

Department of Examinations - Sri Lanka G.C.E. (O/L) Examination - 2019

34 - Science

Marking Scheme

This document has been prepared for the use of Marking Examiners. Some changes would be made according to the viows presented at the Chicf Examiners' meeting.
Department of Examinations, Sri Lanka
G.C.E. (Ordinary Level) Examination - 2019
34 - Science (New Syllabus)
Marking Scheme
PAPER I
Number of questions $=40$
Marks awarded for the correct answer of each question $=$ 2
Total marks $=\quad 2 \times 40=80$
PAPER II
Part A
Consists of 4 compulsory questions.
Marks awarded for all correct answers of one question = 15
Total marks for the 4 questions $=\quad 15 \times 4=60$
Part B
Consists of 5 questions.
Only 3 selected questions must be answered.
Marks awarded for all correct answers of one question = 20
Total marks for 3 questions $=\quad 20 \times 3=60$
Marks for PAPER I$=80$
Marks for the two parts A and B in PAPER II $=120$
Total Marks $=\quad 200$
Final Marks $=200 \div 2$
$=100$

Common Techniques of Marking Answer Scripts

It is compulsory to adhere to the following standard method in marking answer scripts and entering marks into the mark sheets.

1. Use a red colour ball point pen for marking. (Only Chief/Additional Chief Examiner may use a mauve colour pen.)
2. Note down Examiner's Code Number and initials on the front page of each answer script
3. Write off any numerals written wrong with a clear single line and authenticate the atterations with Ekaminer's initials.
4. Write down marks of each subsection in a \triangle and write the final marks of each question as a rational number in a \square with the question number, Use the column assigned for Examiners to write down marks.

Example: Question No. 03
(i)

(ii)

(iii)
 $\sqrt{ }$

(i) $\frac{4}{5}+$
(ii) $\frac{3}{5}+$ (iii) $\frac{3}{5}$ $=$

MCQ answer scripts: (Template)

1. Mark the correct options on the template according to the Marking Scheme. Cut off the marked windows with a blade. Cut off the cages for Index Number and the number of correct options 50 as to be able to keep the template correctly on the answer script. Cut off a blank space to the right of each options column to mark the answers. Submit the prepared template to the Chief Examiner for approval.
2. Then, check the answer scripts carefully. If there are more than one or no answers Marked to a certain question write off the options with a line. Sometimes candidates may have erased an option marked previously and selected another option. In such occasions, if the erasure is not clear write off those options too.
3. Place the template on the answer script correctly. Mark the right answers with a ' v ' and the wrong answers with a 'X' against the options column. Write down the number of correct answers inside the cage given under each column. Then, add those numbers and write the number of correct answers in the relevant cage-

Structured essay type and essay type answer scripts

1. Cross off any pages left blank by candidates. Underline wrong or unsuitable answers. Show areas where marks can be offered with check marks.
2. Use the right margin of the overland paper to write down the marks.
3. Write down the marks given for each question against the question number in the relevant cage on the front page in two digits. Selection of questions should be in accordance with the instructions given in the question paper. Mark all answers and transfer the marks to the front page, and write off answers with lower marks if extra questions have been answered against instructions.
4. Add the total carefully and write in the relevant cage on the front page. Turn pages of answer script and add all the marks given for all answers again. Check whether that total tallies with the total marks written on the front page.

Preparation Of Mark Sheets

Except for the subjects with a single question paper, final marks of two papers will not be calculated within the evaluation board this time. Therefore add separate mark sheets for each of the question paper. Write paper 01 marks in the paper 01 column of the mark sheet and write them in words too. Write paper II marks in the paper II Column and right the relevant details. For the subject 43 Art, marks for Papers 01, 02 and 03 should be entered numerically in the mark sheets.

For subjects 21 Sinhala language and literature and 22 Tamil language and literature, paper I marks once entered numerally should be written in words. For the papers II and III enter the detailed marks separately and put the total in each paper in the relevant column.

Final marks for paper I, paper II or paper III should always be rounded off to the nearest whole number and they should never be kept as decimal values.

 moray Be

AN INTRODUCTION TO THE OBJECTIVES

OF PAPER I

Science paper I is composed of 40 multiple choice questions. The time allocated for it is one hour. From this paper, it is expected to present questions covering a greater number of units in the syllabus. The number of questions is decided on the basic on the time set a part on the basis of the subject content related to the four main competencies.

In the setting of question, much attention has been paid for the simple wanted abilities such as knowledge, comprehension and application. At the same time, examination of higher order wanted abilities such as analysis, synthesis and evaluation is done to a curtain extent. Attention has been paid to test the correct and clear knowledge on the subject matter. This also aims to gauge whether the students acts logicaly and critically.

$$
\begin{aligned}
& \text { இலங்ळைப் பரீட்கசத் திஞぁாக்காாம் }
\end{aligned}
$$

$$
\begin{aligned}
& \text { க.पபா.த (சா.தர)ப் பரீட்கச - } 2019
\end{aligned}
$$

Evicas yosa		Exeac	Science
	34		

$$
\begin{aligned}
& \text { I பந்कிறம் - விஜைகள் }
\end{aligned}
$$

EC゚B Cowics ถीबाए 80．	Begraor qomas விமை இஇை．	gో Coma விळा இ20．	ธ1́6LL இல．	అ్రీః 둔N बiløா S60．	விஜை Sல்．	9『b Cquanc ถीதธाए Q0．	B8무́ㄴ qums வி601．இலు．
01.	3$~$	11.	$\stackrel{\mathbf{2}}{. ~}$	21.	$\frac{2}{\text {................. }}$	31.	2
02.	$\frac{2}{2}$	12.		22.		32.	2
08.		13.	$\frac{3}{3}$	23.	1$~$	33.	4．．．．．．．．．．．．
04.	14.	\ldots	24.	$\underset{\text {............... }}{2}$	34.	3
05.	．．．．．．．．．．．．．．．．	15.	．．．．．．．．．．．．．．．．	25.	$\begin{gathered} \boldsymbol{3} \\ \ldots ~ \end{gathered}$	35.	．．．．．．．．．．．．．．．．．
06.	16.	．．．．．．．．．．．．．．．．	26.	$\begin{aligned} & \text { I............... } \end{aligned}$	36.	¢
07.	17.	27.		37.	4
08.	．．．．．．7．．．．．．	18.	．．．．．．．．．．．．．．．．	28.	．．．．．．．．．．．．．．．	38.
09.	．．．．．．．1．．．．．．．．	19.	．．．．．．． \boldsymbol{R}.	29.	39.
10.	4	20.	．．．．．．． $\mathbf{1 ~}$	30.	3	40.	．．．．．．．．．．．．．．．

	25		50
	40	பத்திரம் I இஎ்் ดொரத்தட்புள்ளி	80

azçofers

A ๒๐ை○ぇ

Abstract

B ๒wృes

1. Qबᄅฉ द्वcర
2. 0 (0)

 q家

 อలుల్ ตm gix c.

 ทิ

II ©

A ©®ைOes

民セobmibo

OBJECTIVES FOR QUESTION 1

- To examine the ability to cull out data represented graphically
- To inquire into the ability to interprete data presented graphically
- To examine the knowledge about the composition of biogas
- To examine the understanding of waste management principles
- To examine the knowledge with regard to the maximum utilization of natural energy in architecture
- To inquire into the understanding of conservation of energy
- To examine the knowledge about the environmental impact of various chemicals disposed to the environment

OBJECTIVES FOR QUESTION 2

- To examine the knowledge about the modern classification of living organisms on domains.
- To investigate into the ability to identify the animal group when characteristics of the invertebrate groups of animals are given
- To inquire into the ability to identify the aims of setting up an experiment correctly
- To evaluate the skills related to the scientific process

OBJECTIVES FOR QUESTION 3

- To examine the ability to see the relationship between the properties of elements and their placement in the periodic table specifically in relation to period 2
- To inquire into the ability to predict the formulae of compounds formed by the elements located in given places of the periodic table and the nature of their bonds
- To evaluate the ability to understand the characteristics of molecules which can undergo polymerization
- To examine the knowledge relating to the important components of calcium and their main reactions
- To investigate into the ability to recall the test to identify carbon dioxide gas

OBJECTIVES FOR QUESTION 4

A

- To examine the ability to set up an apparatus for a simple activity
- To examine the knowledge on compounding electrical sources
- To inquire into the action of various parts of an electric circuit
- To examine the knowledge about a graphical illustration

B

- To investigate the knowledge about action and reaction
- To inquire into the comprehension of equilibrium of the three parallel forces
- To evaluate the knowledge about the moment of force
- To examine the ability to work out simple calculation relevant to the moment of force

II еृの

B ๑๐วอゃ

865onso

OBJECTIVES FOR QUESTION 5

- To examine the knowledge about the identification of the parts of the heart
- To examine the knowledge on the action of heart
- To examine the knowledge on the cardiac cycle and heart sounds.
- To examine the understanding about the blood circulatory system and the diseases in connection with it
- To evaluate the knowledge of cell division
- To examine the knowledge about the characteristics of a cell subject to meiosis
- To gauge the ability to compare meiosis and mitosis
- To examine the knowledge about the inheritance using a pair of contrasting characteristics
- To examine the ability to construct a punnett square
- To measure the knowledge about the technical terms in heredity

OBJECTIVES FOR QUESTION 6

- To examine the fundamental knowledge about acids
- To evaluate the skill of representing a given reaction by a chemical equation
- To examine the ability to quantify the amount of a product formed by a reaction using formulae / equations
- To evaluate the ability to do chemical calculations manipulating numerical data as appropriate.
- To inquire into the ability to select the appropriate separating technique for a given task
- To examine the skill of setting up apparatus correctly according to need
- To examine the knowledge about the factors affecting the rate of reactions
- To inquire into the ability to identify hydrogen gas experimentally

OBJECTIVES FOR QUESTION 7

A

- To inquire into the knowledge about the major points of a convex lens
- To examine the knowledge about the way the rays travelling through a convex pens behave
- To inquire into the knowledge about the nature of the images formed by a convex pens
- To examine the understanding about the necessary steps of a simple activity

B

- To evaluate the understating with regard to the application of the knowledge about the efficiency of electrical equipment to day-to-day life
- To examine the ability to work out simple calculations

OBJECTIVES FOR QUESTION 8

A

- To inquire into the ability to observe environment
- To examine the ability of arriving at inferences through observations
- To examine the ability to identify the characteristics of organisms through examples
- To gauge the knowledge about dioecious plants
- To gauge the ability to build up food chains
- To inquire into the ability to identify the components of an ecosystem

B

- To examine the ability of using the expression $\mathrm{Q}=\mathrm{mc} \theta$
- To inquire into how the value of a physical quantity is important for day to day life
- To examine the knowledge about the changes of state

OBJECTIVES FOR QUESTION 9

A

- To examine the ability to identify the ions generated by a given electrolyte and water
- To examine the ability to write the half reactions occurring at the electrodes of an electrolytic cell
- To inquire into the knowledge with regard to the definition of reduction
- To evaluate the ability to identify the products formed during electrolysis

B

- To inquire into the knowledge about the identification of transistor types
- To investigate into how components essential for a circuit are connected
- To examine the knowledge about amplification of signals
- To examine the knowledge about the action of electrical applications

34 - Science

Paper II

(1)	(A)	(i)		01
		(ii)		01
		(iii)		01
		(iv)		01
		(v)		01
	(B)		(a)	02
			(b)	02
		(ii)	(a)	01
			(b)	01
	(C)			01
		(ii)		01
		(iii)		01
		(iv)		01
	Q® @Qdy 15			

(7)	(A)	(i)		02
		(ii)		04
		(iii)		02
		(iv)		03
	(B)	(i)		03
		(ii)		02
		(iii)		01
		(iv)		02
		(v)		01
Q¢ @axay 20				

(8)	(A)	(i)			02
		(ii)	(a)		01
			(b)		01
		(iii)	(a)	(a)	01
				b)	01
			(c)		01
		(iv)			01
		(v)			02
	(B)	(i)			02
		(ii)			01
		(iii)			02
		(iv)		a)	01
				(b)	01
			(c)	(c)	01
			(d)	d)	01
			(e)	(e)	01

(9)

(A)	(i)			03
	(ii)	(a)		01
		(b)		01
(iii)			01	
(iv)			01	
(v)			01	
(vi)	(a)		01	
		(b)		01
(B)	(i)			01
(ii)			03	
(iii)			01	
(iv)			01	
(v)		01		
	(vi)		01	

Part A

1. (A) Gascous fucl essential for the laboratory of a school is obtained from a biogas gencrator. Once in every three days, the composition of four types of gases contained in the biogas produced by it was determined, Those information are presented by the graph.
(i) In which gas has the production gradualiy increased during the relevant period?
CH_{4} / methane

(ii) How much hydrogen sulphide was present in the gascous mixlure as per the composition on the $15^{\text {th }}$ day?
10 ppm (No marks if ppm is not mentioned) / 10 parts per million (01)
(iii) Biogas is protuced by the action of anaerobic bacteria on plant and animal waste. By the variation of the composition of which gas indicated in the graph is this justified?
$\mathrm{O}_{2} / \mathrm{Oxygen}$
(iv) Of the types of gases shown in the graph, which gas acts as a fuel? ... $\mathrm{CH}_{4} /$ methane
(v) Of the waste management principtes known as 4 R , for which principle is the maintenance of the biogas generator an cxample? Recycle
(B) (i) Fixing of a larger number of windows is a noticeable feature of the above laboratory building. State two aspects each by which it contributes to maintain the conditions (a) and (b) given below.
(a) Creating a favourable environment for the laboratory users

- ensuring proper ventilation - (relevant idea)
- lighting the room well (01) or any specitic nsage of it.
(b) Rinaintaining a fayourahle temperature (relevant idea) any 2 of them
- Minimizing the usage of electric bulbs (01)
- Minimizing the usage of fans / Minimizing the usage of air conditioners. (01)
(ii) In this laboratory, electicity is produced as follows to light the electric bulbs.

Step 1: Maintaining under high pressure the sicam produced by boiling water by buming biogas.
Step 2: Operating a turbine by spurting steam kept under high pressure.
Step 3: Operating an electric generator by the running turbine.
Complete the following schematic diagram on the conversion of energy relating to the above process.

(C) Given below are some compounds disposed to the draining gutter and the outer atmosphere during laboratory activities in a certain wcek.
$\mathrm{Ca}(\mathrm{OH})_{2}, \quad \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \quad \mathrm{Na}_{3} \mathrm{PO}_{4}, \quad \mathrm{NO}_{2}, \quad \mathrm{SO}_{2}$
Of the above compounds, write the compound which is most relevant to cach of the following statement on the dotted line given opposite to them.
(i) Contributes to increase the soil pH value $\mathrm{Ca}(\mathrm{OH})_{2}$ / calcium hydroxide
(ii) Causes an increase in the heavy metal composition in underground water
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} /$ potassium dichromate
(iii) Contributes to create an eutrophication state when accumulated in a water body
$\mathrm{Na}_{3} \mathrm{PO}_{4} /$ sodium phosphate
(iv) Contributes to produce photochemical smog as well as acid rait
$\mathrm{NO}_{2} /$ nitrogen dioxide
2. (A) An outline of the classification of living organisms is given below:

(i) Complete the above chart by writing the relevant group of living organisms on the dotted line in the boxes W, X, Y and Z.
(ii) Name the domain to which living organisms not sensitive to antibiotics belong. Archea/. Eukarya
(iii) To which kingdom do algae belong? Protista
(iv) A characteristic specific to each group of invertebrate animals shown in the above classification chart is given below. Opposite each characteristic, write the group of animats having that characteristic on the dotted line given.
(a) Bearing soft bodies
(b) Division of the body into equal segments
(c) Existing in two forms polyp and medusa

Mollusca
Annelida
Coclenterato.
(B) A set up urranged by a stadent to study a factor essential for the photosynthetic process is shown in the diagram. This set up was kept in the dark for 48 hours and then was exposed to light for 5 hours. Afterwards the glass strips covering the leaf were removed and the feaf was lested for starch.
(i) To test which factor essential for photosynthesis was this set up used?

light (Give marks even for sunlight)

(ii) What is the reason for keeping the set up in the

(iii) Write the polour that can be seen in each of the following parts of the leaf during the test for starch.
Part covered with the black glass serips (fight) yellow / (light) brown (01)
Part covered with the colourless glass strips
purple / blackish blue/ violet (01)
Part exposed to direet Jight
purple / blackish blue / violet (01)
3. (A) The symbols of the elements in the second period of the Periodic Tablo are given in the following table in respective order.

L	Be	B	C	N	O	F	Ne

(i) Select the symbol of the element relevant to each of the following satements from the above table and write on the dorted line given opposite.

(ii) Write the formula of the compound formed by the combination of the elements Li and O .

$$
\begin{equation*}
\mathrm{Li}_{2} \mathrm{O} \tag{01}
\end{equation*}
$$

(iii) From the ions given below, select the cation and anion which the coropound formed by the combination of Bi and O contains and underline them.

$$
\begin{equation*}
\mathrm{H}^{-}(01)^{\mathrm{L}^{2+}} \quad \mathrm{Li}_{2}^{2+} \quad \sigma^{-} \quad \mathrm{O}^{2}(01)^{\mathrm{O}_{2}^{2-}} \tag{02}
\end{equation*}
$$

(iv) Draw the structure of the simplest monomer molecale which can polymerize and contains only the elements C and F.

(B) The following flow chart shows a series of reactions carried out starting with calcium cartonate.

When gas V is bubbled through X, the solution tums milky because calcium carbonate is formed as if suspension. This observation is also used as a test to identify gas V.
(i) Write the chemieal formulae of the compounds U and W.
v. $\mathrm{CaO} \quad$ (01) \quad w $\mathrm{Ca}(\mathrm{OH})_{2}$
(01)
(ii) Delete one word printed in bold so that a corred idea in expressed by each of the following
sentences.
(a) Solid U in-mender / lusic.
(b) The bond in the selid U is lonie x
(c) The pH valise of an aqueous sofution of the gas V is fower Hemene-than 7. . (0 I)
(iii) What cas be seen when excess of the gas V is bubbled tbrough the nilky salution formed by the reaction between X and V ?
becomes colourless (Give a free mark)
4. (A) A reacher provided the following materials and equipment to students.
a michrome wite coil, four dry oells, an ammefer, a switch, a voltmeter, a theostat, connecting wire
The Figure shows an incomplete circuit diagram of a set up afranged by those students to examine the relationship between the potersial difference between the two ends of the nielsome wire coil and the electric current flowing through it.

(1) By what tame is the way the dry cells are connected to the circuit known? In series
(ii) Draw in the circuit diagran the standard symbol of the equipment that shoculd be connectad between the terminals X and γ.
(iai) Why is a rboostat connecied to thes circuit? to change or control the current/ potential difference / voltage
(iv) State a condition that would resulf if the switch is kepe closed for a long time after completing the circuit correctly,

(b) The following activity was dono by a gmop of students to find the centre of gravity of a metal statue.
The head and the two feet of the statue were placed on the smooth pans of two identical balances X und γ kopt on n lorizontal floor as shown it the Figure. The readinge in balance X was 250 N and the reading in balance Y was 150 N .
(i) What are the forees acting with regard to the cquilibrium
 of the statue?
W/ woight/ grayitational force / perpendicular reaction at A/R, perpendicolar reaction at B/S

$$
\begin{equation*}
(01) \tag{03}
\end{equation*}
$$

(01)
(ii) What is the reaction R through the point A and the reaction S through the poim B of the stane?
R $\quad 250 \mathrm{~N}$
(01)
$S \quad 150 \mathrm{~N}$
(01)
(iii) What is the weight (W) of the statue" 400 N
(iv) The distance from A to the centre of gravity of the statue G is d. Write the moment of the weight of the statue around point A in termes of d. W d/400(N)xd/weight x d
(v) Whut is the moment of the reaction 5 around point A ?
$150 \mathrm{~N} \times 2 \mathrm{~m} / 300 \mathrm{Nm}$
(vi) The snti-clockwise moment of S around point A bs efpual to the cfockwise moment of weight W around point A. Find the value of d.

$$
400(\mathrm{~N}) \times d=300 .(\mathrm{Nm}) / . W \mathrm{Wd}=300(\mathrm{Nm}) . / \mathrm{d} . \frac{300(\mathrm{Nm})}{\mathrm{n}=0.75 \mathrm{~m} / 3 / 4 \mathrm{~m} / 75 \mathrm{~cm}(01)} .(01)
$$

Part B

Answer only three questions from the questions No. 5, 6, 7, 8 and 9.
5. (A) Figure I presents a sketchy line diagram which shows the interral structure of the human heart.
(i) Name the blood vessels A, B, C and D in Figure I.
(ii) When comparing with the composition of the blood flowing through D, what is the main difference in the composition of blood flowing through C ?
(iii) What is the valve named E ?
(iv) Describe briefly how the characteristic 'lub' and 'dup' sounds heard during the heart beat are generated.
(v) Figure II indicates the changes in the potential corresponding to the three stages of the cardiac cycle of a healthy person's E.C.G. Which stage of the cardiac cycle is denoted by T in that Figure?
(vi) Heart muscles are weakened by the blockage of the blood vessel supplying blood to them by blood clots. By what name is this ailing condition known?

(B) The number of chromosomes in a somatic (body) cell of a mammalian animal species X is 40 .
(i) What is the number of chromosomes contained in the daughter cells produced by the meiotic division of gamete mother cells of X ?
(ii) Name a daughter cell type formed by the meiotic division of gamete mother cells of X.
(iii) How does a daughter cell formed by the mitote division differ from a daughter cell formed by meiotic division?
(C) (i) The garden pea plant seeds have two shapes, round and wrinkled, The gene giving rise to round seeds is R while the gene giving rise to wrinkled seeds is r. The genotype of the plant with dominant, homozygous genes for the seed shape is RR. Write the genotype for each of the following plant with regard to the seed shape.
(a) Plant with recessive, homozygous genes
(b) Plant with heterozygous genes
(ii) When a pure breeding garden pea plant with round seeds was crossed with a pure breeding garden pea planl with wrinkled seeds, all the F_{1} generation plants had round seeds. In the F_{2} generation obtained by crossing two plants in the F_{1} generation, the ratio of the plants with round seeds to the plants with wrinkled seeds was 3:1.
(a) Write the genotype of the F_{f} generation plants.
(b) Construct the Punnett square to indicate the genotype of the plants of the F_{2} generation.
(c) Write the genotype ratio of the F_{2} generation plants.
(Total marks 20)

6. (A) Acids, bases and salts are thrce main groups of compounds found in the laboratory.
(i) Explain what an acid is based on how it behaves in water.
(ii) Hydrochlonic acid (HCl) is a strong acid while acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ is a weak acid. What is the difference between a weak acid and a strong acid?
(iii) By what name is the process of forming a salt and water by the reaction of an acid and a base known?
(iv) (a) Write the balanced chemical equation for the reaction between the base sodium hydroxide and hydrochloric acid.
(b) Write an observation that can be made when the above reaction occurs.
(B) Gastric juice contains hydrochloric acid. Antacid tablets given to relieve the discomforts caused by the high acidity in the stomach contain the base magnesium hydroxide $\left(\mathrm{Mg}(\mathrm{OH})_{2}\right)$.
(i) What is the salt formed during the reaction between hydrochloric acid and magnesium hydroxide base?
(ii) What is the amount of moles of water formed when one mole of magnesium hydroxide completely reacts with hydrochloric acid?
(C) A botte contains $500 \mathrm{~cm}^{7}$ of an acetic acid solution. The density of the solution is $1.04 \mathrm{~g} \mathrm{~cm}^{3}$ and the mass of acetic acid contained in this solution is 26 g .
(i) Calculate the mass of the acetic acid solution contained in the botile.
(ii) Calculate the percentage of acetic acid by mass in the above solution,
(iii) Vinegar is an aqueous solution which coutains about 5% acetic acid by mass. The beiling point of acctic acid is $118^{\circ} \mathrm{C}$. Name a technique that can be used to obtain a solution that contains about 10% aceric acid by mass using a sample of vinegar.
(D) A set of apparatus arranged by a student to prepare a sample of hydrogen gas using dilute hydrochloric acid and zinc (Zn) metal is shown below.

(i) Write two errors that can be seen in the above set up.
(ii) Suggest two measures that can be adopted to increase the rate of the reaction taking place in the conical flask.
(iii) State a test and the relevant observation to confirm that the gas produced by the reaction is hydrogen.
(Toral marks 20)

	art	f Ex	atiors	Conit
(6)	(A)	(i)	compounds that release H^{+}/ compounds which ionise giving H^{+}/ dissociate giving H^{+}(in an aqueous medium)	01
		(ii)	Strong acids ionise / dissociate completely (in water) Weak acids ionise / dissociate incompletely / partially / slightly (in water) (01)	02
		(iii)	Neutralisation	01
		(iv)		02
			b) increase in temperature / heating of the vessel / emission of heat	
	(B)	(i)	$\mathrm{MgCl}_{2} /$ magnesium chloride	01
		(ii)	2 (mol)	01
	(C)	(i)	$\mathrm{d}=\frac{m}{v} / m=d v$ $\begin{gather*} \text { or } \\ x=1.04\left(\mathrm{~g} \mathrm{~cm}^{-3}\right) \times 500\left(\mathrm{~cm}^{3}\right) \tag{01}\\ (01) \end{gather*}=520 \mathrm{~g}$	02
		(ii)	$\begin{align*} & \frac{26(\mathrm{E})}{520(\mathrm{G})} \times 100 \\ & =5(\%) \tag{01} \end{align*}$	02
		(iii)	vapourisation/ evaporation/ simple distillation / fractional distillation	01
	(D)	(i)	- thistle funnel is not immersed in the solution / above the liquid level - Keeping the gas jar upright / using upward displacement of air (downward delivery)	02
		(ii)	- increasing the concentration of acid - using Zn powder instead of Zn granules / increasing the surface area of Zn - heating (the vessel) - using a catalyst any 2 of them	02
		(iii)	- Inserting a lighted ekel / lighted splinter (01) - Burns with a 'pop' sound / the flame blows off with a 'pop' sound (01)	02
			Total marks	20

7. (A) Figure I below illustrates how a ray of light coming parallet to the principal axis of a glass convex lens travels after refraction. The points A, B, C, D, and E are marked on the principal axis of the lens so that $A B=B C=C D=D E$.
(i) Name point C and point D.
(ii) Copy the Figures 11 and III below in your answer script

Figure and complete the ray diagrarns.

Figure Il

Figure III
(iii) Consider the image formed of an object placed between the points A and B in the principal axis of the lens. Slate two characteristics of that image.
(iv) Describe briefly an activity that could be done to find the focal length of a convex lens approximately.
(B) A domestically used filament electric lamp is marked $240 \mathrm{~V}, 60 \mathrm{~W}$ while an LED electric lamp lighting with equal brightness to it is marked $240 \mathrm{~V}, 10 \mathrm{~W}$.
(i) Calculate in joules (J) the amount of electrical energy consumed if the filantent electric lamp was switched on for 10 hours.
(ii) How much is the electrical energy in joules (J) consumed if the LED lamp was switched on for 10 hours?
(iii) From the above calculations show that the LED lamp is more adyantageous for domestic use.
(iv) The LED lamp mentioned above was lighted for 30 days 10 hours each. Find in kilowatt hours (kWh) the amown of electrical energy supplied to the lamp during this period. $\left(1 \mathrm{kWh}=3.6 \times 10^{6} \mathrm{~J}\right)$
(v) Of the electrical energy supplied to a filament electric lamp, 40% is fost as heat. In that case what is the efficiency of the lamp?
(Total marks 20)

(7)		(i)	C- Optical centre (01) D-Focus (01)	02
		(ii)	(02/00) (02/00)	04
		(iii)	- Inverted / magnified / real / located beyound E or beyond 2f or beyond twice the focal length Any 2 of them	02
		(iv)	- Obtain a clear image (01) of a distant object (01) on to a wall / screen. Measure the distance between wall / screen and the lens (01) or - Focus a beam of sunlight (01) until you get a small sharp patch of light on to a paper (01) Measure the distance between the lens and the patch. (01) (if this is illustrated by a diagram give marks for parallel rays, (01) focusing rays (01) and marking the focal lenght (01)	03
	(B)	(i)	$\begin{aligned} E & =P t(01) \\ & =60 \times 60 \times 60 \times 10 / 60 \mathrm{~W} \times 10 \mathrm{~h}(01) \\ & =2160000(\mathrm{~J})(01) \end{aligned}$ (give all 3 marks for the answer and the substitution without the equation)	03
		(ii)	$\begin{aligned} & 10 \times 10 \times 3600 / 10 \mathrm{~W} \times 10 \mathrm{~h}(01) \\ & =360000(\mathrm{~J}) \quad(01) \end{aligned}$ (Give 02 marks even for the final answer)	02
		(iii)	LED consumes less electrical energy.	01
		(iv)	$\begin{align*} & \frac{10 \times 3600 \times 10 \times 30}{3.6 \times 10^{6}} / \frac{10}{1000} \times 10 \times 30 \tag{01}\\ & =3(\mathrm{kWh}) \tag{01} \end{align*}$	02
		(v)	60\%	01
			Total marks	20

8. (A) The following observations were recorded by a group of students conducting a field study on a sunny day in relation to a pond ecosystem.

* The aquatic plants Hydrilla, Vallisnaria, Aponogeton (Kekatiya) and Salvinia are found in abundance in the pond.
* Gas bubbles are liberated by plants growing submerged in water.
* Fish in the pond swim moving their fins.
* A kingfisher catches a fish and flies.
* A species of small insects comes to the water surface from time to time and moves down again.
(i) Name two charactenistics of the living organisms according to the above observations.
(ii) (a) Name the gas present in abundance in the gas bubbles liberated by the plants growing submerged in water
(b) What is the process relevant to the production of that gas?
(iii) (a) Of the aquatic plants observed, which is the dioecious plant?
(b) Why is it called a dioecious plant?
(c) What is the pollinating agent of that plant?
(iv) From the interactions observed by the students, construct a food chain with three links.
(v) As regards the above observations, present two facts to justify that the poad can be considered an ecosystern.
(B) A and B are two identical vessels of negligibly smatl thermal capacity. A contains 2 kg of water of specific heat capacity $4200 \mathrm{Jkg}{ }^{\circ} \mathrm{C}^{-1}$ while B contains 2 kg of a liquid X of specific heat capacity $2100 . \mathrm{Jkg}^{\circ} \mathrm{C}^{-1}$. Each wessel is supplied with 8400 J of heat.

(i) Calculate how much will be the increase in the temperature of water contained in versel A when supplied with the above amount of heat?
(ii) How much will be the increase in the temperature of liquid X contained in vessel B when supplied with the above amount of heat?
(iii) Which of the above fiquids is more suitable to be used as a cooling agent? Give reasons for your answer.
(iv) A themometer was introduced into the vessel A. Later, when the vessel was heated continuously, the thermometer reading stopped rising further after the water reached a certain temperature.
(a) By what name is that constant temperature known?
(b) At that instance, what can be observed in the water?
(c) What is the change of state occurting at that instance?
(d) By what name is the heat absorbed at that instance known?
(e) State the reason why the temperature of the liquid stopped rising though heat was supplied continuously.
(Total marks 20)

(8)	(A)	(i)	- Movement - Nutrition - Respiration Any 2 of them	02
		(ii)	a) Oxygen $/ \mathrm{O}_{2}$ (01)	
			b) Photosynthesis (01)	02
		(iii)	a) Vallisnaria (01)	
			b) Staminate and pistillate flowers are born separately (01)	
			c) Water (01)	03
		(iv)	- Aquatic plants \longrightarrow fish \longrightarrow kingfisher - Aquatic plants \longrightarrow insect \longrightarrow fish - Aquatic plants \longrightarrow insect \longrightarrow kingfisher Any one of the above food chains (Give marks if any plant mentioned in the question is written instead of aquatic plants)	01
		(v)	- There are living and non living components (01) - There are interactions among them (01) (living, living / non -living, non living / living, non - living)	02
	(b)	(i)	$Q=m c \theta$ or $\begin{aligned} & 8400(\mathrm{~J})=2(\mathrm{~kg}) \times 4200\left(\mathrm{~J} \mathrm{~kg}^{-19} \mathrm{C}^{-1}\right) \times \theta(01) \\ & \theta=1^{\circ} \mathrm{C}(01) \end{aligned}$	02
		(ii)	$2^{\circ} \mathrm{C}$	
		(iii)	- Water (01) - Rise in temperature is smaller when the same amount of heat is supplied or The specific heat capacity of water is greater (01)	02
		(iv)	a) Boiling point (01)	
			b) Bubbling (air) (01)	
			c) Liquid water turns into water vapour / vapourisation / liquid $>$ gas (01)	
			d) Latent heat (of vapourisation) (01)	
			e) Heat is absorbed for doing work against the intemolecular attractive forces / to break intermolecular bonds / to break hydrogen bonds (01)	05
			Total Marks	20

9. (A) Figure I and II below illustrate two electrolytic cells ananged to electrolyse fused sodium chloride and an aqueous solution of sodium chloride respectively using carbon (graphite) electrodes.

Figure !

Figure II

The ions Q, R, V and W move in the directions indicated by the arrows during electrolysis. Of these the ions Q and R are common to both cells.
(i) Write the chemical symbols of the ions Q, R and W in order.
(ii) (a) Write the half reaction occurring at the cathode of the cell in Figure I.
b) Why is that reaction known as a reduction?
(iii) Write the half reaction occuring at the anode of the cell in Figure II.
(iv) What metallic electrode can be used instead of the carbon electrodes in the above cells?
(v) In the cell indicated by which Figure does the reaction taking place in the Down's cell during the extraction of sodium happen?
(vi) (a) A few drops of phenolphthalein were added to the solution contained in the cell in Figure II when electrolysis happens in it. State the observation that can be made at that moment.
(b) Explain the reason for the observation you stated.
(B) Parts of a public address system are given below.

Microphone

Loudspeaker
(i) What type of transistor is connected to the amplifying circuit?
(ii) Name the terminals marked X, Y and Z in the transistor,
(iii) To which terminals of the amplifying circuit should the microphone be connected?
(iv) Name the phenomenon which convens the sound waves received by the microphone to an electrical signal.
(v) To which points of the amplifying circuit should the loudspeaker be connected?
(vi) What physical quantity connected with the signal given by the microphone is amplified by the amplifying circuit?
(vii) Briefly explain how sound is produced by the loudspeaker when the amplified signal is given to the loudspeaker.
(Total marks 20)

(9)		(i)	$\begin{aligned} & \mathrm{Q}-\mathrm{Cl}^{-}(01) \\ & \mathrm{R}-\mathrm{Na}^{+}(01) \\ & \mathrm{W}-\mathrm{H}^{+}(01) \end{aligned}$	03
		(ii)	a) $\mathrm{Na}^{+}(\mathrm{l})+\mathrm{e} \rightarrow \mathrm{Na}(\mathrm{I})$ (Physical states are not necessary.) b) $\left(\mathrm{Na}^{+}\right)$accepts an electron / It involves gaining electrons.	02
		(iii)	$\begin{gathered} 2 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e} \\ \text { or } \\ \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{e} \end{gathered}$ Give marks even for writing $2 \mathrm{Cl}^{-}(\mathrm{aq})-2 \mathrm{e} \rightarrow \mathrm{Cl}_{2}(\mathrm{~g})$ Physical states are not necessary.	01
		(iv)	Pt / Platinum	01
		(v)	In figure I	01
		(vi)	a) (Colourless) solution turns pink (01)	
			b) Formation of $\mathrm{NaOH} /$ increase in the OH^{-}concentration (01)	02
	(B)		npn	01
		(ii)	$\begin{aligned} & X \text { - base / } \mathrm{B} / \mathrm{b}(01) \\ & \mathrm{Y} \text { - collector / } \mathrm{c} / \mathrm{c}(01) \\ & \mathrm{Z} \text { - emitter / } \mathrm{E} / \mathrm{e}(01) \end{aligned}$	03
		(iii)	P and Q	01
		(iv)	Electromagnetic induction	01
		(v)	R and S	01
		(vi)	Amplitude /(Signal) Voltage	01
		(vii)	A force is created on either side of the coil when the coil (in the magnetic field) gets signals. Then the cone vibrates and sound waves are produced. Give marks if this idea is expressed in other words.	02
			Total marks	20

