Binomial Expressions

By studying this lesson, you will be able to

expand the cube (third power) of a binomial expression.

You have learned in earlier lessons that, for a binomial expression of the form $x+y$, its square is denoted by $(x+y)^{2}$, and that what it means is $(x+y)(x+y)$, and that when the product is expanded, the expression $x^{2}+2 x y+y^{2}$ is obtained. Moreover, recall that $x^{2}-2 x y+y^{2}$ is obtained when $(x-y)^{2}$ is expanded.
Do the following exercise to recall what you have learned about the expansion of squares of binomial expressions.

Review Exercise

1. Fill in the blanks.
a. $(a+b)^{2}=a^{2}+2 a b+\ldots .$.
b. $(a-b)^{2}=\ldots .-2 a b+b^{2}$
c. $(x+2)^{2}=x^{2}+4 x+\ldots .$.
d. $(y+3)^{2}=y^{2}+\ldots . .+9$
e. $(a-5)^{2}=\ldots \ldots-10 a+25$
f. $(b-1)^{2}=b^{2} \ldots . .+\ldots$.
g. $(4+x)^{2}=16+$. \qquad h. $(7-t)^{2}=49 \ldots \ldots+t^{2}$
i. $(2 x+1)^{2}=4 x^{2} \ldots . .+1$
j. $(3 b-2)^{2}=$ \qquad
2. Expand.
a. $(2 m+3)^{2}$
b. $(3 x-1)^{2}$
c. $(5+2 x)^{2}$
d. $(2 a+3 b)^{2}$
e. $(3 m-2 n)^{2}$
f. $(2 x+5 y)^{2}$
3. Evaluate the following squares, by writing each as a square of a binomial expression.
a. 32^{2}
b. 103^{2}
c. 18^{2}
d. 99^{2}

6.1 Cube of a binomial expression

The cube of the binomial expression $a+b$, is $(a+b)^{3}$. That is, the third power of $(a+b)$. Note that this is the same as multiplying $(a+b)^{2}$ again by $(a+b)$.

Carefully observe how the following expressions, involving a power of 3 , are written.

$$
\begin{aligned}
3^{3} & =3 \times 3^{2}=3 \times 3 \times 3=27 \\
x^{3} & =x \times x^{2}=x \times x \times x \\
(2 x)^{3} & =(2 x) \times(2 x)^{2}=(2 x) \times(2 x) \times(2 x)=8 x^{3}
\end{aligned}
$$

In a similar way, we can write

$$
\begin{aligned}
& (x+1)^{3}=(x+1)(x+1)^{2}=(x+1)(x+1)(x+1) \\
& (a-2)^{3}=(a-2)(a-2)^{2}=(a-2)(a-2)(a-2) \\
& (3+m)^{3}=(3+m)(3+m)^{2}=(3+m)(3+m)(3+m)
\end{aligned}
$$

The cube of a binomial expression can be expanded in a way similar to how the square of a binomial expression was expanded. It is illustrated in the following example.

Example 1

$$
\begin{aligned}
(x+y)^{3} & =(x+y)(x+y)^{2} \\
& =(x+y)\left(x^{2}+2 x y+y^{2}\right) \\
& =x^{3}+2 x^{2} y+x y^{2}+x^{2} y+2 x y^{2}+y^{3} \\
& =x^{x^{3}+3 x^{2} y+3 x y^{2}+y^{3}}
\end{aligned}
$$

Accordingly, let us remember the following pattern as a formula for the expansion of the cube of the binomial expression $(x+y)$.

three times the product of the first term and the square of the second term

According to this, we can write

$$
(m+n)^{3}=m^{3}+3 m^{2} n+3 m n^{2}+n^{3}
$$

Similarly, we can write $(a+2)^{3}=a^{3}+3 a^{2} \times 2+3 a \times 2^{2}+2^{3}$, and this can be further simplified as ,
$a^{3}+6 a^{2}+12 a+8$
Now let us consider how the expansion of $(x-y)^{3}$ is obtained by taking products.

$$
\begin{aligned}
(x-y)^{3} & =(x-y)(x-y)^{2} \\
& =(x-y)\left(x^{2}-2 x y+y^{2}\right) \\
& =x^{3}-2 x^{2} y+x y^{2}-x^{2} y+2 x y^{2}-y^{3} \\
& =x^{3}-3 x^{2} y+3 x y^{2}-y^{3}
\end{aligned}
$$

Now, let us consider how we can obtain the expansion of $(x-y)^{3}$, using another method.
First, note that we can write $x-y$ as $x+(-y)$. Therefore, we can treat $(x-y)^{3}$ as an expression of the initial form, by writing it as $\{x+(-y)\}^{3}$. Let us now consider the expansion of this cube.

$$
\begin{aligned}
(x-y)^{3}=\{x+(-y)\}^{3} & =x^{3}+3 \times x^{2} \times(-y)+3 \times x \times(-y)^{2}+(-y)^{3} \\
& =\underline{x^{3}-3 x^{2} y+3 x y^{2}-y^{3}}
\end{aligned}
$$

Note that we have used the properties $(-y)^{2}=y^{2}$ and $(-y)^{3}=-y^{3}$ in the above simplification.
According to this, we can also write

$$
\begin{aligned}
(m-n)^{3} & =m^{3}-3 m^{2} n+3 m n^{2}-n^{3} \\
(p-q)^{3} & =p^{3}-3 p^{2} q+3 p q^{2}-q^{3}
\end{aligned}
$$

Either method can be used to obtain the expansion of $(x-y)^{3}$. You may use any method which is easy for you.
Let us now consider how the cube of a binomial expression, involving numbers as well, is expanded.

Example 2

$$
\begin{aligned}
(x+5)^{3} & =x^{3}+3 \times x^{2} \times 5+3 \times x \times 5^{2}+5^{3} \\
& =x^{3}+15 x^{2}+75 x+125
\end{aligned}
$$

Example 3

$$
\begin{aligned}
(1+x)^{3} & =1^{3}+3 \times 1^{2} \times x+3 \times 1 \times x^{2}+x^{3} \\
& =\underline{1+3 x+3 x^{2}+x^{3}}
\end{aligned}
$$

Example 4

$$
\begin{aligned}
(y-4)^{3} & =y^{3}+3 \times y^{2} \times(-4)+3 \times y \times(-4)^{2}+(-4)^{3} \\
& =y^{3}-12 y^{2}+48 y-64
\end{aligned}
$$

or

$$
\begin{aligned}
(y-4)^{3} & =y^{3}-3 \times y^{2} \times 4+3 \times y \times 4^{2}-4^{3} \\
& =y^{3}-12 y^{2}+48 y-64
\end{aligned}
$$

Example 5

$$
\begin{aligned}
(5-a)^{3} & =5^{3}+3 \times 5^{2} \times(-a)+3 \times 5 \times(-a)^{2}+(-a)^{3} \\
& =125-75 a+15 a^{2}-a^{3}
\end{aligned}
$$

or

$$
\begin{aligned}
(5-a)^{3} & =5^{3}-3 \times 5^{2} \times a+3 \times 5 \times a^{2}-a^{3} \\
& =\underline{\underline{125-75 a+15 a^{2}-a^{3}}}
\end{aligned}
$$

Example 6

$$
\begin{aligned}
(-2+a)^{3} & =(-2)^{3}+3 \times(-2)^{2} \times a+3 \times(-2) \times a^{2}+a^{3} \\
& =-\quad-\quad-12 a-6 a^{2}+a^{3}
\end{aligned}
$$

Example 7

$$
\begin{aligned}
(-3-b)^{3} & =(-3)^{3}+3 \times(-3)^{2} \times(-b)+3 \times(-3) \times(-b)^{2}+(-b)^{3} \\
& =-27-27 b-9 b^{2}-b^{3}
\end{aligned}
$$

or

$$
\begin{aligned}
{[-1(3+b)]^{3} } & =(-1)^{3}(3+b)^{3} \\
& =-1\left(3^{3}+3 \times 3^{2} \times b+3 \times 3 \times b^{2}+b^{3}\right) \\
& =-1\left(27+27 b+9 b^{2}+b^{3}\right) \\
& =-\underline{\underline{27-27 b-9 b^{2}-b^{3}}}
\end{aligned}
$$

Example 8

Write the expansion of $(x-3)^{3}$ and verify that $(4-3)^{3}=4^{3}-3^{2} \times 4^{2}+3^{3} \times 4-3^{3}$
$(x-3)^{3}=x^{3}-3^{2} \times x^{2}+3^{3} \times x-3^{3}$
Substituting $x=4$
Left s. $=(4-3)^{3}$

$$
=1
$$

Right s. $=4^{3}-3^{2} \times 4^{2}+3^{3} \times 4-3^{3}$

$$
=1
$$

Left s. $=$ Right s.
Therefore $(4-3)^{3}=4^{3}-3^{2} \times 4^{2}+3^{3} \times 4-3^{3}$

Exercise 6.1

1. Fill in the blanks using suitable algebraic terms, symbols (+ or -) or numbers.
a. $(x+3)^{3}=x^{3}+3 \times x^{2} \times 3+3 \times x \times 3^{2}+3^{3}=x^{3}+\square+\square+27$
b. $(y+2)^{3}=y^{3}+3 \times \square \times \square+3 \times \square \times \square+2^{3}=y^{3}+6 y^{2}+\square+\square$
c. $(a-5)^{3}=a^{3}+3 \times a^{2} \times(-5)+3 \times a \times(-5)^{2}+(-5)^{3}=a^{3}-\square+\square-125$
d. $(3+t)^{3}=\square+3 \times \square \times \square+3 \times \square \times \square+\square=\square+27 t+\square+t^{3}$
e. $(x-2)^{3}=x^{3} \square 3 \times \square \times \square+3 \times \square \times \square+(-2)^{3}=x^{3} \square \square+12 x-\square$
2. Expand.
a. $(m+2)^{3}$
b. $(x+4)^{3}$
c. $(b-2)^{3}$
d. $(t-10)^{3}$
e. $(5+p)^{3}$
f. $(6+k)^{3}$
g. $(1+b)^{3}$
h. $(4-x)^{3}$
i. $(2-p)^{3}$
j. $(9-t)^{3}$
k. $(-m+3)^{3}$
I. $(-5-y)^{3}$
m. $(a b+c)^{3}$
n. $(2 x+3 y)^{3}$
o. $(3 x+4 y)^{3}$
p. $(2 a-5 b)^{3}$
3. Write as a cube of a binomial expression.
a. $a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$
b. $c^{3}-3 c^{2} d+3 c d^{2}-d^{3}$
c. $x^{3}+6 x^{2}+12 x+8$
d. $y^{3}-18 y^{2}+108 y-216$
e. $1+3 x+3 x^{2}+x^{3}$
f. $64-48 x+12 x^{2}-x^{3}$
4. Shown in the diagram is a cube with the length of each side $(a+5)$ units. Write an expression for the volume of the cube and expand it.

5. Expand $(x+3)^{3}$, and verify the result for the following cases.
(i) $x=2$
(ii) $x=4$
6. Use the knowledge on cubes of binomial expressions to evaluate the following numerical expressions.
(i) $64-3 \times 16 \times 3+3 \times 4 \times 9-27$
(ii) $216-3 \times 36 \times 5+3 \times 6 \times 25-125$
7. Find the value of each of the following, by writing each as a cube of a binomial expression.
a. 21^{3}
b. 102^{3}
c. 17^{3}
d. 98^{3}
8. Find the volume of a cube, with each side $2 a-5 \mathrm{~cm}$, in terms of a.
9. Write $x^{3}-3 x^{2} y+3 x y^{2}-y^{3}$ as a cube and use it to find the value of $25^{3}-3 \times 25^{2} \times 23+3 \times 25 \times 23^{2}-23^{3}$.
