සියලු ම හිමිකම් ඇවිරිණි/மුඟුப் பதிப்புநிமையுடையது/ $All\ Rights\ Reserved$]

(නව/පැරණි නිර්දේශය – புதிய/பழைய பாடத்திட்டம் – New/Old Syllabus

NEW/OLD

අධායන පොදු සහකික පතු (උසස් පෙළ) විභාගය, 2020 සහ්ඛාට பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020

උසස් ගණිතය உயர் கணிதம் **Higher Mathematics**

சூக තුනයි மூன்று மணித்தியாலம் Three hours අමතර කියවීම් කාලය - මිනිත්තු 10 යි மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

Use additional reading time to go through the question paper, select the questions you will answer and decide which of them you will prioritise.

Instructions:

Index Number							
--------------	--	--	--	--	--	--	--

- * This question paper consists of two parts;
 - Part A (Questions 1 10) and Part B (Questions 11 17).
- * Part A:

Answer **all** questions. Write your answers to each question in the space provided. You may use additional sheets if more space is needed.

- * Part B:
 - Answer five questions only. Write your answers on the sheets provided.
- * At the end of the time allotted, tie the answer scripts of the two parts together so that **Part A** is on top of **Part B** and hand them over to the supervisor.
- * You are permitted to remove only Part B of the question paper from the Examination Hall.

For Examiners' Use only

Part	Question No.	Marks
lait	1	IVIAI NS
	2	
	3	
	4	
A	5	
	6	
	7	
	8	
	9	
	10	
	11	
	12	
700	13	
В	14	
	15	
	16	
	17	
	Total	

(11) Higher Mathematics I

	Total
In Numbers	
In Words	

Code Numbers

Marking Examiner

Checked by:

2

Supervised by:

	Part A
1.	Factorize: $(a+b-c)(b+c-a)(c+a-b) - 8abc$.
	*
	······································
	•••••••••••••••••••••••••••••••••••••••

Let f	$f(x) = \frac{\pi}{2}$	-1 101 1	\neq 2.											
	$2x + f^{-1}(x). Als$	_	$f(3f^{-1})$	(0)										
T IIIG	<i>j</i> (<i>x</i>). 1111	o, iliu	<i>y</i> (* <i>y</i>	· · // ·										
	• • • • • • • • • • •										* * * * * *		* * * * * * * * * *	
		• • • • • • • • • • •							• • • • • • •					
				• • • • • •										
* * * * * * *	* * * * * * * * * * * * * *			• • • • • •	• • • • • •								• • • • • • • • •	
*		• • • • • • • • • •							• • • • • • •				* * * * * * * * * *	
	• • • • • • • • • •	• • • • • • • • • • •												
·····	• • • • • • • • • • •						• • • •							
		• • • • • • • • • •			• • • • • •		• • • •		• • • • • • •					
4	• • • • • • • • • • • •								• • • • • • • •				• • • • • • • •	
		• • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •				••••	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •					
	• • • • • • • • • • •	• • • • • • • • • •		• • • • • •	• • • • • •				• • • • • • • •	• • • • • • •				
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •												
				• • • • • •	• • • • • •									******
		• • • • • • • • • • • • • • • • • • • •												
Find 1	the values	of the c	constant	α suc	 ch tha	 						• • • • • • • •		
Find 1	the values												••••••	
Find							c							
Find t							c r	= 0.						
Find 1	the values $\begin{vmatrix} a + p\alpha \\ a\alpha + p \\ x \end{vmatrix}$						$\begin{bmatrix} c & \\ r & \\ z & \end{bmatrix}$	= 0.						
Find t							c r z	= 0.						
Find 1							c r z	= 0.						
		$b+q\alpha$ $b\alpha+q$ y	$c+r\alpha$ $c\alpha+r$ z	+3	a p x	b q y								
	$\begin{vmatrix} a+p\alpha \\ a\alpha+p \\ x \end{vmatrix}$	$b+q\alpha$ $b\alpha+q$ y	$c+r\alpha$ $c\alpha+r$ z	+3	a p x	b q y								
	$\begin{vmatrix} a+p\alpha \\ a\alpha+p \\ x \end{vmatrix}$	$b+q\alpha$ $b\alpha+q$ y	$c+r\alpha$ $c\alpha+r$ z	+3	a p x	b q y								
	$\begin{vmatrix} a+p\alpha \\ a\alpha+p \\ x \end{vmatrix}$	$b+q\alpha$ $b\alpha+q$ y	c+rα cα+r z	+3	a p x	<i>b q y</i>				• • • • • • •				
	$\begin{vmatrix} a+p\alpha \\ a\alpha+p \\ x \end{vmatrix}$	$b+q\alpha$ $b\alpha+q$ y	c+rα cα+r z	+3	a p x	<i>b q y</i>					• • • • • • • • • • • • • • • • • • • •			
	$\begin{vmatrix} a+p\alpha \\ a\alpha+p \\ x \end{vmatrix}$	$b+q\alpha$ $b\alpha+q$ y	c+rα cα+r z	+3	a p x	<i>b q y</i>								
	$\begin{vmatrix} a+p\alpha \\ a\alpha+p \\ x \end{vmatrix}$	$b+q\alpha$ $b\alpha+q$ y	c+rα cα+r z	+3	a p x	<i>b q y</i>								
	$\begin{vmatrix} a+p\alpha \\ a\alpha+p \\ x \end{vmatrix}$	$b+q\alpha$ $b\alpha+q$ y	c+rα cα+r z	+3	a p x	<i>b q y</i>								
	$\begin{vmatrix} a+p\alpha \\ a\alpha+p \\ x \end{vmatrix}$	b+qα bα+q y	c+rα cα+r z	+3	a p x	<i>b q y</i>								
	$\begin{vmatrix} a+p\alpha \\ a\alpha+p \\ x \end{vmatrix}$	b+qα bα+q y	c+rα cα+r z	+3	a p x	<i>b q y</i>								
	$\begin{vmatrix} a+p\alpha \\ a\alpha+p \\ x \end{vmatrix}$	b+qα bα+q y	c+rα cα+r z	+3	a p x	<i>b q y</i>								
	$\begin{vmatrix} a+p\alpha \\ a\alpha+p \\ x \end{vmatrix}$	b+qα bα+q y	c+rα cα+r z	+3	a p x	<i>b q y</i>								

٥.	Two variable points $P \equiv (ap^2, 2ap)$ and $Q \equiv (aq^2, 2aq)$ lie on the parabola $y^2 = 4ax$ such that $P $	Q
	*	
	$\begin{cases} a \sin 2x & \text{if } x \neq 0 \end{cases}$	
	$f(x) = \begin{cases} \frac{1}{x} & \text{if } x < 0, \\ (b-1)x + a & \text{if } 0 \le x \le 1, \\ \frac{b(x-1)}{ x-1 } & \text{if } 1 < x. \end{cases}$	
	$f(x) = \begin{cases} a \frac{\sin 2x}{x} & \text{if } x < 0, \\ (b-1)x + a & \text{if } 0 \le x \le 1, \\ b \frac{(x-1)}{ x-1 } & \text{if } 1 < x. \end{cases}$ If f is continuous, find the values of a and b .	

	Let $f(x) = \begin{cases} x^2 + 1, & \text{if } x \le 0, \\ -x^2 + 1, & \text{if } 0 < x < 1, \\ x - 1, & \text{if } 1 \le x. \end{cases}$
7.	Let $f(x) = \begin{cases} -x^2 + 1, & \text{if } 0 < x < 1, \end{cases}$
	$x-1$, if $1 \le x$.
	Show that $f(x)$ is differentiable at $x = 0$ and non-differentiable at $x = 1$.
	Write down $f'(x)$ for $x \ne 1$.
*	
2	
	· · · · · · · · · · · · · · · · · · ·
8.	Solve the differential equation $\frac{dy}{dx} + 2y = x$, subject to the condition $y = 1$ when $x = 0$.
	$\mathrm{d}x$

9.	Let f be a real-valued function on $[0, 1]$ such that f' is continuous on $[0, 1]$.
	Also, let $g(x) = 3x^2 f(x^3) + xf'(x)$ for $x \in [0, 1]$. Show that $\int_0^1 g(x) dx = f(1)$.
	·
10.	. Sketch the curves whose polar equations are given by $r = \sqrt{3} \cos \theta$ and $r = 2 \sin \theta - \sqrt{3} \cos \theta$ in th same diagram, and find the polar coordinates of their points of intersection.
	A A

සියලු ම හිමිකම් ඇවිරිණි / ω ලා යන්ධ්පුලිකාගපු නෙව් $All\ Rights\ Reserved$

N N

igg(නව/පැරණි නිර්දේශය – பුதிய/பழையigcபாடத்திட்டம் – New/Old Syllabus

NEW/OLD

තා විභාග දෙපාර්තුම් පිටියි. පෙන්වියා දෙපාර්තුව් මිලින් සිටුවිකාග දෙපාර්තුවේ ලි ලංකා විභාග දෙපාර්තුවේත්තුව p இலங்கைப் ப**ළිත්විය කියාගත්තාවේ දිදුම්ත්තීට ගු**ම්මෙන් වනාගත්තයාம் இலங்கைப் பழீட்சைத் திணைக்களம் ka Department of **இலங்கைப் rulifuk නිපාපා ගන්නාගත්තා කියාගත්තා** S ri Lanka Department of Examinations, Sri Lanka කා විභාග දෙපාර්තුවේ ලී ලංකා විභාග දෙපාර්තුම්ත්තුව ලී ලංකා විභාග දෙපාර්තුවේත්තුව ලී ලංකා විභාග දෙපාර්තුවේත්තුව හි இலங்கைப் **Departy ලෝ රිය් සින්බූ ආයාභය වර්ග** විභාග විභාග වනාගත්ත වේ ලංකා විභාග දෙපාර්තුවේත්තුව ලී ලංකා විභාග දෙපාර්තුවේත්තුවේ ලී ලංකා විභාගත්තයාගත්ත විභාගත්තයාගත්තයාගත්ත විභාගත්තයාගත්ත විභාගත්ත විභාගත්තයාගත්ත විභාගත්තයාගත්ත විභාගත්තයාගත්ත විභාගත්තයාගත්ත විභාගත්තයාගත්ත විභාගත්තයාගත්ත විභාගත්තයාගත්තය විභාගත්තයාගත්ත විභාගත්තයාගත්තය විභාගත්තයාගත්තය විභාගත්තයාගත්තය විභාගත්තය විභාගත්

අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2020 සහ්ඛාට பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020

උසස් ගණිතය உயர் கணிதம் **Higher Mathematics**

Part B

- * Answer five questions only.
- 11.(a) Let A, B and C be subsets of a universal set S. Stating clearly the Laws of Algebra of sets that you use, show that
 - (i) $A' \cup ((A \cup B) B) = (A \cap B)'$,
 - (ii) $(A \cup B \cup C) ((A C) B) = B \cup C$,

where A - B is defined by $A \cap B'$.

- (b) In a music class of 100 students, 85 students like to play violin, 20 like to play piano and 45 like to play guitar. Also, 10 like to play violin and piano, 15 like to play piano and guitar, and 30 like to play guitar and violin. Find the number of students who like to play
 - (i) all three instruments,
 - (ii) violin and guitar, but not piano,
 - (iii) violin or guitar,

assuming that every student like to play at least one of the three instruments.

- **12.**(*a*) Let a, b, c > 0.
 - (i) Show that $\frac{a+b}{2} \ge \sqrt{ab}$ and **deduce** that $(a+b)(b+c)(c+a) \ge 8abc$.
 - (ii) Using $\frac{a+b+c}{3} \ge \sqrt[3]{abc}$, show that if a+b+c=2, then $(1-a)(1-b)(1-c) \le \frac{1}{27}$.
 - (b) The transformation $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 4 & 3 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ maps points in the xy-plane to the points in the x'y'-plane. Find the equations of the two straight lines in the xy-plane through the point (0,1) which are mapped onto themselves.

Let $A \equiv (1, 1)$ and $B \equiv (1, 0)$ be two points in the xy-plane. Show that their images lie on the line 2x' - 3y' - 5 = 0 in the x'y'-plane.

13. State and prove De Moivre's Theorem for a positive integral index.

Using De Moivre's Theorem, show that

$$\frac{\cos 5\theta}{\cos \theta} = 16\cos^4 \theta - 20\cos^2 \theta + 5 \text{ for } \cos \theta \neq 0.$$

Using this result,

- (i) evaluate $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cos 5\theta \tan \theta \, d\theta,$
- (ii) show that the roots of the quadratic equation $16x^2 20x + 5 = 0$ are $\cos^2 \frac{\pi}{10}$ and $\cos^2 \frac{3\pi}{4}$. **Deduce** that $\sec^2 \frac{\pi}{10} + \sec^2 \frac{3\pi}{10} = \frac{1}{4}$.
- 14.(a) Let C_1 be the ellipse $x^2 + 6y^2 = 25$ and C_2 be the parabola $y^2 = 4x$. Sketch the graphs of C_1 and C_2 in the same diagram indicating the coordinates of their points of intersection. Find the area of the region R in the **first quadrant** bounded by the curves C_1 and C_2 . Also, find the volume of the solid generated by rotating the region R through 2π radians about the x-axis.
 - (b) A family of curves satisfies the differential equation $\frac{dy}{dx} = \frac{2x + 4y 1}{x + 2y 3}$. Using the substitution v = x + 2y, show that the given differential equation gets transformed to $\frac{dv}{dx} = \frac{5(v - 1)}{(v - 3)}$.

Hence, find the equation satisfied by the given family of curves in terms of x and y. Also, obtain the differential equation satisfied by the orthogonal trajectories of this family of curves.

15.(a) Let
$$I_n = \int \frac{dx}{(x^2 + a^2)^n}$$
, where $a > 0$.

Show that,
$$2(n-1)a^2 I_n = \frac{x}{(x^2 + a^2)^{n-1}} + (2n-3)I_{n-1}$$
 for $n \ge 2$.

Hence, find
$$\int_{0}^{a} \frac{dx}{(x^2 + a^2)^4}.$$

(b) Let f be a function such that $(x^2 + 1) f''(x) + 2x f'(x) + f(x) = 0$.

Show that
$$(x^2 + 1) f'''(x) + 4x f''(x) + 3f'(x) = 0$$
.

It is given that f(0) = 1 and f'(0) = 2.

Find the Maclaurin series of f(x) in ascending powers of x up to and including the term x^3 . Using this, find an approximate value for $\int_0^{0.1} f(x) dx$. **16.** Let S be the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Show that the equation of the chord joining the points $P \equiv (a\cos\theta, b\sin\theta)$ and $Q \equiv (a\cos\phi, b\sin\phi)$

is
$$\frac{x}{a}\cos\left(\frac{\theta+\phi}{2}\right) + \frac{y}{b}\sin\left(\frac{\theta+\phi}{2}\right) = \cos\left(\frac{\theta-\phi}{2}\right)$$
.

Write down the equation of the tangent drawn to S at P.

The tangents drawn to S at the points P and Q intersect at a point R.

Show that
$$R \equiv \left(a \frac{\cos\left(\frac{\theta + \phi}{2}\right)}{\cos\left(\frac{\theta - \phi}{2}\right)}, \ b \frac{\sin\left(\frac{\theta + \phi}{2}\right)}{\cos\left(\frac{\theta - \phi}{2}\right)}\right).$$

Now, suppose that the points P and Q on S are such that $\phi = \theta - \frac{\pi}{3}$. Show that R lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{4}{3}$.

Find the equations of the tangents drawn to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{4}{3}$ which are parallel to the tangent to S at P.

17.(a) Let,
$$f(x) = \frac{\cos x}{\sqrt{5} + \sin x}$$
 for $x \in \mathbb{R}$.

- (i) Show that $-\frac{1}{2} \le f(x) \le \frac{1}{2}$ for $x \in \mathbb{R}$.
- (ii) For $0 \le x \le \pi$, sketch the graph of y = f(x).
- (b) The following table gives values of the function $f(x) = \ln(3+x^2)$ correct to four decimal places for values of x between 0 to 6 at intervals of length 1.

х	0	1	2	3	4	5	6
f(x)	1.0986	1.3863	1.9459	2.4849	2.9444	3.3322	3.6636

Using **Simpson's Rule**, find an approximate value for $I = \int_{0}^{6} \ln(3+x^2) dx$.

Hence, find an approximate value for $\int_{0}^{6} \ln(3e + ex^{2}) dx$.