සියලු ම හිමිකම් ඇව්රිනි / ψ ගුට් பதிப்புநிமையுடையது / $All\ Rights\ Reserved$]

(නව නිර්දේශය/புதிய பாடத்திட்டம்/New Syllabus

අධානයන පොදු සහතික පනු (උසස් පෙළ) විභාගය, 2020 සහ්ඛා් ධොලාුස් පුළු පුළු පුළු දුළු පුළුව පුළුව General Certificate of Education (Adv. Level) Examination, 2020

රසායන විදාාව II இரசாயனவியல் II Chemistry II

சැக තුනයි மூன்று மணித்தியாலம் Three hours අමතර කියවීම් කාලය - මිනිත්තු 10 යි රෙගනුම්ස வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

Index No.:....

Use additional reading time to go through the question paper, select the questions and decide on the questions that you give priority in answering.

- * A Periodic Table is provided on page 15.
- * Use of calculators is not allowed.
- * Universal gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$
- * Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$
- * In answering this paper, you may represent alkyl groups in a condensed manner.

Example: H—C—C— group may be shown as CH_3CH_2 — H H

□ PART A — Structured Essay (pages 02 - 08)

- * Answer all the questions on the question paper itself.
- * Write your answer in the space provided for each question. Please note that the space provided is sufficient for the answer and that extensive answers are not expected.

□ PART B and PART C — Essay (pages 09 - 14)

- * Answer four questions selecting two questions from each part. Use the papers supplied for this purpose.
- * At the end of the time allotted for this paper, tie the answers to the three Parts A, B and C together so that Part A is on top and hand them over to the Supervisor.
- * You are permitted to remove only Parts B and C of the question paper from the Examination Hall.

For Examiner's Use Only

Part	Question No.	Marks
	1	
A	2	
	3	
THE STATE OF THE S	4	
В	5	
	6	
	7	
	8	
C	9	
	10	
	Total	

Total

In	Numbers	
In	Letters	

Code Numbers

Marking Examiner 1	
Marking Examiner 2	
Checked by :	
Supervised by:	

PART A — STRUCTURED ESSAY

Answer all four questions on this paper itself. (Each question carries 100 marks.)

Do not write in this column.

- 1. (a) Write the answers to the questions given below on the dotted lines.
 - (i) Of the three ions Na⁺, Mg²⁺ and F⁻, which one has the smallest ionic radius?
 - (ii) Of the three elements C,N and O, which one has the **highest** second ionization energy?
 - (iii) Of the three compounds H₂O, HOCl and OF₂, which one has the most electronegative oxygen atom?
 - (iv) Of the three elements Be, C and N, which one will liberate energy when an electron is added to its atom $[Y(g) + e \rightarrow Y^{-}(g); Y = Be, C, N]$ in the gaseous state?
 - (v) Of the three ionic compounds NaF, KF and KBr, which one has the highest solubility in water?
 - (vi) Of the three compounds HCHO, CH₃F and H₂O₂, which one has the strongest intermolecular forces? (24 marks)
 - (b) (i) Draw the most acceptable Lewis dot-dash structure for the ion, $N_2O_3^{2-}$. Its skeleton is given below.

(ii) Draw three more Lewis dot-dash structures (resonance structures) for this ion. Indicate the relative stabilities of the structures drawn by you, when compared with the most acceptable structure drawn in (i) above, by writing 'less stable' or 'unstable' under these structures.

(iii) Complete the given table based on the Lewis dot-dash structure and its labelled skeleton given below.

:0:	
:CI-N=	N—Ö—C≡N:
•••	0.0

O	
$Cl-N^1$	$N^2 - O^3 - C^4 - N$

	N_1	N ²	O ₂	C*
VSEPR pairs around the atom			ORGANIZATION AND AND AND AND AND AND AND AND AND AN	
electron pair geometry around the atom				
shape around the atom				
hybridization of the atom				

direction.

Index No. :

2020/02-E-11(A)(NEW)
Parts (iv) to (vii) are based on the Lewis dot-dash structure given in part (iii) above. Labelling of atoms is as in part (iii).
(iv) Identify the atomic/hybrid orbitals involved in the formation of σ bonds between the two
atoms given below. I. Cl—N ¹ Cl N ¹
II. N^1 — O N^1 O
III. $N^1 - N^2$ N^1 N^2
IV. N^2 — O^3 N^2 O^3
V. O ³ —C ⁴ O ³
VI. C ⁴ —N C ⁴ N
(v) Identify the atomic orbitals involved in the formation of π bonds between the two atoms given below.
I. $N^1 - N^2$ N^1 N^2
II. C ⁴ —N C ⁴ N
C ⁴ N
(vi) State the approximate bond angles around N ¹ , N ² , O ³ and C ⁴ atoms.
N^1 , N^2 , O^3 , C^4
(vii) Arrange the atoms N ¹ , N ² , O ³ and C ⁴ in the increasing order of electronegativity.
< < (56 marks)
(c) Consider the following information.
I. The atoms ${\bf A}$ and ${\bf B}$ combine to form a heterodiatomic molecule ${\bf AB}$ that has a σ bond. This is represented as ${\bf A-B}$.
II. The electronegativity of $\bf A$ is less than that of $\bf B$ ($\bf X_A < \bf X_B$). $\bf X$ = electronegativity of the atom
III. The inter-nuclear distance between ${\bf A}$ and ${\bf B}$ atoms $({\bf d}_{{\bf A}-{\bf B}})$ of the ${\bf A}{\bf B}$ molecule is given by the following equation.
$d_{A-B} = r_A + r_B - c(X_B - X_A)$
r = atomic radius, c = 9 pm
Note: d and r are measured in picometres (pm). $(1 \text{ pm} = 10^{-12} \text{ m})$
Based on the above information, answer the following questions.
(i) What is the name used to identify the type of σ bond between A and B ?

(ii) Show how fractional charges (δ + and δ -) are located in the molecule AB.

(iii) Write the equation to calculate the dipole moment (μ) of molecule AB and show its

Do not write in this column.

(iv) Calculate the percentage of ionic character of the H-F bond in the HF molecule using the data given below.

Do not write in this column.

Inter-nuclear distance of $H_2(d_{H-H}) = 74 \text{ pm}$

Electronegativity of F = 4.0

Inter-nuclear distance of
$$F_2(d_{F-F}) = 144 \text{ pm}$$

Dipole moment of HF = 6.0×10^{-30} C m

= 2.1

Charge of an electron = 1.6×10^{-19} C

20	marks)	

100

2. (a) A, B, C and D are chlorides of p-block elements. These elements have atomic numbers less than 20. A description of the products $(\mathbb{P}_1 - \mathbb{P}_9)$ formed when A is reacted with a limited amount of water and B, C and D are reacted with excess water are given below.

Compound		Description of products						
	\mathbb{P}_1	a compound with a covalent network structure						
A	\mathbb{P}_2	a strong monobasic acid						
P ₃ a gas that turns red litmus blue								
В	\mathbb{P}_4	a compound with bleaching properties						
	\mathbb{P}_5	a tribasic acid						
C	P ₆	a strong monobasic acid						
	\mathbb{P}_7	a gas that turns acidic KMnO ₄ solution colourless						
D	\mathbb{P}_8	a colloidal solid						
	P ₉	a strong monobasic acid						

(i)	Identify	\mathbb{A}_{9}	$\mathbb{B},$	\mathbb{C}	and	D	(give	the	chemical	formulae).
-----	----------	------------------	---------------	--------------	-----	---	-------	-----	----------	------------

A:	B:	C:	D:

(ii)	Give	balanced	chemical	equations	for	the	reactions	of	A,	B,	\mathbb{C}	and	D	with	water	to
	give	products	P_1 to P_9 .													

_	

	(iii) Write balanced chemical equations for the following reactions. I. P ₁ with NaOH(aq)						
		-				column.	
	II. I	3 wit	h Mg				
	III. I		h acidic K ₂ Cr ₂ O ₇				
	٠			······································	(50 marks)		
(b) A student is provided with bottles labelled P, Q, R, S, T and U containing aqueous solutions of Al ₂ (SO ₄) ₃ , H ₂ SO ₄ , Na ₂ S ₂ O ₃ , BaCl ₂ , Pb(Ac) ₂ and KOH (not in order). Some useful observations for their identification on mixing two solutions at a time are given below. (Ac - Acetate ion)							
			Solutions mixed	Observations			
	*	I	T + R	a clear colourless solution			
		III	P+R	a white precipitate			
		TIII	T+S	a gelatinous white precipitate			
		IV	U+R	a white precipitate			
		V	P+Q	a white precipitate, turns black on heating			
		VI	P+U	a white precipitate, dissolves on heating			
	(i) Identif	y P to	U.				
	P:			Q: R:	o o		
	S:			T: U:	0 0		
	(ii) Give balanced chemical equations for each of the reactions I to VI.						
	I:						
	II:						
	III:				, , , , , , , , , , , , , , , , , ,		
	IV:						
				itate:			
						// \	
	1	turnın	ig black on heating: .				
	VI:		: indicate precipita	ates as ↓)	(50 marks)	100	
3. (a)	an excess	amou	nt of AB ₂ (s) in 1.	sparingly soluble salt $AB_2(s)$ was prepared 0 dm^3 of distilled water at 25 °C. The amount out solution was found to be 2.0×10^{-3} mol	at of $A^{2+}(aq)$		
	(i) Write	the e	quilibrium related t	to the dissolution of $AB_2(s)$ in the above syst	em at 25 °C.		
	(ii) Write t	he exp	pression for the equil	ibrium constant for the equilibrium written in (i) ab	pove at 25 °C.		

(iii)	Calculate the value of the equilibrium constant stated in (ii) above at 25 °C.	Do not write in this
		column.
•		
(iv)	Another saturated aqueous solution of AB_2 was prepared by stirring an excess amount of AB_2 (s) in $2.0\mathrm{dm^3}$ of distilled water at $25^\circ\mathrm{C}$. Giving reasons, predict the value of the equilibrium constant for this system.	
(v)	A small amount of the strong electrolyte NaB(s) is added to a saturated aqueous solution	
	of AB_2 at 25 °C. Giving reasons, predict whether the concentration of A^{2+} (aq) is increased or decreased.	
	(60 marks)	
(b) In a	n aqueous solution, propanoic acid (C ₂ H ₅ COOH) ionizes as given below.	
	$C_2H_5COOH(aq) + H_2O(l) \Rightarrow C_2H_5COO^{-}(aq) + H_3O^{+}(aq)$	
	At 25 °C, K_a (propanoic acid) = 1.0×10^{-5}	
(i)	Write the expression for the equilibrium constant for the above reaction at 25 °C.	
(ii)	100.0 cm ³ of an aqueous solution of $C_2H_5COOH(aq)$ was prepared by dissolving 0.74 cm ³ of C_2H_5COOH in distilled water at 25 °C. Calculate the pH of the solution at 25 °C.	
	(C = 12; O = 16; H = 1; consider the density of C_2H_5COOH as 1.0 g cm ⁻³)	

100

L/202	20/02-E-II(A)(NEW) - 7 -	
. (a)	A, B, C and D are structural isomers having the molecular formula C ₆ H ₁₀ . None of them show optical isomerism. All four isomers, A, B, C and D when treated with HgSO ₄ /dil. H ₂ SO ₄ give products which react with 2,4-dinitrophenylhydrazine (2,4-DNP) to give coloured precipitates.	Do no write in this
	Only A gives a precipitate with ammonical AgNO ₃ . A has only one position isomer, which is B.	
	B is a chain isomer of C. C reacts with $HgSO_4/dil. H_2SO_4$ to give two products E and F.	
	D reacts with $HgSO_4/dil$. H_2SO_4 to give only one product, which is E .	
	(i) Draw the structures of A, B, C, D, E and F in the boxes given below.	
	A B C	
	. A. D	
	D E F	
	(iii) Draw, in the box given below, the structure of the product G obtained when A is	
	reacted with excess HBr.	
	G	
	(iv) Draw the structures of products X and Y obtained in the following reactions of E, in the appropriate boxes.	
	NaBH ₄ 1. C ₂ H ₅ MgBr	
	$ \begin{array}{c c} & \text{NaBH}_4 \\ \hline \text{Methanol} & E & \hline & 1. & C_2H_5MgBr \\ \hline & 2. & H^+/H_2O \end{array} $	
	X	

Name a test to distinguish between \boldsymbol{X} and \boldsymbol{Y} .

(60 *marks*)

(b) (i) Complete the following three reaction sequences by drawing structures of compounds K, L and M and giving the reagents/catalysts P, Q and R in the boxes given below. in this

Do not write column.

Sequence 1:

Sequence 2:

Sequence 3:

(30 *marks*)

(ii) Selecting from the reactions I-VI, give one (01) example for each of the following types of reactions.

Nucleophilic addition

Nucleophilic substitution (10 *marks*) 100