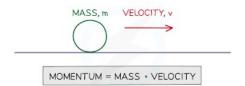

Grade 10 Science

Reading Material

Unit 4
Newton's Laws of
Motion


Momentum, mass and weight

Mrs. J.M.D.A.R Prashanthi (BSc) St. Lawrences' Convent, Colombo 06

Momentum, mass and weight

Momentum

The product of the mass(m) of the object and its velocity(v) is known as $\underline{\text{momentum.}}$

• SI unit of momentum:

$$\begin{aligned} Momentum &= Mass \times Velocity \\ &= kg \times ms^{-1} \\ &= kgms^{-1} \end{aligned}$$

• Momentum is a vector quantity.

E.g.: -

1. What is the momentum of a body of mass 1000kg moving at a velocity of 20ms⁻¹?

Momentum = Mass
$$\times$$
 Velocity
= 1000kg \times 20ms⁻¹
= 20 000 kgms⁻¹

2. A bullet of mass 15g fired by a gun moves at a velocity of 500ms^{-1.Find its momentum}.

Momentum = Mass
$$\times$$
 Velocity
= 15/1000 kg \times 5000ms⁻¹
= 7.5 kgms⁻¹

Mass and weight

➤ Mass: -

-The amount of matter in an object.

-SI unit is kg.

Weight: -

- -The force of the object with which it is attracted towards the earth.
- -That is the force acting on the object due to gravitational attraction of the earth.
- -SI unit is Newton (N).
- -Because the weight is defined as the force.
- ❖ According to Newton's second law, the force acting on a body moving at an acceleration is given by;

- Therefore: Weight = $m \times a$
- ❖ If it is moving under gravity, then its acceleration would be the gravitational acceleration (g). Then, the force exerted on the object is its <u>weight</u>.

- ❖ The gravitational acceleration near the surface of the earth at sea level is 9.8ms⁻², approximately.
- ❖ Therefore, the weight of a body of mass m is 10ms⁻².
- ❖ The weight of an object of mass 1kg would be 10N.

$$1 \text{kg} = 10 \text{ N}$$

E.g.: -
$$5kg = 50N$$

 $3.5kg = 35N$