Successive ionization energies of an element A is given below.

	$I E_{1}$	$I E_{2}$	$I E_{3}$	$I E_{4}$	$I E_{5}$
Ionization energy $/ \mathrm{kmol}^{-1}$	578	1811	2745	11540	14842

(i) Identify the group of element A giving reasons.
\qquad
\qquad
(ii) The element A react with HCl and NaOH . Chloride of element A exist as a dimer. Identify the element A .
(iii) Draw the structure of the chloride A .
(iv) Explain why it exist as dimer.
\qquad
\qquad
\qquad
\qquad
(v) Write balanced chemical equations for the reactions of A .

With HCl \qquad
With NaOH \qquad
(II) (i) Complete the following nuclear reaction.
${ }_{26}^{56} \mathrm{Fe}+{ }_{2}^{1} H \rightarrow{ }_{2}^{4} \alpha+\cdots \ldots . . .$.
(ii) Write a method to distinguish $\mathrm{H}_{2} \mathrm{~S}$ and $\mathrm{D}_{2} \mathrm{~S}$ (D - Duclerium)
(iii) Aqueous NaOH and Al dust is added to an aqueous solution of nitrate ions and heated. It was observed the evolution of $\mathrm{NH}_{3}(\mathrm{~g})$ and formation of AlO_{2}^{-}ions.
i. Write the balanced oxidation half reaction.
ii. Write the balanced reduction half reaction.
iii. Write the balanced ionic equation.
\qquad
(03) (a) Standard hydration enthalpies of some species given below.

	$\Delta H_{h y d}^{\theta} / \mathrm{kJmol}^{-1}$
$\mathrm{~K}^{+}(a q)$	-305
$B r^{-}(a q)$	-351
$L i^{+}(a q)$	-499
$F^{-}(a q)$	-457

Standard lattice enthalpies of $\operatorname{KBr}(s)$ and $\operatorname{LiF}(s)$ are $668 \mathrm{kJmol}^{-1}$ and $1008 \mathrm{kJmol}^{-1}$ respectively.
i. Write the definition for the standard enthalpy of dissolution.
ii. Write balanced chemical equations for the standard dissolution enthalpy of
$\operatorname{KBr}(s)$ \qquad
$\operatorname{LiF}(s)$ \qquad
iii. Develop a thermochemical cycle to determine $\Delta H_{\text {dissolution }}^{\theta} \operatorname{of~} \operatorname{Br}(s)$ using given data.
iv. calculate $\Delta H_{\text {dissolution }}^{\theta}$ of $\operatorname{KBr}(s)$ using given data.
v. Develop a thermochemical cycle to determine $\Delta H_{\text {dissolution }}^{\theta}$ of $L i F(s)$ using given data.
vi. Calculate $\Delta H_{\text {dissolution }}^{\theta}$ of $\operatorname{LiF}(s)$ using data given.
\qquad
\qquad
\qquad
\qquad
(b) I. Standard molar entropy values of some species are given below.

	$S_{m}^{\theta} / \mathrm{kJmol}^{-1}$
$\operatorname{KBr}(s)$	+95.9
$\mathrm{LiF}(s)$	+35.9
$\mathrm{~K}^{+}(a q)$	+102.5
$B r^{-}(a q)$	+82.4
$\mathrm{Li}^{+}(a q)$	+13.4
$\mathrm{~F}^{-}(a q)$	-13.8

i. Calculate the entropy change of the dissolution of $\operatorname{KBr}(s)$
ii. Calculate the entropy change of the dissolution of $\operatorname{LiF}(s)$

II i. Write the equation which represent the relationship between $\Delta G, \Delta H$ and ΔS.
ii. Calculate the ΔG^{θ} for the dissolution of $\operatorname{KBr}(s)$ at $298 K$.
iii. Calculate the ΔG^{θ} for the dissolution of $\operatorname{LiF}(s)$ at 298 K .
iv. Compare the solubility of $\operatorname{KBr}(s)$ and $L i F(s)$ giving reasons. (Use the calculate data obtained in ii and iii above.)
(04) (a) I. 15.4 g of $\mathrm{CO}_{2}(\mathrm{~g})$ and 5.4 g of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ was given by the complete combustion of 0.05 mol of a hydrocarbon A, in the presence of Oxygen. Find the molecular formula of the Hydrocarbon A. ($C=12, H=1, O=16$)
II. $\quad \mathrm{X}, \mathrm{Y}$ and Z are three optically active isomers of A .

Only Y and Z evolve H_{2} gas with Na . X, Y and Z react with $\mathrm{HgSO}_{4}(\mathrm{aq}) /$ dil $\mathrm{H}_{2} \mathrm{SO}_{4}$ to give carbonyl compounds.
There are four α hydrogens in Y. (α Hydrogens are H atoms attached to C atom adjencent to carbonyl carbon $-\stackrel{\mathrm{C}}{\mathrm{C}}-\mathrm{C}$).
When X, Y and Z react with $\mathrm{H}_{2} / \mathrm{Ni}$ produce the same optically active compound D .
i. Identify X, Y, Z and D Draw the structures of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and D in the boxes given below.

ii. Write the structures of products when X, Y and Z react with $\mathrm{HgSO}_{4}(a q) /$ dil $\mathrm{H}_{2} \mathrm{SO}_{4}$
\square
iii. Complete the following reaction sequence starting from Z in above (i).

b. Draw the structures of the major products of the reactions given in the table below. Classify each reaction as,
A_{N} - Neucleophilic addition
A_{E} - Electrophilic addition
S_{N} - Neucleophilic substitution
S_{E} - Electrophilic substitution
E - Elemination
O - Oxidation, by writing $A_{N}, A_{E}, S_{N}, S_{E}, \mathrm{E}$ and O in appropriate cage.

Reactant	Reagent	Major Product	Type of Reaction
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$	$\mathrm{Br}_{2} / \mathrm{CCl}_{4}$		
	PCl_{5}		
	Anhy. $\mathrm{Al}_{2} \mathrm{O}_{3} / \Delta$		
	$\mathrm{CH}_{3} \mathrm{Cl} /$ Anhy AlCl_{3}		
	$\mathrm{H}^{+} / \mathrm{KMnO}_{4}$		

Third Term Test - 2018
 Chemisty 2018-Grade 12

Universal gas constant $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Avogadro constant $\quad N_{A}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$

PART B - ESSAY
Answer two questions only. (Each question carries 15 marks.)
(05) (a) I i.) Write the charles law.
ii) Derive the charles law using ideal gas equation.
(b) $\mathrm{CH}_{4}(\mathrm{~g})$ contains in a rigid vessel A of $4.157 \mathrm{dm}^{3}$ at $227^{\circ} \mathrm{C}$ and $1.5 \times 10^{5} \mathrm{~Pa}$ pressure.
1.0 mol of $\mathrm{O}_{2}(\mathrm{~g})$ contains in another rigid vessel B at $27^{\circ} \mathrm{C}$ and $2.0 \times 10^{5} \mathrm{~Pa}$

Both vessels were joined using thin tube of neligible volume. The tap was closed initially.
I Calculate
i) Number of moles of $\mathrm{CH}_{4}(\mathrm{~g})$ in vessel A.
ii) Volume of Vessel B.

II Temperature of the whole system was taken to $27^{\circ} \mathrm{C}$ after open the tap. There is no reaction between $\mathrm{CH}_{4}(\mathrm{~g})$ and $\mathrm{O}_{2}(\mathrm{~g})$. Calculate following.
i) Total pressure of the system.
ii) Mole fractions of $\mathrm{CH}_{4}(\mathrm{~g})$ and $\mathrm{O}_{2}(\mathrm{~g})$
iii) Partial pressures of $\mathrm{CH}_{4}(\mathrm{~g})$ and $\mathrm{O}_{2}(\mathrm{~g})$
iv) Total number of moles in Vessel A

III Temperature of the above system was taken to $127^{\circ} \mathrm{C}$ after open the tap. $\mathrm{CH}_{4}(\mathrm{~g})$ subject to combustion with $\mathrm{O}_{2}(\mathrm{~g})$ and from $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ Consider this system and calculate following.
i) Calculate number of moles of each gas in the system.
ii) Calculate total number of moles in the system.
iii) Calculate the total pressure of the system
iv) Calculate mole fractions of each gas in the system.
v) Calculate partial pressures of each gas in the system.

IV After completing the reaction in above (iii) temperature of the whole system was taken to $27^{\circ} \mathrm{C}$ calculate the total pressure of this system.
(c) i.) Write the Venda Waals equation and identify each term in it.
ii) What are the conditions that real gases reach to the ideal behaviour? Explain reasons.
iii) Draw Maxwell Baltzmann distribution curves for gases He, Ne, Ar under constant temperature in one diagram.
(06)(a) (i) Define standard enthalpy of combustion.
(ii) Define standard enthalpy of formation.
(b) Consider the reaction.

$$
\stackrel{\mathrm{O}}{\mathrm{O}} \mathrm{CH}_{3}-\mathrm{C}(\mathrm{~g})+\frac{5}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

i) Calculate the standard enthalpy change of above reaction using the thermochemical data given below at 298 K .

Bond	Standard enthalpy of bond dissociation / kJ mol
$C-C$	348
$C-H$	412
$C=O$	743
$O=O$	496
$O-H$	463

ii) Calculate the standard enthalpy change of above reaction using thermochemical data given below at 298 K .
$\left.\begin{array}{|c|c|}\hline \text { Species } & \begin{array}{c}\text { Standard enthalpy of formation / } \\ \mathrm{kJ} \mathrm{mol}^{-1}\end{array} \\ \hline \mathrm{O} \\ \mathrm{\|} \\ \mathrm{CH}_{3} \mathrm{C}-\mathrm{H}(\mathrm{g})\end{array}\right]-166$
iii) Explain reason for the difference in enthalpy values obtained the reaction in part (i) and (ii) above briefly.
(b) 722 kJ amount of heat is released when burning 14.5 g of butane $\left(C_{4} H_{10}(g)\right)$ gas and 102.9 kJ amount of heat is released when burning 2.1 g of gas propene $\left(C_{3} H_{6}(g)\right)$ under standard conditions. ($C=12, H=1, O=16$)
(i) Calculate the standard enthalpy of combustion for butane and propene.
(ii) Represent above enthalpies using equations.
(iii) Calculate heat released when burning 1 kg each of propene and butane,
(iv) Calculate the mass of $\mathrm{CO}_{2}(\mathrm{~g})$ released when burning 1 kg each of butane and propene.
(v) Explain what is the most efficient fuel according to the answer obtained above giving reasons.
(07) (a) $\quad 250.0 \mathrm{~cm}^{3}$ solution was prepared by dissolving 1.07 g of pure dry KIO_{3} which was measured accurately. $20.0 \mathrm{~cm}^{3}$ of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution of unknown concentration was required to react with I_{2} released when excess KI solution and $5 \mathrm{~cm}^{3}$ of dil $\mathrm{H}_{2} \mathrm{SO}_{4}$ is added to $25.0 \mathrm{~cm}^{3}$ of this solution.
(i) Write the balanced ionic equation for the reaction between I^{-}and IO_{3}^{-}in acidic medium.
(ii) Write the balanced ionic equation for the reaction between I_{2} and $S_{3} O_{3}^{2-}$
(iii) Calculate the concentration of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution.
($\mathrm{K}=39, \mathrm{I}=127, \mathrm{O}=16$)
(b) (i) Explain the amphoteric nature of water using reactions of NH_{3} and HCl with water.
(ii) Write balanced chemical equations for following.

1. NH_{3} as oxidizing agent.
2. NH_{3} as reducing agent.
3. $\mathrm{H}_{2} \mathrm{O}_{2}$ as oxidizing agent.
4. $\mathrm{H}_{2} \mathrm{O}_{2}$ as reducing agent.
5. $\mathrm{H}_{2} \mathrm{~S}$ as oxidizing agent.
6. $\mathrm{H}_{2} \mathrm{~S}$ as reducing agent.
(iii) Write balanced chemical equations for the heat dissociation of following compounds.
7. $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(s) \vec{\Delta}$
8. $\mathrm{Li}_{2} \mathrm{CO}_{3}(s) \vec{\Delta}$
9. $\mathrm{KHCO}_{3}(s) \xrightarrow[\Delta]{\vec{\Delta}}$
10. $\mathrm{NaNO}_{2}(s)+\mathrm{NH}_{4} \mathrm{Cl}_{(s)} \rightarrow$
11. $\mathrm{NH}_{4} \mathrm{NO}_{3}(s) \xrightarrow[\Delta]{\rightarrow}$
12. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(s) \xrightarrow[\Delta]{\rightarrow}$
(c) Explain simple experiment to show the existence of $N_{2}(g)$ in air.

PART C - ESSAY

Answer two questions only. (Each question carries $\mathbf{1 5}$ marks.)
(08) (a) i) Show how you would carry out the followings conversation not more than 6 steps.

ii) Using suitable chemicals given in the list show how would you carry out the following conversation.

PBr_{3}	Mg	$\mathrm{CH}_{3} \mathrm{Cl}$	$\mathrm{CH}_{3} \mathrm{OCH}_{3}$
AlCl_{3}	$\mathrm{Zn}(\mathrm{Hg})$	$\mathrm{CH}_{3} \mathrm{COCl}$	
	HCl	Cl_{2}	$\mathrm{H}_{2} \mathrm{SO}_{4}$
	KMnO_{4}	$\mathrm{D}_{2} \mathrm{O}$	PCC

(b) Show how you would synthesize.
ii) Mention the major product and minor product obtained in the presence of HBr and $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$. Write the mechanism relevant to the formation of major product.
(09) Use following flow chart to answer questions given below.
(a) Identify A, B, C, D, E, F, G, H, I, J, K

(i) Identify $A B C D F G H I J K$
(ii) Write the balanced chemical equation for the reaction between concentrated solution of D and $\mathrm{KMnO}_{4}(a q)$
(iii) What is the standard experiment to identify gas H
(iv) Distinguish following using the given method.
(b)
(a) $\mathrm{BaSO}_{3}(\mathrm{~s})$
$\left.\begin{array}{l}\mathrm{BaSO}_{3}(\mathrm{~s}) \\ \mathrm{BaS}_{2} \mathrm{O}_{3}(\mathrm{~s}) \\ \mathrm{BaCO}_{3}(\mathrm{~s})\end{array}\right\} \quad \begin{gathered}\text { adding } \\ \text { dil. } \mathrm{HNO}_{3}\end{gathered}$
(b) $\operatorname{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ $\left.\begin{array}{l}\mathrm{MgCO}_{3}(\mathrm{~s}) \\ \left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}(\mathrm{~s})\end{array}\right\}$ heating
(c) i) Draw the structures of Oxyacids of chlorine exist in different oxidation states.
ii) Arrange them in the increasing order of,
a) Acidic property
b) Oxidizing ability.
(10) (a) i) X, Y, Z are three $3 d$ elements. Aqueous solutions of the ions formed by them in the form of M^{3+} are purple in colour. Increasing order of the maximum oxidation state obtained by them in compounds are $\mathrm{y}<\mathrm{x}<\mathrm{z}$
(i) Identify elements X, Y, Z
(ii) Write structural formulas of complex ions formed by X with $\mathrm{NH}_{3} \mathrm{Y}$ with $\mathrm{H}_{2} \mathrm{O}$ and Z with Cl^{-}
(iii) Mention oxidation numbers of oxides formed by X and their acidic, basic and amphoteric properties.
(iv) What are the oxidation states of Y obtained in compounds.
(v) Mention a use of a chloride of Y as a catalyst and use of Y as alloy.
(vi) What is the oxianion formed with the maximum oxidation state of Z . Write the balanced chemical equation for the reaction with this anion and concentrated base.
(b) 10 g of a mixture of iron ore contaminated with FeO and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ was dissolved in dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and excess KI solution was added. 200 ml solution where all atoms of iron converted to Fe^{2+} was named as A. 20 ml of $0.25 \mathrm{M} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ was required to titrate 25 ml of solution A. $25 \mathrm{~cm}^{3}$ of 0.05 moldm $^{-3} \quad K_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \quad$ acidic solution was required to titrate another $25 \mathrm{~cm}^{3}$ volume of solution A.

1. Write the balanced chemical equation relevant to the reaction of $\mathrm{H}_{2} \mathrm{SO}_{4}$ with iron ore.
2. Write the balanced ionic equation relevant to the reaction when $K I$ added to the solution.
3. Write the balanced ionic equation for the reaction of titration with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$.
4. Write the balanced ionic equation for the reaction of A with $\mathrm{H}^{+} / \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

5 Calculate mass percentages of FeO and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ in the mixture.

Part I

$(1) 3$	$(11) 1$	$(21) 2$	$(31) 5$	$(41) 2$
$(2) 5$	$(12) 2$	$(22) 2$	$(32) 5$	$(42) 1$
$(3) 2$	$(13) 4$	$(23) 5$	$(33) 5$	$(43) 3$
$(4) 3$	$(14) 3$	$(24) 1$	$(34) 5$	$(44) 1$
$(5) 5$	$(15) 2$	$(25) 3$	$(35) 5$	$(45) 4$
$(6) 5$	$(16) 3$	$(26) 2$	$(36) 5$	$(46) 4$
$(7) 2$	$(17) 2$	$(27) 2$	$(37) 5$	$(47) 3$
$(8) 2$	$(18) 2$	$(28) 5$	$(38) 5$	$(48) 4$
$(9) 3$	$(19) 2$	$(29) 1$	$(39) 1$	$(49) 4$
$(10) 3$	$(20) 5$	$(30) 3$	$(40) 4$	$(50) 1$

Part II

Part - A - Structured Essay

- Answer all four questions on this paper itself. (Each questions carries 10 marks)
(01) a. I. Methyl nitrate is methyl ester of nitric acid and has the chemical formula $\mathrm{CH}_{3} \mathrm{NO}_{3}$. It is a colourless volatile liquid and it is explosive. Its Skelton given below.

i. Draw the most acceptable lewis structure for methyl nitrate.

ii. Draw resonance structures for above molecule. Giving reasons comment on their stabilities.

stable
- - eve charge on electronegative oxygen
stable
- -ve charge on
electronegative
oxygen.

Unstable

- -ve charge on
electronegative 0
- Charge distribution (2marks $\times 10$ is high 20 works)
iii. Draw a sketch of the structure of above molecule giving approximate bond angles.

II. State the following considering hypothetical Lewis structure given below,
i. Electron pair geometry around the atom.
ii. Shape around the atom.
iii. Hybridization of the atom given in the table.

(b) Identify atomic / hybrid orbitals involved in the formation of the following bonds in the lewis structure given below.

$$
\begin{gathered}
H-{\underset{N}{1}}_{1}^{\ddot{1}} \underset{d_{1}}{\ddot{N}}-H \\
H \quad H
\end{gathered}
$$

i. $N_{\odot}-N_{\odot} ; N_{\odot} s p^{3}$ hybridorbital $N_{\Theta} s p^{3}$ hybrid orbital
ii. $\mathrm{N}_{\circ}-\mathrm{H}$; $\mathrm{N}_{\odot} s p^{3}$ hybrid orbital H unhybrid is orbital

$$
\text { (3 marks } \times 4=12 \text { marks })
$$

(c) $\mathrm{Xe}, \mathrm{I}_{3}^{-}, \mathrm{CH}_{4}$, aqueous $\mathrm{NaCl}, \mathrm{HF}$
of the substances given above, which one/ones will have the forces given below.
i. lon-Induce dipole interaction

s. "
ii. lon -dipole interactions -aqueous NaCl
iii. London dispersion forces - $-\mathrm{CH}_{4} \ldots \mathrm{x}$...... Xe
iv. Hydrogen bonds - \qquad HF

$$
(2 \text { marks } \times 5=10 \text { marks) }
$$

(O2) (a) Test tubes labelled A to E contain following solids (not in order)
$\mathrm{KNO}_{3},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}, \mathrm{LiNO}_{3},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{NH}_{4} \mathrm{NO}_{2}$
Description of the products formed when each of these solids is heated is given below.

Solid	Description
A	- A green coloured powder.
	- A colourless diatomic gas at room temperature.
B	- A whiter vapour
	- Colourless diatomic gas at room temperature.
C	- A reddish brown gas.
D	- Three products which are in the gaseous state.
E White Powder	
	- Colourless di atomic gas at room temperature.

[^0](ii) Write the balanced chemical equations for the reactions take place on heating each of solid A to E. (Mention physical states of reactants and products.)

(II) Write one simple experiment each to identify gaseous products obtained when heating solid C .

(b)(I) Successive ionization energies of an element A is given below.

	$I E_{1}$	$I E_{2}$	$I E_{3}$	$I E_{4}$	$I E_{5}$
Ionization energy $/ \mathrm{kmol}^{-1}$	578	1811	2745	11540	14842

(i) Identify the group of element A giving reasons.

Group 13.
 it has nobel gas configuration so it needs lot of energy to loose dhother electron from next energy level.
(ii) The element A react with HCl and NaOH . Chloride of element A exist as a dimer.

Identify the element A .
..
(iii) Draw the structure of the chloride A .

(iv) Explain why it exist as dimer.

Ally is on electron deficient' compound and exist as a dimer thus attaining
\qquad
(v) Write balanced chemical equations for the reactions of A .

$$
\begin{aligned}
& 2 \mathrm{Al}(s)+6 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{AlCl} 3 \mathrm{caq})+3 \mathrm{H} 2(\mathrm{~g}) \quad \text { OR } \\
& \text { With } \mathrm{HCl}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (II) (i) Complete the following nuclear reaction. }
\end{aligned}
$$

(4 marks)
(ii) Write a method to distinguish $\mathrm{H}_{2} \mathrm{~S}$ and $\mathrm{D}_{2} \mathrm{~S}$ (D - Duclerium)
D and H are isotopes, $2 D$, $1 H$ Since same no of electrons Chemical properties are identical equal volumes at same temperature and rpressure. $D_{2 s}$ has higher mass than $H_{2 s}$.- (6 marks)
(iii) Aqueous NaOH and Al dust is added to an aqueous solution of nitrate ions and heated. It was observed the evolution of $\mathrm{NH}_{3}(\mathrm{~g})$ and formation of AlO_{2}^{-}ions.
i. Write the balanced oxidation half reaction.

$$
\left.\mathrm{Al}(s)+4 \mathrm{OH}(\mathrm{aq}) \longrightarrow \mathrm{AlO}_{2} \mathrm{Ca}\right)+2 \mathrm{H}_{2} \mathrm{O}(u)+3 \mathrm{e}
$$

ii. Write the balanced reduction half reaction.

$$
\mathrm{NO}_{3}\left(a_{2}\right)+6 \mathrm{H}_{2} \mathrm{O}(9)+8 e \rightarrow \mathrm{NH}_{3} \mathrm{cg}_{2}+9 \mathrm{OH}^{-} \text {(aq) }
$$

iii. Write the balanced ionic equation.

$$
8 \mathrm{AlCs}+5 \mathrm{OH}^{-}\left(\mathrm{aq}+3 \mathrm{NO} \mathrm{Caq}+2 \mathrm{H}_{2} \mathrm{O}(1) \rightarrow 8 \mathrm{AlO}_{2}^{-} \mathrm{Caq}\right)+3 \mathrm{NH} \mathrm{Cg}
$$

$$
(8 \text { marks } \times 3=24 \text { marks })
$$

	$\Delta H_{h y d}^{\theta} / \mathrm{kJmol}^{-1}$
$\mathrm{~K}^{+}(a q)$	-305
$B r^{-}(a q)$	-351
$L i^{+}(a q)$	-499
$\mathrm{~F}^{-}(a q)$	-457

Standard lattice enthalpies of $K B r(s)$ and $\operatorname{LiF}(s)$ are $668 \mathrm{kJmol}^{-1}$ and $1008 \mathrm{kJmol}^{-1}$ respectively.

It is the enthalpy change that occurs when a mole of a substance under the standard state is dissolved in an excess of solvent to form a solution (06 marks)
ii. Write balanced chemical equations for the standard dissolution enthalpy of

iii. Develop a thermochemical cycle to determine $\Delta H_{\text {dissolution }}^{\theta} \operatorname{of~} \operatorname{Krr}(s)$ using given data.

iv. calculate $\Delta H_{\text {dissolution }}^{\theta} \operatorname{KBr}(s)$ using given data.

$$
\begin{aligned}
& =1 \times 668 \mathrm{~kJ} \text { mol- }+1 \times 305 \mathrm{kJmol}+1 \times-351 \mathrm{kJmol} \\
& =(668-305-351)<\mathrm{Jmol}
\end{aligned}
$$

v. Develop a thermochemical $\overline{\text { cycle to determine }} \Delta H_{\text {dissolution }}^{\theta}$ of KiF (s) using given data.

vi. Calculate $\Delta H_{\text {dissolution }}^{\theta}$ of $\operatorname{LiF}(s)$ using data given.
(3 marks $\times 4=12$ marks)
\qquad

\qquad
\qquad
(b) I. Standard molar entropy values of some species are given below.

	$S_{m}^{\theta} / \mathrm{kJmol}^{-1}$
$\mathrm{KBr}(\mathrm{s})$	+95.9
$\mathrm{LiF}(\mathrm{s})$	+35.9
$\mathrm{~K}^{+}(a q)$	+102.5
$B r^{-}(a q)$	+82.4
$\mathrm{Li}^{+}(a q)$	+13.4
$\mathrm{~F}^{-}(a q)$	-13.8

i. Calculate the entropy change of the dissolution of $\operatorname{KBr}(s)$

$$
\begin{aligned}
& \mathrm{Z} \cdot \mathrm{KBr}(\mathrm{~S}) \xrightarrow{ } \mathrm{K}^{+} \text {(aq) }+\mathrm{Br}^{-} \text {(aq) } \\
& \Delta S^{G}=S^{6}\left(K^{+}(a q)+S^{\epsilon}\left(\mathrm{Br}^{-}(a q)\right)-S^{\epsilon}(K B r(S))\right. \\
& =102.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}+82.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}-95.9 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \\
& =89.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \sim(2 \text { marks } \times 4=8 \text { marks) }
\end{aligned}
$$

ii. Calculate the entropy change of the dissolution of $\operatorname{LiF}(s)$

$$
\begin{aligned}
& \operatorname{LiF}(s) \longrightarrow \mathrm{Li}^{+}(a \varepsilon)+\mathrm{F}^{-}(a \varepsilon) \\
& \Delta S^{\epsilon}=S^{\epsilon}\left(L^{t}(a q)\right)+S^{\epsilon}\left(F^{-}(a q)\right)-S^{\epsilon}\left(L_{i} F(s)\right)= \\
& =13.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \div 13.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}-35.9 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \\
& =-36.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \sim(2 \operatorname{marks} \times 4=8 \mathrm{marks})
\end{aligned}
$$

II i. Write the equation which represent the relationship between $\Delta G, \Delta H$ and ΔS.

$$
\Delta G=\Delta H-T \Delta S \quad(6 \text { marks })
$$

ii. Calculate the ΔG^{θ} for the dissolution of $\operatorname{KBr}(s)$ at 298 K .

$$
\begin{aligned}
& \Delta G^{G}=12 \mathrm{~kJ} \mathrm{~mol} \\
&=-14.522 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& 2 \mathrm{mor} \times 8 \times 5 \quad(10 \mathrm{morls})
\end{aligned}
$$

iii. Calculate the ΔG^{θ} for the dissolution of $L i F(s)$ at 298 K .

$$
\begin{aligned}
& \Delta G^{\theta}=52 \mathrm{~kJ}^{2} \mathrm{mal}^{-1}-298 \mathrm{~K}_{x}-36.3 \times 10^{-3} \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{k}^{-1} \\
&=+62.62 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
&(2 \text { marks } \times 5=10 \mathrm{morks})
\end{aligned}
$$

iv. Compare the solubility of $\operatorname{KBr}(s)$ and $L i F(s)$ giving reasons.
(Use the calculate data obtained in ii and iii above.)
ΔG^{\in} of KBr is (-)we value and ΔG^{ϵ} of Li is a positive value ${ }^{(022 \times 2)}$ Therefore solubility of
\therefore Li is lower than $\mathrm{KBr}\left({ }^{(014)}, 02 \times 2, * 4=8 \mathrm{mer} \mathrm{ks}\right)$
(04) (a) I. 15.4 g of $\mathrm{CO}_{2}(\mathrm{~g})$ and 5.4 g of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ was given by the complete combustion of 0.05 mol of a hydrocarbon A , in the presence of Oxygen. Find the molecular formula of the Hydrocarbon A .

$$
\text { for } 1 \mathrm{mcl} \frac{0.35 \mathrm{mc}}{0.05}=x=7
$$

$$
\text { for } \begin{aligned}
1 \mathrm{mcl} & =\frac{0.3 \mathrm{mdl}}{0.05 \mathrm{md}}=y / 2 \\
y & =12
\end{aligned}
$$

$\begin{array}{ll}H y d r o ' c a r b o n ~ & C_{7} H_{12} \\ \text { (} 2 \text { marks } \times 10=20 \text { marks) }\end{array}$
II. X, Y and Z are three optically active isomers of A .

Only Y and Z evolve H_{2} gas with Na . X, Y and Z react with $\mathrm{HgSO}_{4}(\mathrm{aq}) /$ dil $\mathrm{H}_{2} \mathrm{SO}_{4}$ to give carbonyl compounds.
There are four α hydrogen in Y. (α Hydrogen are H atoms attached to C atom adjencent to

When X, Y and Z react with $\mathrm{H}_{2} / \mathrm{Ni}$ produce the same optically active compound D .
i. Identify X, Y, Z and D Draw the structures of X, Y, Z and D in the boxes given below.

Y

Z
D

$$
\text { (5marks } \times 4=20 \text { marks })
$$

$$
\begin{aligned}
& \begin{array}{l}
(C=12, H=1, O=16) \\
\left(x H y+(x+y / 4) \mathrm{O}_{2}\right. \text { (g) }
\end{array} \rightarrow x \mathrm{CO}_{2} \mathrm{cg} 3+y / 2 \mathrm{H}_{2} \mathrm{O}(g)^{2} . \\
& n_{\left(O_{2(g)}\right.}=\frac{15.4 g^{2}}{44 \mathrm{gmal}^{-1}}=0.35 \mathrm{mal} \quad n_{\mathrm{H}_{2} \mathrm{O}}=\frac{5.49^{2}}{18 \mathrm{gmal}^{-1}}=0.3 \mathrm{mcl}
\end{aligned}
$$

ii. Write the structures of products when X, Y and Z react with $\mathrm{HgSO}_{4}(a q) /$ dill $\mathrm{H}_{2} \mathrm{SO}_{4}$

iii. Complete the following reaction sequence starting from Z in above (i).

b. Draw the structures of the major products of the reactions given in the table below. Classify each reaction as,
A_{N} - Neucleophilic addition
A_{E} - Electrophilic addition
S_{N} - Neucleophilic substitution
S_{E} - Electrophilic substitution
E - Elemination
0 - Oxidation, by writing $A_{N}, A_{E}, S_{N}, S_{E}, \mathrm{E}$ and O in appropriate cage.

$$
\begin{gathered}
(4 \text { marks } \times 10 \\
=40 \text { marks })
\end{gathered}
$$

part-B Essay:.
05. The volume of a fixed mass of gas under
(a) I (i) constant pressure is diretly proportional to the absolute temperature of the gas.
(05)
(ii)

$$
\begin{aligned}
P V & =n R T \\
V & =\frac{n R T}{P}
\end{aligned}
$$

When the pressure of a fixed mass of agas is constant

$$
\begin{aligned}
& \frac{v}{T}=k \\
& v=k T \\
& v=\alpha T
\end{aligned}
$$

$$
(02 \times 5)
$$

(b) $[$ (i)

$$
\begin{align*}
& P V=n R T^{-}(02) \\
& 1.5 \times 10^{5} \mathrm{~Pa} \times 4.157 \times 10^{-3} \mathrm{~m}^{3}=n \times 8.314 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1} \times 500 \mathrm{~K} \\
&(02+01) \\
& n=0.15 \mathrm{~mol} \\
& P V=n R T \tag{08}\\
& 2.0 \times 10^{5} \mathrm{~Pa} \times V=1.0 \mathrm{~mol} \times 8.314 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \\
& V=0.012471 \mathrm{~m}^{3} \\
& \\
&=12.471 \mathrm{dm}^{3} \tag{02+01}
\end{align*}
$$

(II)

II (1) $P V=n R T$

$$
\begin{aligned}
& =12.471 \text { dm on } \\
& P V=n R T \\
& P \times(4.157+12.471) \times 10^{-3} \mathrm{~m}^{3}=(0.15+1.0) \mathrm{md} \times 8.314^{5} \mathrm{~mol}^{-1} \mathrm{k}^{-1} \\
& \times 300 \mathrm{k} \\
& \\
& \hline 02+01)
\end{aligned}
$$

$$
\begin{equation*}
P=\frac{1: 15 \times 8.314 \times 30}{16.628 \times 10^{3}} \tag{02+01}
\end{equation*}
$$

$$
\begin{aligned}
& 300 k \\
& 0 \\
& \hline 02+01)
\end{aligned}
$$

$$
=1.725 \times 10^{5} \mathrm{~Pa}
$$

$$
306
$$

(ii)

$$
\begin{aligned}
& X_{\mathrm{CH}_{49}}=\frac{n_{\mathrm{CH}_{4}}}{n_{T}}= \frac{0.15 \mathrm{~mol}}{(1+0.15) \mathrm{mol}}=\frac{0.15}{1.15}=\frac{15}{145}=\frac{3}{23} \\
&= 0.13 \quad(01+01) \\
& X_{\mathrm{O}_{2}(9)}=\frac{n_{O_{2}}}{n_{T}}=\frac{1.0 \mathrm{~mol}}{1.15 \mathrm{~mol}}=\frac{20}{23}=0.8695 \\
&(01+01) \quad(02)=0.87
\end{aligned}
$$

(iii)

$$
\begin{array}{rlr}
P_{\left(H_{4}(9)\right.} & =X_{\left(\mathrm{H}_{4}(9)\right.} \times P_{T} & \text { (O2) } \\
& =\frac{3}{23} \times 1.725 \times 10^{5} \mathrm{~Pa} & (01+01) \\
& =2.25 \times 10^{4} \mathrm{~Pa} & (01+01) \\
P_{\mathrm{O}_{2}(9)} & =X_{\mathrm{O}_{2}(9)} \times P_{T} & (01+01) \\
& =\frac{20}{23} \times 1.725 \times 10^{5} \mathrm{~Pa} & (01+01) 10
\end{array}
$$

(IV) If no of moles in vessel A is x, no of moles in vessel B is $(1.15-x) \mathrm{mol}$.

Pressure in vessel $A=$ Pressure in vessel $B\left(0_{0}\right)$

$$
\begin{aligned}
& P=\frac{n R T}{V} \\
& \begin{aligned}
\frac{x \mathrm{~mol} \times R^{\prime} \times 300 \mathrm{~K}}{4.157 \times 10^{-3} \mathrm{~m}^{3}} & =\frac{(1.15-x) \mathrm{mol} \times R^{1} \times 300 \mathrm{~K}}{12.4 \mathrm{~K} 1 \times 10^{-5} \mathrm{~m}^{3}}(0.2+01) \\
3 x & =1.15-x \\
4 x & =1.15 \\
x & =0.2875
\end{aligned} \quad(02+01)
\end{aligned}
$$

Moles in vessel A $\quad=0.2875 \mathrm{~mol}(02+01)$
$\mathrm{CH}(9) \quad 2 \mathrm{O}(\mathrm{g}) \longrightarrow \mathrm{CO}_{2}(9)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \mathrm{OZ}$
(i) $\mathrm{CH}_{4}^{(9)}+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2} \longrightarrow 1.0 \mathrm{~mol} \longrightarrow\left(\mathrm{O}_{4}\right)$
0.15 mol 1.0 mol
$\begin{aligned} &\left.\text { Amount of } \mathrm{O}_{2} \text { react with }\right\}=0.15 \mathrm{~mol} \times 2 \quad \text { (OZ) } \\ & 0.15 \mathrm{~mol} \text { of } \mathrm{CH}_{4}\end{aligned}$
Remaining amount of $\mathrm{O}_{2}=(1-0.30) \mathrm{mol}=0.70 \mathrm{~mol}$
Amount of CO2cg formed $=0.15 \mathrm{~mol}(0.2)$
Amount of $\mathrm{H}_{2} \mathrm{Ocg}=2 \times 0.15 \mathrm{~mol}=0.30 \mathrm{~mol}$
(ii) Total number of gaseous $\underset{\text { moles }}{\text { Remaining }}+\mathrm{O}_{2}+\mathrm{CO}_{2}+n_{\mathrm{H}_{2} \mathrm{O}} \mathrm{Cg}$) 12

$$
\begin{aligned}
& =(0.70+0.15+0.30) \mathrm{mol} \\
& = \\
& (1.15 \mathrm{~mol}
\end{aligned}
$$

(02)
(iiI)

$$
\begin{align*}
& \text { MV } \begin{aligned}
& m R T \\
& P \times 16.628 \times 10^{-3} \mathrm{~m}^{3}=1.15 \mathrm{~mol} \times 8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 400 \mathrm{~K} . \\
&=2.3 \times 10^{5} \mathrm{~Pa} \quad(01+01)
\end{aligned}
\end{align*}
$$

(IV)

$$
\begin{align*}
& X_{\mathrm{O}_{2}(\mathrm{~g})}=\frac{0.70 \mathrm{~mol}}{1.15 \mathrm{~mol}}=\frac{14}{23} \tag{02}\\
& X_{\mathrm{CO}_{2}(\mathrm{~g})}=\frac{0.15 \mathrm{~mol}(01+01)}{1.15 \mathrm{~mol}}=\frac{3}{23} \tag{OD}\\
& X_{\mathrm{H}_{2} \mathrm{O}(\mathrm{OH}(\mathrm{O})} \\
& (02) \\
& =\frac{0.30 \mathrm{~mol}}{1.15 \mathrm{~mol}(01+01)_{5}}=\frac{6}{23(02)}
\end{align*}
$$

(iv)

$$
\begin{aligned}
P_{\mathrm{O}_{2}(g)} & =\frac{14}{23} \times 2.3 \times 10^{5} \mathrm{~Pa} \\
& =1.4 \times 10^{5} \mathrm{~Pa} \\
P_{\left(\mathrm{O}_{2}(g)\right.} & =\frac{3}{23} \times 2.3 \times 10^{5} \mathrm{~Pa} \\
& =3 \times 10^{4} \mathrm{~Pa} \\
P_{\mathrm{H}_{2} \mathrm{O}(9)} & =\frac{6}{23} \times 2.3 \times 10^{5} \mathrm{~Pa} \\
& =6 \times 10^{4} \mathrm{~Pa}
\end{aligned}
$$

12
$(61+01)$
$(01+01)$
$61+01)$
$(01+01)$
$01+01)$
($01+\infty$)

IV Total no of gaseous moles at $27^{\circ} \mathrm{C}=\mathrm{Remaining}_{\mathrm{O} 2}$ t formed.

$$
\begin{aligned}
& =0.7 \mathrm{~mol}+0.15 \mathrm{~mol} \\
& =0.85 \mathrm{~mol} . \quad(02+01) \\
& =02+01)
\end{aligned}
$$

$$
P V=n R T
$$

$$
\begin{aligned}
& P V=n R T \\
& P \times 16.628 \times 10^{-3} \mathrm{~m}^{3}=0.85 \mathrm{~mol} \times 8.314 \mathrm{Imol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \\
& (02+01)
\end{aligned}
$$

$$
P=1.275 \times 10^{5} \mathrm{~Pa} \quad(02+01)
$$

(c) (i)

$$
\left(P+\frac{m^{2} a}{v^{2}}\right)(v-n b)=n R T
$$

$P=$ Pressure.
$V=$ Volume.
$n=$ Amount of substance .
$R=$ Universal gas constant
$T=$ Absolute temperature.
($01 \times b$)
a and b are Dander walls constants for real gases.
(II) Real gases reach to ideal behaviour at high temperatures and low pressures.

Reason:- When pressure decreases volume occupies by the gas increases. \therefore distance between molecules increases while, strength of intermolecular attractions decreases.
When compared with total volume of the gas, volume of molecules is very small.
When temperature increases volume increases, Kinetic energy of molecules increases. Intermolecular attractions among. molecules become weak. When compared with total volume, volume of molecules is very small. (02 $\times 5$)
iii

06. (a) (i) It is the enthalpy change that occurs when one mole of an element or a compound in the standard state undergoes complete combustion in an excess amount of oxygen. 10
(ii) It is the enthalpy change that occurs when ane mole of the compound is formed in the standard state from the constituent elements in the standard state.

10
(b) ($)$

$$
\mathrm{CH}_{3}-\mathrm{C}^{0}-1+(9)+\frac{5}{2} \mathrm{O}_{2}(9) \longrightarrow 2\left(\mathrm{O}_{2}(9)+2 \mathrm{H}_{2} \mathrm{O}(9)\right.
$$

$$
\Delta H_{r}^{\Theta}=\begin{align*}
& \text { Standard bond } \tag{05}\\
& \text { dissociation enthalpy } \\
& \text { of bonds broken }
\end{aligned} \quad \begin{aligned}
& \text { Standard bond } \\
& \text { dissociation } \\
& \text { enthalpy of bonds } \\
& \text { formed }
\end{align*}
$$

(H)
(iii) Bond dissociation enthalpies given in (i) above are not band dissociation enthalpy of relevant compound.
(b) (1)

Heat released when burning $=\frac{722 \mathrm{~kJ}}{0.25 \mathrm{~mol}}$ 1 mol of butane.

$$
=2888 \mathrm{~kJ} \mathrm{~mol}
$$

Standard combustion enthalpy $=2-2888 \mathrm{kJmol}$

$$
n_{\text {propene }}=\frac{2.1 \mathrm{~g}}{42 \mathrm{gmal}}=0.05 \mathrm{~mol}
$$

Heat released when burning

$$
==\frac{102.9 \mathrm{~kJ}}{0.05 \mathrm{~mol}}
$$

$$
=2058 \mathrm{kJmo}^{-1}
$$

(ii)
(05)

$$
\begin{aligned}
& \mathrm{C}_{4} \mathrm{H}_{10}(9)+\frac{13}{2} \mathrm{O}_{2}(9) \longrightarrow 4 \mathrm{CO}_{2}(9)+5 \mathrm{H}_{2} \mathrm{O} \\
& \text {; } \Delta H_{c}^{*}=-2888 \mathrm{kmm}^{-1} \\
& \text { (os) } \\
& \mathrm{C}_{3} \mathrm{H}_{6}(9)+\mathrm{O}_{2}(9) \longrightarrow 3 \mathrm{CO}_{2}(9)+3 \mathrm{H}_{2} \mathrm{C}(\mathrm{l}) \\
& \text {; } \Delta_{C} H^{\theta}=-2058 \mathrm{kJmal}_{\text {ma }}{ }^{-1}
\end{aligned}
$$

$$
\begin{align*}
& \Delta H_{\gamma}^{\beta}=\sum \Delta H_{f}^{\theta}\left(\varepsilon, \quad-\sum \Delta H_{f}^{\theta}(\text {) (05) }\right. \\
& =\{(2 \times(-394)+2 \times(-242))-(-166)\} \mathrm{kJ} \mathrm{~mol} \\
& =-1106 \mathrm{~kJ} \mathrm{mo}^{-1} \quad(05+01) \tag{25}\\
& (12+02)
\end{align*}
$$

$$
\begin{align*}
& =\left\{\left(4 \times 412+348+743+\frac{5}{2} \times 446\right)-(4 \times 743+4 \times 4633)\right\} \\
& \mathrm{kJ} \text { ma } \\
& \text { (} 12+02 \text {) } \\
& =-845 \mathrm{~kJ} \mathrm{mot}(05+01) \tag{25}
\end{align*}
$$

(II) Heat released when burning $=\frac{2888}{589} \mathrm{~kJ}_{\times 1000 \mathrm{~g}}$ 1 kg of butane.

$$
\begin{aligned}
&=49793.10 \mathrm{~kJ} \\
& \begin{aligned}
& \text { Heat released when burning } \\
& 1 \mathrm{~kg} \text { of propene }
\end{aligned} \\
&=\frac{2058 \mathrm{~kJ} \times 1000 \mathrm{~g}}{42 \mathrm{~g}} \\
&=49000 \mathrm{~kJ}
\end{aligned}
$$

(iv) Mass of CO_{2} released when $\begin{gathered}\text { burning } 1 \text { leg of butane }\end{gathered}=\left\{\frac{4 \times 449 \times 1000 \mathrm{~g}}{589}\right.$

Mass of CO_{2} released when burning l kg at propene.
3034.489
3.03 kg

$$
\begin{aligned}
\}= & \frac{3 \times 449 \times 1000 g}{42 g} \\
& 3142.86 g
\end{aligned}
$$

Butane
(v) Reason:- Minimum pollution in environment due to minimum evolution of CO_{2}

$$
(02 \times 10)
$$

07 (a)

$$
\begin{align*}
& 2 \mathrm{IO}_{3} \operatorname{cap}^{2}+1 \mathrm{H}^{+}(\mathrm{aq})+10 \mathrm{e} \longrightarrow \mathrm{I}_{2}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(1) \tag{i}\\
& \text { (1) }+ \text { (2) } \times 5 \\
& 2 I^{-}\left(a_{q}\right) \longrightarrow I_{2}\left(a_{q}\right)+2 e \tag{2}\\
& 2 \mathrm{IO}_{3}^{-}+12 \mathrm{H}^{+}+10 \mathrm{I}^{-} \longrightarrow 6 \mathrm{I}_{2}+6 \mathrm{H}_{2} \mathrm{O}
\end{align*}
$$

(il) $I_{\text {aq) }} \quad 2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2}(\overline{a q}) \longrightarrow \mathrm{S}_{4} \mathrm{O}_{6}^{2-(a q)}+2 \overline{\operatorname{laq}}(\mathrm{aq})(\mathrm{o})$
चनक: $1: 2$

$$
\mathrm{n}_{\mathrm{KIO}_{3}}=\frac{1.07 \mathrm{~g}}{214 \mathrm{~g} \mathrm{mal}^{-1}}=0.005 \mathrm{~mol}
$$

No of moles of $I O_{3}^{-}$in $25 \mathrm{~cm}^{3}=\frac{0.005 \mathrm{~mol}}{250 \mathrm{~cm}^{3}} \times 25 \mathrm{~cm}^{3}$

$$
0.0005 \mathrm{~mol}
$$

Amount of I_{2} released $=\frac{3}{1} \times 0.0005 \mathrm{~mol}$
0.0015 mol

Amount of $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$ consumed $=\frac{2}{1} \times 0.0015 \mathrm{~mol}$

$$
0.003 \mathrm{~mol}
$$

$$
\text { Concentration of } \begin{aligned}
\mathrm{S}_{2} \mathrm{O}_{3}^{2-} & =\frac{0.003 \mathrm{~mol}}{20 \times 10^{-3} \mathrm{dm}^{3}} \\
& =0.15 \mathrm{~mol} \mathrm{dim}
\end{aligned}
$$

(b) (i) $\left.\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(1) \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\overline{\mathrm{OH}}(\mathrm{aq}) \mathrm{a}\right)$

Here proton: is donated by water :(oz)
Therefore behave as an acid. (02)

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(1) \longrightarrow \mathrm{H}_{3} \mathrm{O}(\mathrm{aq})+\mathrm{CT}(\mathrm{aq})(05)
$$

Here proton is accepted by water (03) - Therefore behave as base.
\therefore Water con act as an acid as well as base. (05)

$$
25
$$

(ii) $1.2 \mathrm{Na}(\mathrm{S})+2 \mathrm{NH}_{3}(l) \longrightarrow 2 \mathrm{NaNH}_{2}\left(\mathrm{SO}+{ }_{2}(g)\right.$
$6003 \mathrm{Mg}(s)+2 \mathrm{~N}+3(l) \longrightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2}(\mathrm{~s})+3 \mathrm{H}_{2}(9)$
2. $\left.3 \mathrm{Cl}_{2}(g)+2 \mathrm{NH}_{3} \mathrm{Cg}\right) \longrightarrow 2 \mathrm{~N}_{2}(g)+6 \mathrm{HCl}(g)$
$6003 \mathrm{CuO}(\mathrm{s})+2 \mathrm{NH}_{3}(g) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{Cu}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
3. $2 \mathrm{H}^{+}\left(\mathrm{a}_{q}\right)+\mathrm{H}_{2} \mathrm{O}_{2}\left(a_{q}\right)+2 \mathrm{KI}\left(\mathrm{a}_{q}\right) \longrightarrow \mathrm{I}_{2}\left(\mathrm{aq}_{q}\right)+2 \mathrm{H}_{2} \mathrm{O}()$ $+2 K^{+}(a q)$
$62 m=2 \mathrm{FeSO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{2}\left(\mathrm{a}_{9}\right)+\mathrm{H}_{2} \mathrm{SO}_{4}\left(\mathrm{aq}_{9}\right) \longrightarrow \mathrm{Fe}_{2}\left(\mathrm{CO}_{4}\right)\left(\mathrm{a}_{4}\right)$

$$
+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{e})
$$

4. $2 \mathrm{KMnO}_{4}(\mathrm{aq})+5 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longrightarrow 2 \mathrm{MnSC}_{4}$.

$$
+8 \mathrm{H}_{2} \mathrm{O}(1)+5 \mathrm{O}_{2}(9)+\mathrm{K}_{2} \mathrm{SO}_{4}
$$

$$
\begin{aligned}
\mathrm{\sigma} 0 \mathrm{~m} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) & +3 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{Gq}) \longrightarrow \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq}) \\
& \left.+3 \mathrm{O}_{2}\right)+\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(1)
\end{aligned}
$$

(os' $2 \mathrm{Na}(\mathrm{s})+\mathrm{H}_{2} \mathrm{SC}(9) \longrightarrow \mathrm{Na}_{2} \mathrm{~S}(s)+\mathrm{H}_{2}(9)$
$6\left(100^{D} \mathrm{Mg}(s)+\mathrm{H}_{2} \mathrm{~S}(9) \longrightarrow \mathrm{MgS}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g})\right.$
6. $\mathrm{SO}_{2}(9)+2 \mathrm{H}_{2} \mathrm{~S}(9) \longrightarrow 3 \mathrm{~S}(\mathrm{~S})+2 \mathrm{H}_{2} \mathrm{O}(1)$

Ror $2 \mathrm{KMnO}_{4}\left(\mathrm{aq}_{q}\right)+3 \mathrm{H}_{2} \mathrm{SO}_{4}\left(\mathrm{aq}_{q}\right)+5 \mathrm{H}_{2} \mathrm{SC}(9) \longrightarrow$

$$
\mathrm{K}_{2} \mathrm{SO}_{4}\left(\mathrm{a}_{q}\right)+5 \mathrm{~S}(\mathrm{~s})+2 \mathrm{MnSO}_{4}\left(\mathrm{aqq}_{q}\right)+8 \mathrm{H}_{2} \mathrm{O}(1)
$$

ब2r $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{SO}_{4}\left(\mathrm{a}_{q}\right)+3 \mathrm{H}_{2} \mathrm{SC}(9) \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}\left(\mathrm{aq}_{9}\right)+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)(\mathrm{a})$

$$
+3 \mathrm{~S}(5)+7 \mathrm{H}_{2} \mathrm{O}(1)
$$

(B) $2 \mathrm{KHCO} 3(\mathrm{~s}) \xrightarrow[\mathrm{A}]{ } \mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(9)$
(A) $\quad \mathrm{NaNO}_{2}(\mathrm{~s})+\mathrm{NH}_{4}\left(\mid(s) \longrightarrow \mathrm{NaCl}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(9)+\mathrm{N}_{2}(g)\right.$
(5) $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~S}) \xrightarrow[\Delta]{ } \mathrm{N}_{2} \mathrm{O}(9)+2 \mathrm{H}_{2} \mathrm{O}(9)$
(b) $\left.\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{~S}) \longrightarrow 2 \mathrm{NH}_{3}(9)+\mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{C} 9\right)(\mathrm{O} 5 \times 5)$
(c). Gias obtained by adding the product obtained: by burning a strip of Mg into water, tarns Nestler reagent brown.."NH3cg, evolved.

$$
\begin{aligned}
& \therefore \mathrm{N} 2 \text { ex/st in aiv. } \\
& 8 \text {. } \\
& \sqrt{15}+2 N+13 \text { (9) }
\end{aligned}
$$

(8)
(a)
(1)

(4)

$$
\mathrm{CH}_{3} \mathrm{COCl} \times \mathrm{O} \mathrm{AlCl}_{3}
$$

(b)

(03. 12$)^{124}$
(C) (i)

$$
\mathrm{Cl} \xrightarrow{h} \xrightarrow{\mathrm{Cl}} 2 \mathrm{Cl}^{\circ}
$$

(ii)

(9) (a) (1)

$$
\begin{array}{lll}
\mathrm{A}-\mathrm{Cs}^{2} \mathrm{Cl} & \mathrm{~F}-\mathrm{NH}_{4} \mathrm{Cl} & \mathrm{~J}-\mathrm{AgCl} \\
\mathrm{~B}-\mathrm{H}_{2} \mathrm{SO}_{4} & \mathrm{G}-\mathrm{BaSO}_{4} & \mathrm{~K}-\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+} \mathrm{Cl} \\
\mathrm{C}-\mathrm{CS}_{2} \mathrm{SO}_{4} & \mathrm{H}-\mathrm{NH}_{3} & \\
D-\mathrm{HCl}(g) & \mathrm{I}-\mathrm{AgNO}_{3} & (05 \times 10)
\end{array}
$$

(ii)

$$
\begin{align*}
2 \mathrm{KMnO}_{4}+16 \mathrm{HC} \mid \longrightarrow 2 \mathrm{KCl} & +2 \mathrm{MnCl}_{2}+8 \mathrm{H}_{2} \mathrm{O} \tag{08}\\
& +5 \mathrm{Cl}_{2}(\mathrm{O})
\end{align*}
$$

(iii) When filter paper dipped in Nestler reagent is held to gas $H\left(\mathrm{NH}_{3}\right)$, turns (05) it brown.
(b) ${ }_{(a,} \mathrm{Ba}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ gives pungent smell with precipitate (light yellow) when adding dill. HNO_{3}.
BaSO_{3} gives. Colocerless solution with a gas having a pungent smell.
$\xrightarrow{\text { Remaining is } \mathrm{BaCO}_{3} \text {. } 2 \mathrm{MgOCs}+4 \mathrm{NO}_{2}(9)+\mathrm{O}_{2}(9)}$
(b)

$$
\begin{aligned}
& 2 \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}^{(S)} \xrightarrow[\Delta]{ } 2 \mathrm{MgOcg} \text { brown. - } \\
& \text { brown. } \\
& \mathrm{Mg}\left(\mathrm{O}_{3}(\mathrm{~s}) \xrightarrow[\Delta]{ } \rightarrow \mathrm{MgO}(\mathrm{~s})+\left(\mathrm{O}_{2}(\mathrm{~g}) \quad-\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})\right.\right. \\
& \left(\mathrm{NH}_{4}\right)_{3}\left(\mathrm{O}_{3}(\mathrm{~s}) \xrightarrow[\Delta]{ } 2 \mathrm{NH}_{3}(9)+\mathrm{CO}_{2}(9)+\mathrm{O}_{4} \times 3\right)
\end{aligned}
$$

If there is no residue when heating, it is $\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{CO}_{3} \text {. by } \mathrm{MgCNO}_{3}\right)_{2}$
Brown gas is given by $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ -
There is a residue with colourless gas, It
(C) (1)

HOCl
 (04×3) 3.9
$\mathrm{HClO}_{2} \mathrm{HClO}_{3}$

$$
(04 \times 8)
$$

(il) a) $\mathrm{HOCl}<\mathrm{HClO}_{2}<\mathrm{HClO}_{3}<\mathrm{HClO}_{4}$ (Ob)
(b) $\mathrm{HOCl}<\mathrm{HClO}<\mathrm{OCOO}_{2}<\mathrm{HClO}_{4}$ (08)

48
(10) (a) $I(1) X \equiv C_{r} \quad Y \equiv T_{i} \quad Z \equiv M_{n} \quad(10 \times 3)$
(ii) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$

$$
\begin{aligned}
& {\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}} \\
& {\left[\mathrm{MnCl}_{4}\right]^{2-}}
\end{aligned}
$$

(05×3)
0.8. Nature of oxide.
(iii)

$$
\begin{array}{ll}
\mathrm{CrO}_{2} & +2 \\
\mathrm{CrO}_{3} \sim & +3 \\
\mathrm{CrO}_{2} & +4 \\
\mathrm{CrO}_{3} \sim & +6-
\end{array}
$$

Weakly basic.
Amphoteric.
Weakly acidic.
Acidic
(03×12)
(IV) $+2,+3,+4 \quad(02 \times 3)$
(v) As catalyst - Polymerization of ethene. $\mathrm{TiCl}_{3} / \mathrm{Al}_{2}\left(\mathrm{ClH}_{5}\right)_{6} . \quad(04)$
As alloy - Produce different types of. corrosion resistance steel. (04)
(vi) $\mathrm{MnO}_{4}^{-}+40 \mathrm{H} \longrightarrow 4 \mathrm{MnO}_{4}^{2-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
(05)

100

Since Fe^{2+} in solution $\mathrm{A}, \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ required for all Fe^{2+}
No of males of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
required.
${ }^{n} \mathrm{Fe}^{2 t}$ in $25 \mathrm{~cm}^{3}$.

$$
\begin{aligned}
\therefore= & 0.05 \times 25 \times 10^{-3} \\
\therefore & =6 \times 0.05 \times 25^{-3} \times 10^{-3} \\
& =6 \times 0.05 \times 25 \times 10^{-3} \times 8
\end{aligned}
$$

ne in $200 \mathrm{~cm}^{3}$.

$$
=0.06 \mathrm{~mol}
$$

Fe^{2+} from $\mathrm{Fe}_{2} \mathrm{O}_{3}$.
Fe^{2+} from GeO $\therefore=0.04 \mathrm{~mol}$

$$
\begin{aligned}
& \mathrm{Fem} \\
& \text { mass of } \mathrm{FeO}=0.04 \mathrm{~mol} \times 7 \mathrm{zmmol} \\
&=2.96 \mathrm{~g}
\end{aligned}
$$

Percentage of $\mathrm{FeO}=29 \% \quad(02 \times 17)$
50

$$
\begin{align*}
& \text { (b) } \\
& \text { A } \mathrm{HeO}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{FeSO}_{4}+\mathrm{H}_{2} \mathrm{O} \times\left(\mathrm{O}^{2}\right) \\
& \mathrm{F}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Se}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2} \mathrm{C}, \text { (on) } \\
& 2 \mathrm{Fe}^{3+}+2 \mathrm{I}^{-} \longrightarrow 2 \mathrm{Fe}^{2+}+\mathrm{I}_{2} \tag{OH}\\
& \text { 4) } \\
& 14 \mathrm{H}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+6 \mathrm{Fe}^{2+} \longrightarrow 6 \mathrm{Fe}^{3+}+2 \mathrm{Cr}^{3+}+\mathrm{H}_{2} \mathrm{O}\left(\mathrm{O}_{4}\right) \\
& \text { 3) } 2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}+2 \mathrm{I}_{2}^{\circ}-\nabla 2 \mathrm{I}^{-}+\mathrm{S}_{4}^{\mathrm{O}_{6}^{2-}} \text { (04) } \\
& \text { 5) } \\
& n S_{2} O_{3}^{2-}=0.25 \times 20 \times 10^{-3}=5.0 \times 10^{-3} \mathrm{~mol} \\
& \therefore n I_{2}=2.5 \times 10^{-3} \mathrm{~mol} \\
& n \mathrm{Fe}^{3+}=5 \times 10^{-3} \mathrm{mcl} \\
& n \stackrel{\mathrm{Fe}}{2} \mathrm{O}_{3}\left(\operatorname{In} 200 \mathrm{~cm}^{3}\right)^{-} \\
& =2.5 \times 8 \times 10^{-3} \mathrm{~mol}=0.02 \mathrm{~mol} \\
& \text { Mass of } \mathrm{Fe}_{2} \mathrm{O}_{3} \text {. } \\
& =2.5 \times 8 \times 10^{-3} \mathrm{~mol} 160 \mathrm{gmol}^{-1} \\
& =3.2 g \\
& \begin{aligned}
& =3.2 \mathrm{~g} \\
\text { Percentage of } \mathrm{Fe}_{2} \mathrm{O}_{3} & =\frac{3.29}{10 a} \times 100=32
\end{aligned}
\end{align*}
$$

[^0]: (i) Identify solids A to E .

 A $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

 $$
 \begin{aligned}
 & \text { (} 3 \text { marks } \times 5=15 \text { marks) }
 \end{aligned}
 $$

