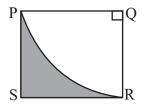


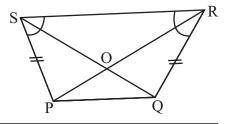
PROVINCIAL DEPARTMENT OF EDUCATION NORTH WESTERN PROVINCE

THIRD TERM TEST - 2019 MATHEMATICS - I

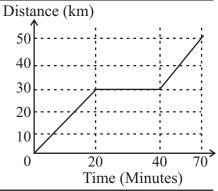
02 Hours


Name / Index No. :

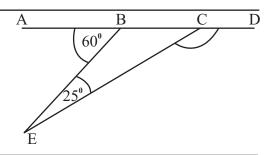
Grade 11


- Answer all questions on this itself.
- Each questions carries two marks in Part A and 10 marks for each questions in Part B.

PART - A

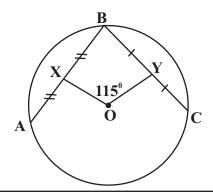

- 01. Rs. 13 800 was charged as the custom duty, when a washing machine worth Rs. 46 000 was imported. Find the percentage that was charged as custom duty.
- 02. Simplify, $\frac{5}{3b} \frac{1-b}{b}$
- 03. A sector of a circle **PQR** is cut and removed from a square shape lamina. The remaining potion is shaded. If the arc length of **PR** is **22cm**, calculate the side length of the square shape lamina.

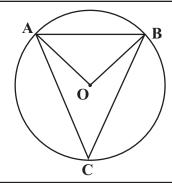
04. According to the data marked on the quadrilateral **PQRS**, Name a pair of congruent triangles & mention the case of congruency.



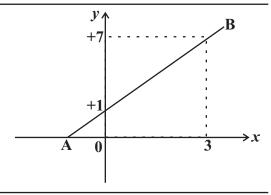
05. The Distance - Time graph of the motion of a bus is given below. Calculate the speed of the bus within last 30 minutes.

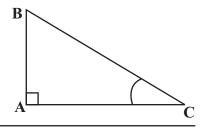
06. Find the LCM of 8mn, 6m² and 4m.

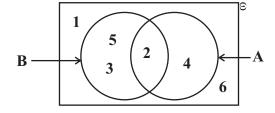

- 07. Write $\log_{10} 56.3 = 1.7505$ in index notation.
- 08. **ABCD** is a straight line. According to the given data, find the magnitude of $\mathbf{E}\hat{\mathbf{C}}\mathbf{D}$.

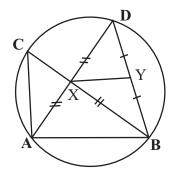

- 09. A certain task can be completed in 3 days by 12 men. It is expected to complete twice the task like the initial task in 8 days. Find how many men are required to complete the second task in 8 days.
- 10. Factors of $6x^2 7x + 2$ can be represented as $6x^2 7x + 2 = (2x 1)(ax + b)$. Find the value of a and b.
- 11. The square root of a certain number to the first approximation is **4.5**. Select the relavant number from the followings,

16 18 20 21

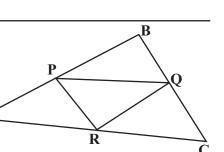

12. **AB** and **BC** are **2** chords of the circle with the centre **O**. The midpoints of the above 2 chords are **X** and **Y** respectively. If $\mathbf{X}\hat{\mathbf{O}}\mathbf{Y} = \mathbf{115}^{0}$. Find the magnitude of $\mathbf{A}\hat{\mathbf{B}}\mathbf{C}$.


- 13. Solve, $\frac{1}{2}x(x+1) = 0$
- 14. An equilateral triangle can be obtained by joining **A**, **B** and **C** points on the circle with the centre **O**. Find the magnitude of **ABO**.

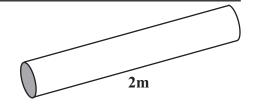

- 15. **AB** is a straight line, shown in the given cartesian plane,
 - Find the intercept. (a)
 - Find the gradient. (b)


ABC is a right angled triangle. According to the given 16. data $tan = \frac{3}{4}$. So what is the trigonometric ratio which represents $\frac{3}{5}$.

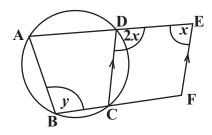
17. Write the elements of the set $(A \ B)^{1}$.


- Based on the information given in the diagram, 18.
 - Write the relation between **AB** and **XY**.
 - If $\overrightarrow{XBY} = 55^{\circ}$, find the magnitude of \overrightarrow{ACB} . (ii)

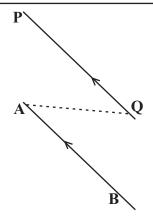
Find the value of x and y if. 19.


$$2\begin{bmatrix} 3 & 4 \\ -1 & 0 \end{bmatrix} + \begin{bmatrix} -1 & 4 \\ 2 & y \end{bmatrix} = \begin{bmatrix} x & 12 \\ 0 & 4 \end{bmatrix}$$

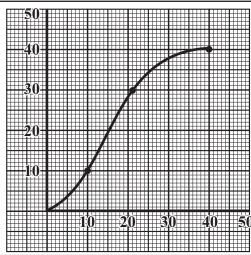
The midpoints of the sides AB, BC and AC of the triangle ABC is P, 20. Q and R respectively. For each statement given below, If it is correct, mark a "✓" in the box in front of it.


- (1) Area of the triangle **PQR** is $\frac{1}{4}$ th of the area of the triangle **ABC**.
- (2) **BPRQ** is a parallelogram.
- (3) The perimeter of the triangle **PQR** is $\frac{1}{4}$ of the perimeter of the triangle **ABC**.

21. The volume of the Cylidrarical shape metal rod with the length **2m** is **2100cm**³. Calculate the area of the cross section in square centimeters.



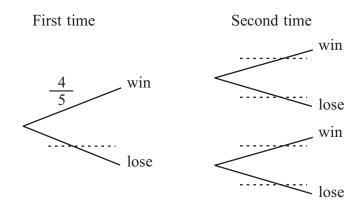
22. **A** and **B** are two mutually exclusive events. If $P(A) = \frac{1}{4}$ and $P(B) = \frac{1}{3}$, find the value of $P(A \cap B)$.


23. **ABCD** is a cyclic quadrilateral. **AD** and **BC** are produced upto **E** and **F** respectively. **DC**//**EF** Find the magnitude of *x* and *y* using the given information.

24. **PQ** is the locus of a point moving at a constant distance from a straight line **AB**. Draw a sketch of the construction lines, required to locate the point **M** on **PQ** and equal distance from two fixed points **A** and **Q**.

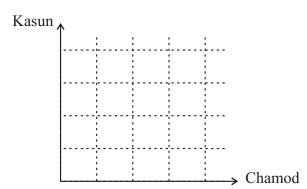
25. The cumulative frequency curve represents information of the number of leaves taken by the employees of a certain office. If the first quatile (\mathbf{Q}_1) is $\mathbf{10}$, find the interquatile range.

- (01) Mr. Sisira spend $\frac{11}{15}$ of the amount of money he earned, to bought a land and built a house. He spend only $\frac{1}{3}$ of the amount of the money he earned, to buy the land.
 - (i) Find what fraction of the total amount was used to build the house.
 - (ii) After spending money to buy the land and build the house, Mr. Sisira spend $\frac{3}{4}$ of the rest of money to buy funitures for the house. What fraction of the total amount of earned money did Mr. Sisra spend to buy furnitures?
 - (iii) At the end of all these expenses, Mr. Sisira deposited the remaining amount of money in the bank. It was $\frac{1}{15}$ of the amount of money he earned. How many times the amount of money spend to buy furnitures when compared to the amount of money deposited in the bank.
 - (iv) If Mr. Sisira deposited Rs. 180 000 in the bank, calculate the total amount of money he earned.


- (02) The given figure is a sketch of a wall hanging consisting of a square shape part ABCD and a semi-circular part CED.
 - (i) Write the special name of the shape ABO.
 - (ii) Find the arc length of the semi-circular shape.

	(iii)		w that the ratio between the area of the semi-circular shape to the area of ABCD square be is 11:28.				
	(iv)	If th	the area of the shape OAB is 49cm ² , Calculate the height of the wall hanging.				
(03)	(a)	A pu	ablic limited company issues 600 000 shares to the public at Rs. 8 per share to raise it's				
		capi	tal. Mr. Suresh purchases 12 000 shares in this company.				
		(i)	Find the amount of money Mr. Suresh invests in this company.				
		(ii)	Express his possession by investing money in the company, as a percentage.				
		(iii)	The company pays Rs. 30 000 dividends income for a year to Mr. Suresh. Find the annual dividends the company paid per share.				
	(b)	A co	mpany charged 3% of commission when selling a land.				
		(i)	Calculate the amount of commission paid when selling the land for Rs. 800 000.				
		(ii)	Calculate the remaining amount of money the land owner gets.				

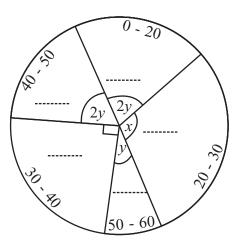
(04) (a) There are 2 level in a single player computer game. If the player wins the first level only, can play the second level. If he loses the first level, wants to play the first level again.


The probability of winning the first level is $\frac{4}{5}$ and the second level is $\frac{1}{3}$,

(i) Kasun plays the above computer game twice. An incomplete tree diagram to represent this information is given below. Write down the corresponding probabilities on the branches.

(ii) Using the tree diagram, find the probability that Kasun wins the game in second time.

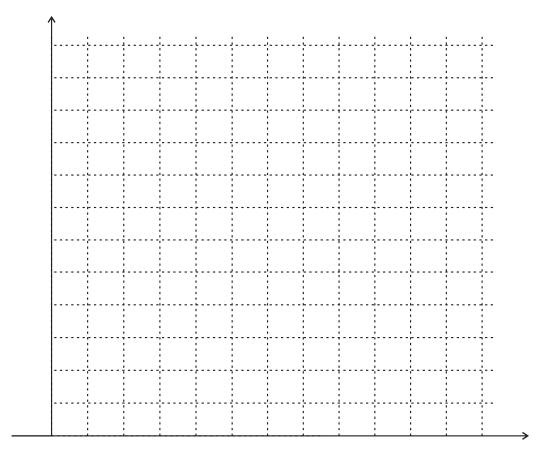
(b) There are 03 games as P₁, P₂, P₃ in Kasun's computer & 04 games as P₁, P₂, P₃ and P₄ in Chamod's computer. Kasun & Chamod randomly select one game and play. Represent the relavant sample space with respect to this random experiment in the gride shown below.



- (i) If A is the event of selecting two different games, encircle the elements of A in the grid.
- (ii) Find $P(A^{I})$.

(05) The pie chart given in the figure shows the marks obtained by certain set of students for the Olympiad maths paper, out of 60 marks.

The number of students who obtained marks between 50 - 60 is 04 and the angle at the centre of the sector is 30° .


(i) Calculate the magnitude of the angles at the centre of the each sector and write them on the relavant dotted lines given in the pie-chart.

(ii) Find the number of students relavant for the each class interval & fill in the blanks.

0 - 20	20 - 30	30 - 40	40 - 50	50 - 60

(iii) Using the above table, complete the histogram & draw the frequency polygon.

PROVINCIAL DEPARTMENT OF EDUCATION - NORTH WESTERN PROVINCE

THIRD TERM TEST - 2019 MATHEMATICS - II

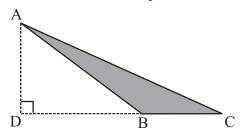
3 Hours 10 minutes

Name / Index No. :

Grade 11

- Answer ten questions selecting five questions from part A and five questions from part B.
- Each question carries 10 marks.
- The volume of a sphere of radius r is $\frac{4}{3}$ r³ and the volume of a right circular cylinder with

radius of the cross section r and height h, is r^2 h.


PART - A

(01) (a) An incomplete table of values prepared to draw the graph of the function $y = 3 - (x + 1)^2$ is given below.

x	-4	-3	-2	-1	0	1	2
у	-6	-1	2	•••••	2	-1	-6

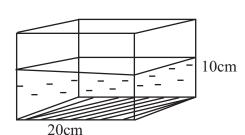
- (i) Find the value of y when x = -1.
- (ii) Using a suitable scale draw the graph of the above function.
- (b) Using the graph,
 - (i) Write the equation of the axis of symmetry.
 - (ii) Write the range of values of x for which the function is decreasing from +1 to -4.
 - (iii) Using the value of x for which the function is 0, find the value of $\sqrt{3}$.
 - (iv) Write down the equation of the graph which is obtained when the above graph is shifted downwards along the y axis by 2 units.
- (02) (a) A furniture set priced at Rs. 80 000/- can be purchased by making a down payment of Rs. 8 000 and paying the remainder by 24 equal monthly installments with an annual interest rate of 24%. If the interest is calculated on the reducing balance, find the interest to be paid at the end of 2 years.
 - (b) When purchasing the above set of furniture, the remaining amount after paying the down payment can be borrowed to repay in 2 years with a compound interest rate of 13% per year. According to that by which method of purchasing, the customer has to pay a more interest? Reducing balance method or compound interest method? Give reasons.

- (03) 3 Youghurts and 4 Ice-creams can be purchased by paying Rs. 220 and 4 Yoghurts and 2 Ice-creams for Rs. 210. The price of a Yoghurt is Rs. *x* and the price of an Ice-cream is Rs. *y*.
 - (i) Denote the number of Youghurts and Ice-creams as a square matrix and then denote the price of a Youghurt and the price of an ice-cream as a column matrix.
 - (ii) Construct a pair of simultaneous equations by writing the two matrices in (i) as a product.
 - (iii) Solve the pair of simultaneous equations and find seperately the price of a yoghourt and an ice cream.
 - (iv) If an equal number of Yoghurts and Ice-creams can be bought for Rs. 260, find the number of yoghurts and icecreams can be bought.
- (04) ABC is a triangular shaped lamina with side length of BC is (x + 2) units. The length of AD is twice of the above length. If the area of lamina is 24 square units,

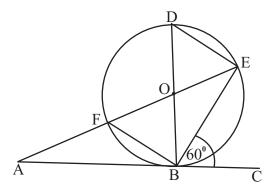
- (i) Show that the area of lamina satisfies the equation $x^2 + 4x 20 = 0$.
- (ii) Solve the equation $x^2 + 4x 20 = 0$ by using the formula or any other method and show that the length of BC is $2\sqrt{6}$.
- (05) The following table contains information on the distance travelled by a car by a certain government field officer to his field study during 25 days of a month.
 - (2-6 denotes greater than or equal 2km and less than 6km)

Distance (km)	2 - 6	6 - 10	10 - 14	14 - 18	18 - 22	22 - 26	26 - 30
Number of days	2	4	5	7	3	2	2

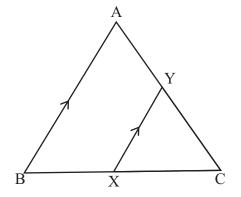
- (i) Write the modal class.
- (ii) Find the mean distance travelled by him by his motor car during this month of 25 days to the nearest kilometer.
- (iii) His institute pays him Rs. 8500 as the transport fee for 25 days. But the officer has calculated that he needs Rs. 24 per 1km each for his motor car. Show that the transportation fee that is paid by the institution is not sufficient for the month.


(06) The diagram shows a straight road PQ runs from South to North. The bus stand is situated at P. The school is located at B at a distance of 100m from P on a bearing of 040° and the hospital is located at C at a distance of 150m from P on a bearing of 130°.

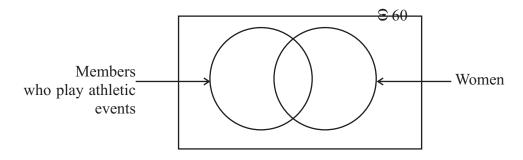
- (i) Represent the above information in a sketch.
- (ii) Find the magnitude of BPC.
- (iii) Using the trigonometric ratios,
 - (a) Find the shortest distance from the school at B to the straight road PQ.
 - (b) Find the value of PCB.



- (07) (a) In an arithmetic progression the first term is 15 and the 10th term is 105.
 - (i) Find the common difference of this progression.
 - (ii) Denote the sum of the first n terms of this arithmetic progression in terms of n.
 - (iii) Find the number of terms that should be added from the first term to get a sum of 400.
 - (b) Find the 7th term of the geometric progression 3, 6, 12,
- (08) Use only a straight edge with a cm/mm scale and a pair of compasses for the following constructions. Show the construction lines clearly.
 - (i) Construct the angle BÂP, such that AB = 7cm and $BÂP = 45^{\circ}$.
 - (ii) Construct the perpendicular bisector of AB and name the point it meets AP or produced AP as D.
 - (iii) Construct the circle with centre O which passes through the points A, B and D. Give reasons why CD is a tangent to the circle.
 - (iv) Produce the side CD to E such that DE = 5cm and construct another tangent to the circle from the point E.
- (09) (a) A cuboidal shaped glass container has a square base of side length 20cm. This container has been filled with water up to a height of 10cm.



- (i) Find the volume of water in the container in cubic centimeters.
- (ii) 30 solid spheres with radius "a" cm are immersed completely in the water of the container. If the water level goes up by h, show that $h = \frac{a^3}{10}$.
- (b) When = 3.14 and a = 2.05cm, find the value of h using logarithmic tables to the nearest first decimal place.


- (10) AC is a tangent drawn to the circle at B with centre O and the diameter BD. $\angle CBE = 60^{\circ}$.
 - (i) By giving reasons find the magnitude of following angles.
 - (a) EFB
 - (b) ABF
 - (ii) Prove that ABF and ABE are equiangular triangles.
 - (iii) If AE = 9cm and AF = 4cm, find the length of AB.

- (11) In the triangle ABC, AB = BC and XY is a line which is drawn parallel to AB through X. The line BA is produced to W such that XC = AW. The lines WX and AC are intersected at Z.
 - (i) Copy the figure and mark the given information. Show that the triangle XYC is an isosceles triangle.
 - (ii) Prove that, $AZ = \frac{1}{4} AC$

(12) In a sports club of 60 members, 41 are women. Out of them 17 women play athletic events and 14 men do not play athletic events.

- (i) Copy the venn diagram and represent the above information in it.
- (ii) Shade the region which represent women who do not play athletic events.
- (iii) In this sports club any one who plays team games, does not play athletic events. Out of the 19 members who play team games, 9 are women. Draw a new venn diagram by including data to depict this change and find the number of members who do not participate for any sport.

සියලුම හිමිකම් ඇවිරියි. / All Rights Reserved, ucation වයම් පළාත් අධ්යාපත වයම් පළාත් අධ්යාපත දෙනව්වීමේ උප් perfunct of Provincial Education වියම් පළාත් අව අත් පළාත් අධ්යාපත දෙනව්වීමේ අත් අත් අධ්යාපත වියම් පළාත් අත් අත් අධ්යාපත වෙනවා අත් අධ්යාපත වෙනවා අත් අධ්යාපත දෙනව්වීමේ අත් අධ්යාපත දෙනව්වීමේ අත් අධ්යාපත අවුත් අධ්යාපත වෙනවා මේ අත් අධ්යාපත වෙනවා මේ අධ්යාපත වෙනවා මේ අධ්යාපත වෙනවා අත් අධ්යාපත අවුත් අධ්යාපත දෙනව්වීමේ අත් අධ්යාපත අවුත් අධ්යාපත අවුත් අධ්යාපත අවුත් අධ්යාපත දෙනවා මේ අධ්යාපත අවුත් අවුත් අධ්යාපත අවුත් අධ්යාපත අවුත් අවුත් අධ්යාපත අධ්යාපත අවුත් අධ්යාපත අවුත් අධ්යාපත අධ	ා දෙපාර්තමේන්තුව Department of Provincial Education වයුණු සළාත් අධ්නපන දෙපාර්තමේන්තුව	
විෂයය Subject	විභාග අංකය Index No.	
විභාග ශාලාවෙන් පිටතට ගෙනයාම තහනම. Not to be removed from the Exa	mination Hall.	

ANSWER PAPER

PAPER - I / PART - A

01.	$= \frac{13800}{46000} \times 100$		
	= 30%		02
02.	5 - 3(1-b) 3b	01	
	$\frac{2+3b}{3b}$	01	02
03.	4	01	
	r = 14cm	01	02
04.	SPR SRQ (S.A.S.)		02
05.	40 kmh ⁻¹		02
	$\frac{20}{30}$ x 60	01	
06.	24 m²n		02
07.	$10^{1.7505} = 56.3$		02
08.	$E\hat{C}D = 145^{\circ}$		02
	or		
	$\stackrel{\wedge}{\rm EBC} = 120^{\circ} / \stackrel{\wedge}{\rm BCE} = 40^{\circ}$	01	
09.	No of man days = 9		02
	or		
	Man days 36 or 72	01	
10.	a = 3		
11	b = -2		02
11. 12.	20 65°		02
			02
13.	x = 0 or x = 1		02
14.	$A\hat{B}O = 30^{\circ}$		02
	or		
	Identifying $A\hat{O}B = 120^{\circ}$	01	
15.	+1	01	
	$m = \frac{7 - 1}{3 - 0}$		
	_ 6		
	$=\frac{6}{3}$		
	= 2	01	02
16.	sin or cos ABC		02
	or cos (90 -)		
	Identifying BC = 5cm	01	
			((

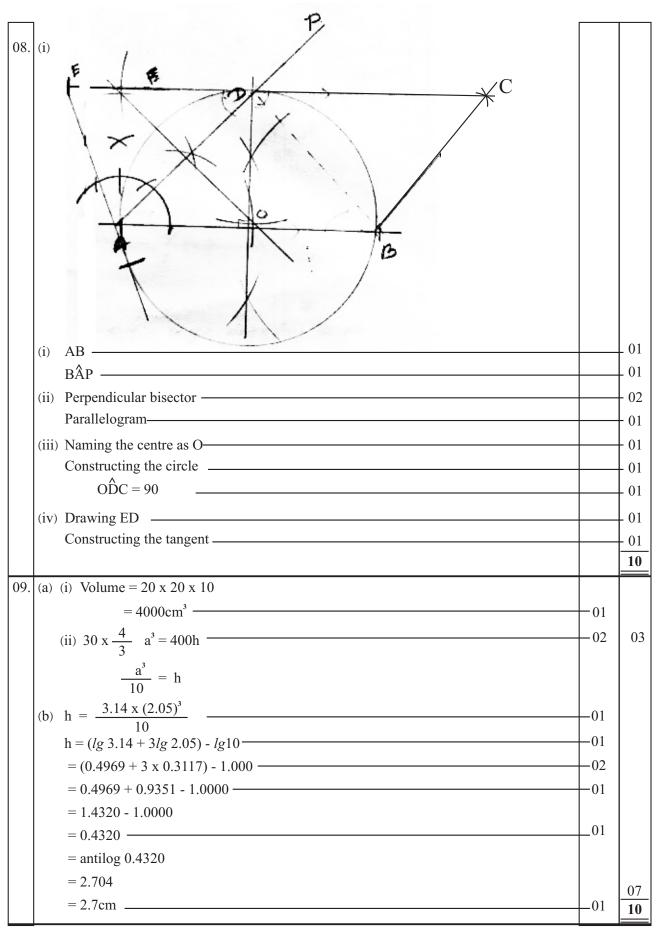
17.	$(A \ B)^{I} = \{1, 6\}$		02
18.	(i) $xy // AB$ or $xy = \frac{1}{2} AB$	01	
	(ii) $\stackrel{\wedge}{ACB} = 55^{\circ}$	01	02
19.	x = 5		
	y = 4		02
20.	(i) x		
	(ii) ✓		0.2
	(iii) x		02
21.	Area = $\frac{2100}{200}$	01	
	$= 10.5 \text{cm}^2$		02
22.	$P(A \ B) = \frac{1}{4} + \frac{1}{3}$		
	$=\frac{3+4}{12}$		
	12 7		
	$=\frac{7}{12}$		02
23.	$x = 60^{0}$	01	
	$y = 120^{\circ}$	01	02
24.	P M		
	AĤQ		
	₩ B		
	AQ perpendicular bisector	01	
	Marking M	01	02
25.	11 or		
	Identifying $Q_3 = 21$	01	02
			50
	PAPER - I / PART - B		
01.	(i) $\frac{11}{15} - \frac{1}{3}$	01	
	<u>11 - 5</u> 15	01	
	<u>6</u> 15		
	2	0.1	
	2 5	01	03
			l

	(ii) $1 - \frac{11}{15}$	01	
	$\frac{4}{15} \times \frac{3}{4}$ (Taking $\frac{3}{15}$)	01	
	1 5	01	03
	(iii) $\frac{1}{5}$ $\frac{1}{15}$ $\frac{1}{5}$ x $\frac{15}{1}$	01	
	= 3	01	02
	(iv) $\frac{1}{15}$ 180 000	01	
	180 000 x 15 Rs. 2 700 000	01	02 10
02.	(i) Right angular isosceles	01	01
	Triangular shape		
	(ii) = $2 \times \frac{22}{7} \times 7 \times \frac{1}{2}$	01	
	= 22cm	01	02
	(iii) Area of the shape		
	$=\frac{22}{7} \times 7 \times 7 \times \frac{1}{2}$	01	
	$= 77 \text{cm}^2$ Shape B = 14 x 14	01	
	$= 196 \text{cm}^2$	01	
	= 77 : 196	01	
	= 11 : 28		04
	(iv) $\frac{1}{2}$ x 14 x h = 49	01	
	h = 7cm $l = 7 + 14 + 7$	01	
	t = 7 + 14 + 7 $= 28 cm$	01	03
	200	01	10
03.	(a) (i) Amount invested	01	
	$= 12000 \times 8$	01	02
	= Rs. 96 000	01	02
	(ii) Possession	_	
	$= \frac{12000}{600000} \times 100\%$	01	
	= 2%	01	02
			(0

	(iii) dividend income = $\frac{30\ 000}{12\ 000}$	01	
	= Rs. 2.50	01	02
	(b) Commission = $\frac{3}{100}$ x 800 000	01	
	= Rs. 24 000	01	02
	Amount received to the owner = 800 000 - 24 000	01	
	= Rs. 776 000	01	02 10
04.	$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	01	
	$ \begin{array}{c} 1^{\text{if time}} & \text{win} \\ \frac{4}{5} & \text{win} \\ \end{array} $ $ \begin{array}{c} \frac{2}{3} & \text{lose} \end{array} $	02	
	$\frac{1}{5} \text{lose} \frac{4}{5} \text{win} $	01	04
	(ii) $\left(\frac{4}{5} \times \frac{1}{3}\right) + \left(\frac{1}{5} \times \frac{4}{5}\right)$	01	
	$ \frac{4}{15} + \frac{4}{25} \\ \underline{20 + 12} \\ 75 $ $ \frac{37}{75} $	01	06
	(b) (i) P ₃ P ₂ P ₃ P ₄ Chamod	02	
	Encircling 3	01	
	(ii) $P(A') = \frac{3}{12}$		
	$=\frac{1}{4}$	01	04
	4		10
	_		
05.	$(i) 2y = 60^{\circ}$	01	
	$x = 120^{0}$	01	
	Representing in the pie chart	01	03

	_						
	(iii)	0-20	20 - 30	30 - 40	40 - 50	50 - 60	02
		08	16	12	08	04	
	(iv)	20†					_
		£16	Г	*.			
		No. of students	ļ	; `\ <u>\</u>	1		
		₽12 T		"``	 		
		g 8	/		<u> </u>		
		ể 4 .			\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u> </u>	
						<u>]. </u>	
		10 0	10 20) 30 4 narks	0 50	50 70	
	(v)	• Mark	ing axes			01	
			mn 0 - 2			01	
		• Other	r columr	ıs		01	
				cy polyg	gon		
		First &	-	its		01 01	05
		Other po	oints			01	$\frac{00}{10}$
		PA	PER - I	I / PAR	Γ - A		_
01.	(a) (01	
01.	l ` ′ '	ii) Corre	ect axes			01	
				ints corr	ectly	01	
			oth curve		·	01	04
	(b) ((i) $x = -i$	-1			01	
	(ii) 0.2	< x < 1.6	ó		01	
	(x = 0	-2.7 x =	= 0.7		02	
	($iv) \sqrt{3} =$	= x + 1				
		=	-1.7 +	1.7		01	
		<i>y</i> =	1 - (x +	$(1)^{2}$		01	06
		•	•				10
02.	(a) 1	Loan = 8	RO 000 =	8000			=
02.	(a) 1		Rs. 72 0			01	
	l	•	instalm	ent with			
	interest = $\frac{72000}{24}$						
	= Rs. 3000						
]	Interest	for a mo	nth unit			
			= 3000	$x \frac{24}{100}$	$x \frac{1}{12}$	01	
			= 60			01	
	l N	No of mo	onth unit	S			
			= _	$\frac{28}{24} \times (2)$	(24 + 1)	01	
				<i>L</i>			

	= 300		
'	Total interest = 300×60		
	= Rs. 18 000	01	06
(b) Int	terest for the first year		
	$=\frac{13}{100} \times 72000$		
	100	0.4	
	= 9360	01	
P1	rinciple for the second		
	year = 72000 9360		
Int	81360		
1110	erest for the second year		
	$=\frac{13}{100} \times 81360$		
		0.1	
Tota	= 10576.80 al interest $= 10576.80$	01	
	9360.00		
	19936.80	01	
	19936.80 > 18000		
Re	educing balance method is	01	04
mo	ore profitable.		10
<u> </u>	r 7		
03. (i)	3 4 4 2	01	
	[4 2]		
	[x]	0.1	
	$\begin{bmatrix} x \\ y \end{bmatrix}$	01	02
	L *		
(11)	$\begin{bmatrix} 3 & 4 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$	01	
		0.1	
	$3x + 4y = 220 - \bigcirc$	01	
	4x + 2y = 210 ②	01	03
(iii) (
	8x + 4y = 420 3	01	
	3- ①		
	5x = 200		
	x = 40	01	
,		"1	
l I	By substituting $x = 40$ for ①		
l I	3x + 4y = 220		
	$3 \times 40 + 4y = 220$		
	4y = 220 - 120		
	4y = 100		
	y = 25	01	
	Price of a yought Rs. 40		
	Price of an ice-cream Rs. 25	01	04
		01	0-1
(iv) =	_ 260		
	$\overline{(40+25)}$		
=	= 4		
,	4 youghts for 4 ice-creams	01	01
	. joughts for 1 fee elemins	"1	10
			10


ANSWER PAPER

PAPER - II / PART - B

04.	(i) $24 = \frac{1}{2} (x+2) \times 2 (x+2)$	01	
	$24 = x^2 + 4x + 4$	01	02
	$0 = x^2 + 4x + 4 - 24$		
	$0 = x^2 + 4x - 20$		
	(ii) $x^2 + 4x - 20 = 0$		
	$x^2 + 4x = 20$	01	
	$x^2 + 4x + 4 = 20 + 4$	01	
	$(x+2)^2 = 24$	01	
	$x + 2 = \pm \sqrt{24}$	01	
	$x + 2 = \pm 2\sqrt{6}$	01	
	$x = 2\sqrt{6} - 2$ or $x = -2\sqrt{6} - 2$	01	
	x can't be a negative value,		
	$x = 2\sqrt{6} - 2$	01	
	BC = x + 2		
	$=2\sqrt{6}-2+2$	01	08
	$=2\sqrt{6}$		
			10
05.	(i) 14 - 18	01	01
	(ii) class interval Mid values f fx	Щ	
	2-6 4 2 8		
	6 -10 8 4 32 10-14 12 5 60		
	14-18 16 7 112		
	18-22 20 3 60		
	22-26 22 2 44		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	372	
	Mid value column	01	
	fx column	02	
	fx	01	04
	$Mean = \frac{fx}{f}$	-	
	y .		
	$=\frac{372}{25}$	01	
	= 14.8	01	
	= 15km	01	03
	(iii) Monthly expenditure = $15 \times 25 \times 24$		
	= 9000	01	
	8500 < 9000 Not enough	01	02
	Not enough		10

06.	(i) C		
	40		
	P 130		
	150m		
	on C	02	
	(ii) $\overrightarrow{BPC} = 130^{\circ} - 40^{\circ}$ = 90°	01	03
	(iii) (a) Representing the shortest distance in the figure	01	
	$\sin 40^{\circ} = \frac{BQ}{100}$	01	
	1		
	$0.6428 = \frac{BQ}{100}$	01	
	64.28m = BQ	01	04
	(b) $\tan P\hat{C}B = \frac{100}{150}$	01	
	$\tan P\hat{C}B = 0.667$	01	
	$P\hat{C}B = tan^{-1} 0.6667$		
	$P\hat{C}B = 33 \ 42^{1}$	01	03 10
07	(a) (i) $Tn = a + (n - 1) d$		
	105 = 15 + (10 - 1) d	01	
	90 = 9d		
	10 = d	01	02
	(ii) $Sn = \frac{n}{2} \{2a + (n-1)d\}$		
	$Sn = \frac{n}{2} \{2 \times 15 + (n-1)10\}$	01	
	$Sn = \frac{n}{2} (20 + 10n)$		
	$Sn = 10n + 5n^2$	01	02
	(iii) $400 = 10n + 5n^2$ $0 = 5n^2 + 10n - 400$	01	
	$0 = n^2 + 2n - 80$		
	0 = (n + 10) (n - 8)	01	
	n+10=0 or n-8=c $n=-10 \qquad n=8$		
	Number of sides con't be a		
	negative value, No. of sides = 8	01	03
	No. of sides = 8 (b) $Tn = ar^{n-1}$	01	0.5
	$\begin{array}{c} \text{(b)} \text{in} = \text{ar} \\ = 3 \times 2^{(7-1)} \end{array}$	01	
	$= 3 \times 2^6$	01	
	""	l	1
	$= 3 \times 64$	01	
	$= 3 \times 64$ = 192	01 01	03

ANSWER PAPER

ANSWER PAPER

10.	(i) (a) $E\hat{F}B = 60^{\circ}$ (Angles in the alternate segment)	02				
	(b) $ABF = 180^{\circ} - (90^{\circ} + 60^{\circ})$ (Angles in the semi circle) = 30°					
	(ii) ABF and ABE ABF = BEA (Angles in the alternate segment) BAF = BAF (common) AFB = ABE (Interior → of a) ABF and ABE are Equi - angular triangles					
	(iii) $\frac{AB}{AE} = \frac{AF}{AB}$ $\frac{AB}{9} = \frac{4}{AB}$ $AB^{2} = 36$ $AB = \sqrt{36}$ $AB = 6cm$					
11.	(i) AWZ and XYZ $AW = XY \text{ (above proof)}$ $\widehat{WAZ} = X\widehat{YZ} \text{ (Alternate)}$ $A\widehat{Z}W = X\widehat{Z}Y \text{ (Opposite)}$ $AZ = YZ \text{ (Corresponding features of congruent triangles)}$ $2AZ = AY$ $AZ = \frac{1}{2} AY \underline{\hspace{1cm}} 0$ $AY = YC \text{ (converse of the mid-point theorem)}$ $2AY = AC$ $AY = \frac{1}{2} AC \underline{\hspace{1cm}} 0$ $AY = \frac{1}{2} AC \underline{\hspace{1cm}} 0$ $AY = \frac{1}{2} AC \underline{\hspace{1cm}} 0$ $AZ = \frac{1}{2} AC \underline{\hspace{1cm}} 0$ $AY = \frac{1}{2} AC \underline{\hspace{1cm}} 0$ $AZ = \frac{1}{2} AC \underline{\hspace{1cm}} AC$ $AZ = \frac{1}{4} AC$	01	05 10			

01

(ii) To prove that $= AZ = \frac{1}{4} AC$

Proof: XC = XY (Above proof) XC = AW (data)

XY = AW

12.	Athletic 5 17 24 Women Women					
	Marking 5. 17, 14, 24	04				ı
	(ii) Shading the correct area.	01	05			I
	(iii) 5 17 9 10 Athlatic Women Games					
	Ven diagrame	01				ı
	Marking 15, 9, 10	03				I
	4	01	05			I
			10			ı
						I
						ı
						ı
						ı
						ı
						ı
						ı
						ı
						ı
						ı
						I
						I
						I
						I
						ı
						ı
						ı