18.TRIGONOMETRY

By studying this lesson you will be able to,
\square Identify the trigonometric ratios sine, cosine and tangent.
\square Perform calculations related to triangles using sine, cosine and tangents tables.

Identify the opposite and adjacent side of a right angle triangle according to a given angle.

Name the sides according to the given angle

Investigate the relationship between two sides of a right-angled triangle and an angle of the triangle.

Engage in the following activity, using the lengths of the sides of the triangles.

The length of AC, AQ, AM, AT sides are given bellow by using the grid (measure the length by using the given squares .)
$\mathrm{A} \quad \mathrm{C}$
$A \quad$ Q
A \quad M
A \quad T

Complete the table given below by considering the angle θ

Right angled triangle	Length of the Opposite side (no of squares)	Length of the Adjacent side (no of squares)	Length of the hypotenuse (no of squares)	Opposite hypotenuse	Adjacent hypotenuse	Opposite Adjacent
ABC	$\ldots ~$	4	5	$\ldots ~$		
.		4 $\mathbf{5}$	$\mathbf{0 . 8}$	$\ldots ~$		
APQ						
ALM						
AST						

> After completing the above table you will comprehend the relationship between the considered angle and the sides of the triangle.

Although the lengths of the sides of the triangle are different considering the angle $\boldsymbol{\theta}$;

$$
\frac{\text { Length of opposite side }}{\text { Length of hypotenuse }}=\text { constant. }
$$

This Constant is called the sine ratio of θ. ($" \sin \theta$ ")

$$
\frac{\text { Length of adjacent side }}{\text { Length of hypotenuse }}=\text { constant } \text {. }
$$

This Constant is called the cosine ratio of θ. ($" \cos \theta$ ")

$$
\frac{\text { Length of opposite side }}{\text { Length of adjacent side }}=\mathbf{c o n s t a n t . ~}
$$

This Constant is called the tanjent ratio of $\theta(" \tan \boldsymbol{\theta}$ ")

$(\sin \theta)=\frac{\text { length of opposite side }}{\text { hypotenuse }}=\frac{R Q}{P R}$
$(\cos \theta)=\frac{\text { length of adjecside }}{\text { hypotenuse }}=\frac{P Q}{P R}$
$(\tan \theta)=\frac{\text { length of opposite side }}{\text { length of adjecent side }}=\frac{R Q}{P Q}$

Exercise.

1) Write the trigonometric ratios (in terms of given angle.)

2). If $\sin \theta=\frac{5}{13} \quad$ find $\tan \theta$ and $\cos \theta$

Hint: Given $\sin \theta=\frac{5}{13}=\frac{\text { opposite }}{\text { hypoteruse }}$
like in the part (iii) You can use the Pythagorean
theorem and find x and accordingly you can find $\tan \theta$
and $\cos \theta$

3). If $\cos x=0.6$ finsin $n d \tan x$. (Hint: $0.6=$

$$
\frac{--\cdots}{10} \text { therefore, } \cos x=\frac{6}{10}
$$

Complete the exercise 18.2
(Grade 11 maths textbook part -III - pg : 17)

The constant of the ratio of \sin , \cos and \tan for each angle are different.

Trigonometric ratios for angles $30^{\circ}, 45^{\circ}, 60^{\circ}$

	30°	45°	60°
\sin	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$
\cos	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$
\tan	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$

Solve the following problems using the table above.

1). i) Find x and y (Indicate the answer in surds when required.)
ii) Show that $\tan 60^{\circ}=\sqrt{3}$.

$\sin 60^{\circ}=\frac{x}{5}$	$\cos 60^{\circ}=\frac{y}{5}$	$\tan 60^{\circ}=\frac{x}{y}=\frac{\frac{5}{2}}{\frac{5}{2}}$
$\sin 60^{\circ}=\frac{\sqrt{3}^{3}}{2}$,	$\frac{1}{2}=\frac{y}{5}$	
$\frac{\sqrt{3}}{2}=\frac{x}{5}$	$y=\frac{5}{2}$	$=\frac{5 \sqrt{3}}{2} \div \frac{5}{2}$
$x=\frac{5 \sqrt{3}}{2}$	$=\frac{5 \sqrt{3}}{2} \times \frac{2}{5}$	
y	$=\sqrt{3}$	

2). i) Find x and y (Indicate the answer in surds when required.)
ii) Show that $\tan 30^{\circ}=\frac{1}{\sqrt{3}}$

3). Find the angle $\boldsymbol{\theta}$ by using the sides given

$$
\begin{aligned}
\sin \theta & =\frac{\text { opposite }}{\text { hypotenuse }} \\
\sin \theta & =\frac{5}{10} \\
\sin \theta & =\frac{1}{2}
\end{aligned}
$$

$$
\text { according to the table } \sin 30^{\circ}=\quad \frac{1}{2}
$$

$$
\text { therefore } \theta=30^{\circ}
$$

4). Find the angle $\boldsymbol{\theta}$ by using the sides given.

6). Evaluate.
i. $\sin 45^{\circ}+\cos 45^{\circ}$
ii. $\sin 60^{\circ} \cos 30^{\circ} \quad\left(\sin 60^{\circ} \cos 30^{\circ}=\sin 60^{\circ} \times \cos 30^{\circ}\right)$
iii. $\sin 30^{\circ} \cos 30^{\circ}+\sin 60^{\circ} \cos 60^{\circ}$
iv. $\tan 45^{\circ}+\sin 30^{\circ}+\cos 60^{\circ}$
vi. $\tan 30^{\circ} \cos 30^{\circ}+\tan 60^{\circ} \sin 60^{\circ}$
7). Verify that $\sin 60^{\circ} \cdot \tan 30^{\circ}=\sin 30^{\circ}$

- If the above statement is true, the left hand side should be equal to right hand side (L.H.S. $=$ R.H.S.)
- Therefore, when we verify a statement like above, simplify the L.H.S. and R.H.S. separately and state whether L.H.S. $=$ R.H.S

Considering the statement given,

$$
\begin{array}{rlrl}
\text { L.H.S. } & =\sin 60^{\circ} \times \tan 30^{\circ} & \text { R.H.S. } & =\sin 30^{\circ} \\
& =\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{3}} & =\frac{1}{2} \\
& =\frac{1}{2} &
\end{array}
$$

Therefore L.H.S $=$ R.H.S
8). Verify the following statements.
i. $\frac{\sin 30^{\circ}}{\cos 30^{\circ}}=\tan 30^{\circ}$
ii. $\quad \sin 45^{\circ} \cos 45^{\circ}=\sin 30^{\circ}$
iii. $\quad \cos 30^{\circ} \tan 30^{\circ}=\sin 45^{\circ} \cos 45^{\circ}+\tan 45^{\circ}$
ii. $\tan 60^{\circ}-\tan 30^{\circ}$
iv. $\tan 30^{\circ}=\frac{1+\tan 60^{\circ} \tan 30^{0}}{}$
v. $\operatorname{Sin} 60^{\circ}=2 \operatorname{Sin} 30^{\circ} . \operatorname{Cos} 30^{\circ}$
(Grade 11 maths text book part -III - pg : 21)

Trigonometric tables

$>$ "Degree" is the unit that expresses the magnitude of angles.
$>$ A degree is further subdivided into equal parts called "minutes".
Therefore, 1 Degree $=60$ minutes

$$
1^{0}=60^{\prime}
$$

$>30^{0} 35^{\prime}$ read as 30 degrees and 35 minutes.
$>$ Likewise 40° can be expressed as $39^{\circ} 60^{\prime}$

$$
40^{0}=39^{0} 60^{\prime}
$$

$>$ The trigonometric ratios for all the angles between 0^{0} to 90^{0} are tabulated.
> They are known as trigonometric tables. Will Identify how we can use it. (The tables are given in gr 11 -part III from Pg. 148 - 151.)

Find the sin ratio of a given angle using a trigonometric table.

The following examples shows how to use the natural Sin table.

1. Get the value of $\sin 13^{0} \quad\left(\right.$ Let $\left.13^{0}=13^{0} 0^{\prime}\right)$

2. Get $\sin 13^{0} 50^{\prime}$.

NATURAL SINES

$$
\sin 13^{0} 50^{\prime}=0.2391
$$

3. Get $\sin 13^{0} 57^{\prime}$.

8 \%a6 0 (6) natural sines

		10^{\prime}	20^{\prime}	30^{\prime}	40^{\prime}		60^{\prime}		8cosm arboca Sam Bypuranisal Mean Difterences						
										2^{\prime}	3^{\prime}	4^{\prime}	5 '	$67^{\prime} 8^{\prime}$	$9 \prime$
10^{8}	0.1736	0.1765	0.1794	0.1822	0.1851	0.18 p	0.1908	79	3	6	9	11	14	17 \% 23	26
11	. 1908	. 1937	. 1965	. 1994	. 2022	. 20.1	. 2079	78	3	6	9	11	14	17 ? 23	26
12	2079	. 2108	. 2136	. 2164	2193	221	.2250	77	3	6	9	11	14	1713	26
13						2391								$\xrightarrow{1} \quad 20 \quad 23$	25
14	. 2419	. 2447	. 2476	. 2504	. 2532	2560	.2588	75	3	6	8	11	14.	172023	25

$$
\sin 13^{0} 57^{\prime}=0.2391+0.0020^{\circ}=\underline{\underline{0.2411}}
$$

Rough Work
0.2391
$\sin 13^{0} 57^{\prime}=0.2411$

Find the angle corresponding to a given sin ratio

1. If $\sin x=0.7716$ find x. (follow the steps given in Red.)

இயற்கைக் ఐைக்களள்

matural sines

									9nous qevioch Mean Difierences								
	0^{\prime}	10'	20'	30^{\prime}	40	50^{\prime}	60^{\prime}		1'	$2{ }^{\prime}$	3^{\prime}					$8^{\prime \prime}$	$9 '$
45°	0.7071	0.7092	0.7112	0.713	0.7153	0.7173	0.7193	44°	2	4	6	8		12	14	16	18
46	. 7193	. 7214	. 7234	. 72.4	. 7274	. 7294	. 7314	43	2	4	6	8		12	14	16	18
47	. 7314	. 7333	. 7353	. 733	. 73.2	. 7412	. 7431	42	2	4	6	8		12	14	16	18
48	.7431	.7451	. 7470	. 740	. 7519	. 7528	. 7547	41	2	4	6	8		12	13	15	17
49	. 7547	. 7566	. 7585	. 7614	. 763	. 7642	. 7660	40°	2	4	6	8		11	13	15	17
50				0.7716	0.7735	0.7753	0.7771	39	2	4	6	7		11	13	15	17
51	. 7771	. 7790	. 7808	. 7826	. 7814	. 7862	. 7880	38	2	4	5	7		11	13	14	16
52	. 7888	. 7898	. 7916	. 7934	. 7951	. 7969	. 7986	37	2	4	5	7		11	12	14	16
53	. 7986	. 8004	.8021	. 8039	. 8056	. 8073	. 8090	36	2	3	5	7		10	12	14	16
54	. 8090	. 8107	. 8124	-.8141	. 8.58	. 8175	. 8192	35	2	3	5	7		10	12	14	15
55	0.8192	0.8208	0.8225	0.8241	08858	0.8274	0.8290	34	2	3	5			10	12	13	15
56					. 8355			38					8	10	11	13	14
57	. 8387	. 8403	. 8418	. 8434	. 8450	. 8465	. 8480	32	2	3	5	6	8	9	11	13	14
58	. 8480	. 8496	. 8511	. 8526	. 8542	. 8557	. 8572	31.	2	3	5	6	8	9	11	12	14
59	. 8572	. 8587	. 8601	. 8616	.8631	. 8646	. 8660	30°	1	3	4	6	7	9	10	12	13

Therefore,
If $\sin x=0.7716$, Then $x=50^{\mathbf{0}} 30^{\prime}$
2. If $\sin y=0.8363$, consider the way of finding y.
(Follow the steps given in Blue)

- 0.8363 value is not available at once.
- Then we have to consider the lowest and as well as nearest value for 0.8363 . It is 0.8355 Find the location of 0.8355 .
- So the relevant angle is $\mathbf{5 6}^{\mathbf{0}} \mathbf{4 0}^{\prime}$.
- Now subtract 0.8355 from 0.8363 .
- It is $(0.8363-0.8355)=\mathbf{0 . 0 0 0 8}$.
- Now 8 is called the mean difference.
- The angle which it belongs is 5^{\prime}.

Therefore,

$$
\text { If } \sin y=0.8363
$$

$$
y=56^{0} 40^{\prime}+5^{\prime}
$$

$$
y=56^{\circ} 45^{\prime}
$$

3．If $\sin p=0.7064$ ，consider the way of finding y ．
Omab 0 ®no இயற்கைத் ๓சண்களा
natural sines

0.7064 value is not available at once．
－Then we have to consider the lowest and as well as nearest value for 0．7064．It is $\mathbf{0 . 7 0 5 0}$ Find the location of $\mathbf{0 . 7 0 5 0}$ ．
－So the relevant angle is $\mathbf{4 4}^{\mathbf{0}} \mathbf{5 0}$ ．
－Now subtract 0.7064 from 0.7050 ．
－It is $(0.7064-0.7050)=\mathbf{0 . 0 0 1 4}$ ．
－Now 14 is called the mean difference．
－But 14 is not in the Mean difference table．Then we consider the nearest value it is 15 ．
－The angle which it belongs is 7 ．
－Therefore，

$$
\begin{aligned}
\text { If } \sin p=0.7064, & p=44^{0} 50^{\prime}+7^{\prime} \\
& p=44^{0} 57^{\prime}
\end{aligned}
$$

Complete the exercise．

1）．Find each of the following values using trigonometric tables
i）． $\sin 49^{\circ}$
ii）． $\sin 72^{0} 20^{\prime}$
iii）． $\sin 67^{0} 34^{\prime}$

2）．Find the angle θ corresponding to each trigonometric ratio．
i）． $\sin \theta=0.3497$
ii）． $\sin \theta=0.6765$
iii）． $\sin \theta=0.4200$

Answers					
，0S ¢もて	－（！！！	，6を。ても	－（！！	－\＆	－（！（ ${ }^{\text {c }}$
Eヵて60	－（！！！	8 8S60	－（！！	LtSく．0	－${ }^{\text {（ }}$（

Find the tan ratio of a given angle using a trigonometric table．

$>$ The natural tangent table should be used when it is necessary to find the tangent of a given angle and the angle corresponding to the tangent．

The methodology used to find sine ratios can be followed

Study the example given below．
Get $\boldsymbol{\operatorname { t a n }} 31^{0} 46^{\prime}$

Rough work

0.6168

$$
+0.0024
$$

0.6192

Engage in the exersice．

1）．Evaluate
i）． $\tan 63^{\circ}$
ii）． $\tan 26^{\circ} 40^{\prime}$
iii）． $\tan 55^{\circ} 19^{\prime}$

2）．Find θ ．
i）． $\tan \theta=0.2126$
ii）． $\tan \theta=2.628$
iii）． $\tan \theta=0.9556$

Answers	，ても。とも	－（！！！	，0I 069	－（！！	－ZI	$\cdot(!)$
	てStti	－（！！！	zzos＊0	－（！！	£96 I	－（！（

The relationship between sin and cos ratios at a given angle

Consider the right-angled triangle below.

$$
\begin{aligned}
& \sin \mathrm{a}=\frac{x}{z} \\
& \cos \mathrm{~b}=\frac{x}{z}
\end{aligned}
$$

Accordingly $\sin a=\cos b$.
$>$ Since the sum of the three interior angles of a triangle is 180°,

$$
\begin{aligned}
a+b+\mathbf{9 0}^{0} & =\mathbf{1 8 0}^{0} \\
a+b & =\mathbf{1 8 0}^{\boldsymbol{0}} \\
a & =\mathbf{9 0}^{\mathbf{0}}-b
\end{aligned}
$$

Therefore $\cos \mathrm{b}=\sin \left(90^{\circ}-\mathrm{b}\right)$

Eg :				Eg :$\begin{aligned} & \cos \left(\mathbf{4 3}^{\mathbf{0}} \mathbf{3 2 ^ { \prime }}\right)=\sin \left(\mathbf{9 0}^{\mathbf{0}}-\mathbf{4 3 ^ { 0 }} \mathbf{3 2}^{\prime}\right) \\ & \cos \left(43^{\mathbf{0}} \mathbf{3 2 ^ { \prime }}\right)=\sin \left(\mathbf{4 6}^{\mathbf{0}} \mathbf{2 8}^{\prime}\right) \end{aligned}$
$\cos 30^{\circ}=\sin \left(90^{\circ}-30\right.$				
$\cos 30^{\circ}=\sin 60^{\circ}$				
This is also confirmed by the table below which has been studied before.				
30° 45° 60°				Rough work It can be written as $90^{\circ}=89^{\circ} 60^{\prime}$
sin		$\frac{1}{\sqrt{2}}$	($\frac{\sqrt{3}}{2}$	- $\begin{array}{r}89^{\circ} 60^{\prime} \\ -43^{0} 32^{\prime} \\ \hline\end{array}$
cos		$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	460 28^{\prime}
\tan	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	

$>$ Accordingly if you need the value of $\cos \left(43^{0} 32^{\prime}\right)$. you can find the value of $\sin \left(\mathbf{4 6}^{\mathbf{0}} \mathbf{2 8 ^ { \prime })}\right.$) It is equal to the $\cos \left(43^{0} \mathbf{3 2}\right)$.

Find the cos ratio of a given angle using a trigonometric table.

It is known that $\cos \theta=\sin \left(90^{0}-\theta\right)$ Therefore, you can use the Sin table instead of cosine table.

- The columns shown in blue in the natural sine table below are used to find sin ratios.

And the things in yellow used to deal with Cosines.

 இயறற்கக்் ஜைக்கள்
 Matural sines

Ene6 emobeo
இயற்கைக் கோகைக்கள் natural cosines

1. Get the value of $\cos \left(41^{0} 20^{\prime}\right)$

Method i: Using natural Sin table

Rough Work

$90^{\circ}=89^{\circ} 60^{\prime}$
$89^{\circ} 60^{\prime}$
$-41^{0} 20^{\prime}$
$48^{\circ} 40^{\prime}$
$>$ (Using natural Sin table) get the value of $\sin \left(48^{0} 40^{\prime}\right)$ (Follow the steps given in Red)
$>$ Value of $\sin \left(48^{0} 40^{\prime}\right)=0.7509$ therefore, value of $\cos \left(41^{\circ} 20^{\prime}\right)$ also 0.7509

Method ii: Using the Cosine table
$>$ To find the cos ratio of a considered angle using only cos you have to use the yellow coloumns in the above table'.
$>$ The value of $\cos \left(41^{0} 20^{\circ}\right)$ can be obtained as 0.7509 by the steps shown in green in the table above.
2. Find the value of $\cos \left(52^{0} 38^{\prime}\right)$

Find the angle corresponding to a given cos ratio

1. If $\cos x=0.6583$ consider the way of finding x. (follow the things in RED)

இியற்கைக் கோகைசல் கள் NATURAL COSINES
If $\cos \boldsymbol{x}=\mathbf{0 . 6 5 8 3}$, then $\boldsymbol{x}=48^{\boldsymbol{0} 50^{\prime}}$

2. If $\cos \boldsymbol{y}=0.5885$ find the value of \boldsymbol{y} (consider the things in Blue)

- 0.5885 value is not available at once.
- Then we have to consider the lowest and as well as nearest value for 0.5885. It is $\mathbf{0 . 5 8 7 8}$ Find the location of $\mathbf{0 . 5 8 7 8}$.
- So the relevant angle is $\mathbf{5 3}^{\mathbf{0}} \mathbf{6 0}$.
- Now subtract 0.5878 from 0.5885 .
- It is $(0.5885-0.5878)=\mathbf{0 . 0 0 0 7}$.
- Now 0.0007 is called the mean difference.
- The angle which it belongs is 3 .
- There for

$$
\text { If } \cos y=0.5885, \quad y=53^{0} 60^{\prime}-3^{\prime}
$$

$$
y=53^{0} 57
$$

Exercise.

1). Evaluate by using the trigonometric tables .
i). $\cos 62^{\circ}$
ii). $\cos 29^{\circ} 50^{\prime}$
iii). $\cos 35^{\circ} 26^{\prime}$
2). Find θ.
i). $\cos \theta=0.7660$
ii). $\cos \theta=0.9100$
iii). $\cos \theta=0.4136$

Answers					
, \dagger E \circ S 9	-(!!	, 0 \& otz	-(!!	-0t	(${ }^{\circ}$) τ
$8 \pm 18{ }^{\circ} 0$	-(!!	SL98.0	-(!	S69t* 0	*(${ }^{\text { }}$ (l

1) Find x and y.

i)

iv)

2) Find θ.
i)

ii)

Complete the excersice 18.5
(Grade 11 maths text book part -III - pg : 31-32)

Angles in horizontal plane.

$>$ Prior knowledge of bearings is required here.
$>$ It shows the location of another place related to one place.
$>$ The magnitude of the angle measured clockwise from north to the location is indicated by three digits.

Let's solve the following problem.

Below it is given how a paddy field,Hii tree, and a well located. The hii tree is located 50 m away on a bearing of 030° from the well. A coner of the paddy field is observerd on a bearing of 120° by the Hii tree. The same coner of the paddy field is appeared on a bearing of 080° from the well.
i) Sketch the diagram and identify the right angled triangle.
ii) Find the least distance from the well to that coner of the paddy field using the trignometric tables.

Let's see how to solve the above problem. sketch the diagram

T-Hii tree
W-well
P - coner of the paddy field

Identify the right angled triangle .

$\mathrm{a}+30^{\circ}=180^{\circ}$ (Allied angles)

$$
a=150^{\circ}
$$

$a+b+120^{\circ}=360^{\circ}($ Sum of angles around the point $)$

$$
\mathrm{b}=90^{\circ}
$$

Therfore WPT is a right-angled triangle.
Hence $\mathrm{c}+30^{\circ}=80^{\circ} \quad \mathrm{c}=50^{\circ}$

Consider the WPT triangle.

(It is considered x as the lenear distance from the well to the corner of the paddy field.)

$$
\begin{aligned}
\cos 50^{\circ} & =\frac{T W(\text { adjecent })}{P W(\text { hypotenues })} \\
\cos 50^{\circ} & =\frac{50}{x} \\
0.6428 & =\frac{50}{x} \\
x & =\frac{50}{0.6428}
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{50}{0.6428} \\
& \lg x=\lg \left(\frac{50}{0.6428}\right) \\
& \quad=\lg 50-\lg 0.6428 \\
& \quad=2.6990-18080 \\
& \quad=1.8910
\end{aligned}
$$

$$
x=\operatorname{antilog} 2.8910
$$

$$
=77.8
$$

$$
\underline{x=77.8 \mathrm{~m}}
$$

Complete the excersice 18.7
(Grade 11 maths text book part -III - pg : 38-39)

Angles on vertical plane.

$>$ Recall on angle of elevation and angle of depression.
> Assume that the eye level and the ground level is parallel. Angle of elevation and angle of depression are always made with the horizontal level.

- An angle of elevation is defined as the angle formed between the line of vision and the eye level of an observer is looking at an object above the eye level.
- An angle of depression is defined as the angle formed between the line of vision and the eye level (horizontal level) of an observer when the observer is looking at an object below the eye level.

Let's see how to solve the problem below.
It is necessary to construct a cubical from the base of the tower to observe the top of a 70 m high vertical tower. The angle of elevation of the top of the tower, from the cubical should be 40^{0} 32^{1}
By sketching the diagram we can find the distance from tha base of the tower.

We can select the tangent ratio according to the given data (opposite and the adjacent)

$$
\begin{aligned}
& \tan 40^{\circ} 32^{\prime}=\frac{7 \underline{0}}{x} \\
& 0.8551=\frac{70}{x} \\
& 0.8551 x=70 \\
& x=\frac{70}{0.8551} \\
& =81.86 \\
& \lg x=\lg \left(\frac{70}{0.8551}\right) \\
& \lg x=\lg 70-\lg 0.8551 \\
& \text { = 1.8451-19321 } \\
& =1.9130 \\
& \mathrm{x}=\text { antilog } 1.9130 \\
& \mathrm{x}=81.83
\end{aligned}
$$

If x is the distance from the base of the tower to the cubical
$x=82 \mathrm{~m}$ (to the nearest meter)

Work on exercise.

1). Here is an image of a 4.5 m tall (AB) tree on a horizontal plane and CD is a tower 50 m away from it, the angle of elevation of the tower is 42°
i) Copy the diagram and insert the given data into the figure.
ii) By using the trigonometric tables find the height of the tower to the nearest second

Complete the exercise 18.7
(Grade 11 maths text book part -III - pg : 35-36)

F Revision exercise

1). In the given figure the ratio $\frac{x}{z}$ describes the trigonometric ratio of ,
i) $\tan a$
ii). $\cos a$
iii). $\cos b$
iv). $\sin b$

2). Fill the blank according to the diagram given.

$$
\sin \theta=\frac{\cdots \cdots \cdots \cdots}{8}
$$

3). The figure shows a circle where the center is O points. P, Q and R lien on the circumference. Write trigonometric ratio of $\cos \theta$ in terms of the sides of the relevant triangle.

4).If $\tan \theta=\frac{5}{12}$, find $\cos \theta$.
5). Evaluate x from the given figure.

6). This is circle where the center O and the diameter is 10 cm . The length of the chord is $\mathrm{AB}=8 \mathrm{~cm}$. Write down the trigonometric ratio of $\cos \mathrm{x}$.

7). According to the imformation given in the diagrm write $\frac{\sin x}{\cos x}$ in its simplest form.write the \sin and cosine ratio and simlify the given expression.

8). Evaluate $\cos (90-x)$ using the data in the figure.

Content

C.F Rodrigo - Deputy Principle, Giri/ Humbuluwa M.V J.A.M.M Jayakodi - I.S.A, Divisional Education Office - Nakkawtta G.P.D.U.K Pathirana - S.L.T.S , Giri/ Humbuluwa M.V.

Prepared by

Y.W.H.M Amarasinghe - Assistant Director of Education, Zonal Education Office Giriulla

Monitoring \& Guidance

M.V.D.P.T.K Dewapriya - Deputy Director, Education Department - N.W.P

